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Manifestation of quantum chaos in Fano-Feshbach resonances

Lucie D. Augustovičová1 and John L. Bohn2

1Charles University, Faculty of Mathematics and Physics, Department of Chemical Physics and Optics,
Ke Karlovu 3, CZ-12116 Prague 2, Czech Republic

2JILA, NIST, and Department of Physics, University of Colorado, Boulder, Colorado 80309-0440, USA

(Received 27 June 2018; published 20 August 2018)

A model is presented that mimics the nearest-neighbor-spacing (NNS) distribution of chaotic molecules such
as Dy2 and Er2 just below their dissociation threshold. In this model the degree of chaos is controlled by choosing
suitable Hamiltonian matrices from random ensembles. It is found that, in versions of the model that are not
completely chaotic, the NNS of observable Fano-Feshbach resonances exhibits greater level repulsion, hence
more chaos, than the corresponding NNS of a typical energy spectrum of the molecule at a fixed magnetic field.
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I. INTRODUCTION

Recently, evidence of quantum chaos has been reported
in ultracold collisions of both erbium and dysprosium atoms
[1–5]. The states contributing to chaotic spectra are those that
lie immediately below the dissociation threshold of the Dy2 or
Er2 molecule. This is unusual: chaos is predicted to be present
in triatomic systems at or just below dissociation, such as Ar3

clusters [6], as well as ultracold collisions of Li+CaH [7] or
Rb+K2. However, it is less obvious that diatomic molecules
could present chaotic behavior.

The observation of chaos in Dy2 and Er2 was assisted by
the circumstance of extremely low temperatures, on the order
of hundreds of nK. This circumstance enabled high-resolution
spectroscopy of distinct states, which revealed quantum chaos
by the usual measures of nearest-neighbor-spacing statistics or
spectral rigidity.

There is, however, a novelty in the observations of
Refs. [1–5], at least from the point of view of quantum chaos.
The resonant states were observed as a function of magnetic
field, rather than as a function of energy, as would be the case in
conventional spectroscopy. This is a very natural consequence
of spectroscopy in ultracold gases, where the energy of a pair of
colliding atoms is fixed, essentially at zero, while the resonant
states can be moved, in this case by means of the magnetic
field, through this energy, where they are observed as E = 0
scattering resonances.

The spectra of the near-dissociation molecules generally
appear as in Fig. 1. This figure is the result of a schematic
model of Dy2 energy levels, to be described in Sec. II. The
point here is that, at each value of the magnetic field B, there
exists a spectrum of bound-state energies that may exhibit
some degree of quantum chaos. As the magnetic field is
increased, this spectrum evolves, in such a way that the energy
states move closer to, and eventually cross, the dissociation
threshold, taken here to be E = 0. This threshold corresponds
to the lowest-energy states of a pair of free atoms, each
in the |jm〉 = |8,−8〉 state in this case. At each magnetic
field where one of these bound state crosses the threshold,
a scattering resonance appears, which is observed by means
of the excessive three-body recombination that accompanies

it. The resulting set of magnetic field values constitutes a
spectrum, which can be analyzed by means of the usual tools
of quantum chaos.

The measured spectra of Dy2 and Er2 are therefore unusual,
inasmuch as they consist of magnetic field values, rather than
energies. What is recovered is not the energy spectrum of a
chaotic molecule, but rather a spectrum consisting of a single
energy level from each of many different chaotic molecules,
since the molecular Hamiltonian giving rise to these bound
states is different for each magnetic field.

This distinction raises questions regarding the interpretation
of the measurement. If chaos is found in the spectra of magnetic
field values, does it imply the same degree of chaos would be
found in the energy spectrum at any fixed magnetic field? If
not, which is “more chaotic,” and how do we quantify the
difference?

In this article we make a preliminary investigation into these
questions. In Sec. II we construct a fairly realistic model of Dy2
molecules and extract from it spectra of energies at constant
magnetic field, and spectra of magnetic field values at constant
energy. These spectra are analyzed in terms of their nearest-
neighbor spacing (NNS) and quantified by the free parameters
of their respective Brody distribution [8]. It is found that both
spectra yield Brody parameters near unity, i.e., that both the
energy and magnetic field spectra are fully chaotic.

In Sec. III we introduce a family of extended models in
such a way that effective channel couplings in the molecule
can be reduced, making the molecules less chaotic. We find
that for any given member of this family that is not completely
chaotic, the Brody parameter of the magnetic field spectrum is
generally greater than that for the energy spectrum νB > νE ,
implying that the magnetic field spectrum may exhibit a greater
degree of chaos. In Sec. III we also simplify the model further
to garner insight into why this might be so. We conclude in
Sec. IV.

II. MODEL OF THE DIATOMIC SPECTRA

We begin with a simplified model of these molecules, which
incorporates features of about the right quality and scale. It is a
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simplified version of a complete scattering calculation carried
out by [1]. The essence of this approximate calculation is to
separate the basic structure of rovibrational energy levels, and
spins, from the strong anisotropic couplings that ultimately
generate the chaos.

A. Hamiltonian

This model describes a pair of 162Dy atoms in their ground
state with spin j = 8 and g factor g = 1.2508 [9]. The nuclear
spin of these atoms is zero. (A similar model can be constructed
for Er, of course.) The model Hamiltonian is taken to be

H = Hrv + Hmag + Van. (1)

Briefly, Hrv describes the rovibrational degrees of freedom,
Hmag their shifts in a magnetic field, and Van the coupling of
these states due to the anisotropic potential energy surface. Van

is regarded as the part that engenders chaos in the spectra.
In more detail: We begin with a Lennard-Jones potential

that describes an approximately correct long-range interaction
between the atoms, so that the spacing of rovibrational levels
is realistic. This potential, including a centrifugal potential, is

VLJ = C12

R12
− C6

R6
+ h̄2L(L + 1)

2μR2
, (2)

where R is the distance between the atoms, μ the reduced mass
of the atom pair, and C6 = 2003 au [1] is the isotropic van der
Waals coefficient of Dy2. C12 is chosen so that the depth of the
potential is set to 785.7 cm−1 [10].

From this potential, a set of radial basis functions |L, v〉 =
φL,v (R) is numerically constructed as eigenfunctions of Hrv:

− h̄2

2μ

d2φL,v

dR2
+ VLJφL,v = EL,vφL,v. (3)

Taken together with the spins of the two atoms and the partial
wave angular momentum, these states define the basis of this
model

|L, v〉|LML〉|j1m1〉|j2m2〉. (4)

Further, in this basis the magnetic field Hamiltonian is diago-
nal, with energies given by

Hmag|j1m1〉|j2m2〉 = gμB (m1 + m2)B |j1m1〉|j2m2〉, (5)

where μB is the Bohr magneton.
The observations occur upon scattering atoms in their

ground state, |jm〉 = |8,−8〉 at ultracold temperatures,
whereby the initial partial wave angular momentum is L =
0. Starting from this state, we consider all basis states (4)
consistent with conservation of angular momentum and boson
exchange symmetry. Moreover, we consider the energy of two
free atoms in the |8,−8〉 state to define the zero of energy at
all values of magnetic field. As a consequence, the energies of
the basis states in (4) have the magnetic field dependence

EL,v + gμB[(m1 + 8) + (m2 + 8)]B. (6)

This ensures that the energies of all the bound states are rising
functions of magnetic field, and that the magnetic field spec-
trum will be identified with these levels crossing E = 0. These
energies are more or less independent from one potential to the
next, and ensure a random, nonchaotic spectrum, characterized
by a nearest-neighbor distribution having Poisson statistics.

To generate chaos in such a spectrum requires strong off-
diagonal coupling, represented here by Van. This potential can
contain the magnetic dipole-dipole interaction between the
atoms,

Vdd( �R) = −
(gα

2

)2 3 (R̂ · �j1)(R̂ · �j2) − �j1 · �j2

R3
, (7)

where α is the fine-structure constant; and an anisotropic
dispersion interaction

Vad( �R) = −Cad√
6

2∑
i=1

3 (R̂ · �ji )(R̂ · �ji ) − �ji · �ji

R6
. (8)

Here, �R = RR̂ is the interatomic separation vector in relative
coordinates. It has been observed previously that Vdd is pri-
marily responsible for anisotropic coupling in Dy2, while Vad

is more important for Er2 [1,11].
In the basis (4) these interactions have the matrix elements

〈L′v′|〈L′M ′
L|〈j1m

′
1|〈j2m

′
2|Van|L, v〉|LML〉|j1m1〉|j2m2〉

=
2∑

q=−2

(−1)q+1〈L′M ′
L|C2q |LML〉

{√
6
(gα

2

)2
〈L′v′| 1

R3
|L, v〉〈j1m

′
1|〈j2m

′
2|(j1 ⊗ j2)2,−q |j1m1〉|j2m2〉

+Cad〈L′v′| 1

R6
|L, v〉〈j1m

′
1|〈j2m

′
2|(j1 ⊗ j1)2,−q + (j2 ⊗ j2)2,−q |j1m1〉|j2m2〉

}
, (9)

where (j1 ⊗ j2)2,−q is the −q component of the compound
irreducible second-rank tensor product of tensors of rank 1
(vectors) that act as the total angular momentum operators on
the individual variables in spaces 1 and 2. Ckq is the modified
spherical harmonic. The value of Cad = 0.168 Eha

6
0 [10].

B. Spectrum and chaos

Thus, the Hamiltonian matrix can be constructed and
diagonalized for any desired value of magnetic field B. The

resulting map of eigenenergies versus B is shown in Fig. 1. To
achieve this figure, 7103 basis functions having their partial-
wave function of even L up to Lmax = 28 were needed to
reach convergence of eigenstates of H . The energies change
substantially for Lmax < 22, but in turn as Lmax increases their
positions converge and for Lmax = 28 they do not deviate from
their converged values by more than 8 × 10−6 K in the range
of energy shown.

This spectrum shows several remarkable features. Mainly,
it consists of a collection of nearly parallel curves, with

023419-2



MANIFESTATION OF QUANTUM CHAOS IN FANO- … PHYSICAL REVIEW A 98, 023419 (2018)

-8

-7.5

-7

-6.5

-6

-5.5

-5

-4.5

-4

-3.5

-3

-2.5

-2

-1.5

-1

-0.5

 0

 0  1  2  3  4  5  6  7

E
 (

m
K

)

B (G)

FIG. 1. Simulated spectrum of Dy2 molecules, versus magnetic
field, generated as described in the text. Each energy level at B = 0
evolves as the magnetic field is increased, eventually finding its way
to zero energy, where it appears as a scattering resonance.

occasional avoided crossings. The mean slope of these lines is
approximately 1 mK/G, corresponding to about 15μB . This
is comparable to the mean value of all the bare magnetic
moments described by (6), whose average value would be
20μB if all values of m were equally likely. The point is that
strong interchannel couplings in this case lead to a remarkably
uniform set of magnetic moments for all states. If the lines
in Fig. 1 were all straight lines with the same slope, then the
magnetic field spectrum atE = 0 would be a faithfully rescaled
copy of the energy spectrum at B = 0, and the two spectra
would exhibit exactly the same degree of chaos. That these
curves are not perfectly parallel is the first hint that the chaos
in the two spectra may not be equivalent.

In addition, several lines in Fig. 1 have a considerably
smaller slope. These are likely due to broad “halo” resonances
tied to the incident channel as were discovered in Ref. [3] and
that are expected to persist across many narrower, chaotic lines
in the spectrum. While such states are interesting, they are in
the minority and do not significantly affect the conclusions we
draw here.

We seek to quantify the degree of chaos present in the two
kinds of spectra: one, an energy spectrum at a fixed value of
B; and the other, a magnetic field spectrum at E = 0. To do
so, we employ the basic tool widely used for this purpose,
namely, we fit the nearest-neighbor spacing (NNS) distribution
[8], normalized so that the mean NNS is equal to one. As is
conventional, we then fit this distribution to the Brody function:

P (ν, s) = (1 + ν)αsν exp(−αsν+1), (10)

where α = {�[(ν + 2)/(ν + 1)]}ν+1, s is the normalized NNS,
and ν is the Brody parameter. This parameter is considered to

be a measure of the chaos on the spectrum: ν = 0 corresponds
to a random, nonchaotic, Poisson spectrum, while ν = 1
corresponds to a fully chaotic spectrum whose levels are
chaotic and characteristic of the eigenvalues of matrices from
the Gaussian orthogonal ensemble (GOE). We will extract two
kinds of Brody parameters, νE for a spectrum of energy values,
and νB for a spectrum of magnetic field values.

The NNS and the Brody parameter represent only one
approach to quantifying chaos in a quantum mechanical
system. The methods of statistical analysis of spectra are
many and diverse, and subsequent analyses have looked more
deeply at the experimental spectra. Reference [12] analyzed
the original Er data set in [2], finding that the NNS distribution
is likely to underestimate the degree of chaos if levels are
missing from the spectra, that is, if they are too narrow to be
observed. This is shown by an analysis of the power spectrum
of long-range correlations in far apart spectral levels [13] as
well as by analyzing the distribution of resonance widths in
comparison with the Porter-Thomas distribution. This analysis
is consistent with the data if all resonances narrower than
∼10 mG are unobserved, which amounts to about 20% of them.
The suggestion was that the spectrum was indeed chaotic,
but the resolution of the data was not yet sufficient to draw
this conclusion. The analysis is further complicated by the
sensitive temperature dependence of observable effects of the
resonances [1].

Nevertheless, in our theoretical study we are able to resolve
all resonances and use the Brody parameter exclusively as
a measure of chaos. In Fig. 2 are shown two histograms of
the data in Fig. 1. Figure 2(a) is drawn from the B = 0,
energy spectrum, and yields a Brody parameter νE = 1+0

−0.23 .
Figure 2(b) is drawn from the E = 0, magnetic field spectrum,
and yields νB = 0.93+0.07

−0.28 . In both cases, the histograms are
generated from 250 levels of the spectrum. The uncertainties
are the 1-σ uncertainties due to the fit to the Brody function
(10). This uncertainty arises due to the counting statistics of
data in the histogram. It is compelling to assert that both
these spectra are “fairly chaotic,” and that therefore chaos is
preserved in the mapping from energy spectra to magnetic field
spectra. However, the large fit uncertainties make a quantitative
statement difficult. With these uncertainties, the value of νB is
somewhat higher than, but nearly consistent with, the values
∼0.5–0.75 extracted from the original 164Dy data [1].

C. Simulation of lesser-strength anisotropy

In order to beat down the large error bars associated to a
single statistical evaluation of the spectra ensemble, we exploit
the theory of random matrices. The nonzero matrix elements
of Van for a chaotic molecule are viewed as random variables
distributed around zero with a variance w0. This allows us
to simulate the molecule more generically by using the matrix
elements distributed according to the probability densities [14]

P (w,Vii ) = 1√
2πw

exp

(
− V 2

ii

2w2

)
,

P (w,Vij ) = 1√
πw

exp

(
−V 2

ij

w2

)
, i 	= j. (11)
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LUCIE D. AUGUSTOVIČOVÁ AND JOHN L. BOHN PHYSICAL REVIEW A 98, 023419 (2018)

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0  0.5  1  1.5  2  2.5  3  3.5  4

P
(s

)

s

Poisson distribution
Wigner-Dyson distribution

Brody NNS distribution

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0  0.5  1  1.5  2  2.5  3  3.5

P
(s

)

s

Poisson distribution
Wigner-Dyson distribution

Brody NNS distribution

(a)

(b)

FIG. 2. Nearest-neighbor-spacing (NNS) distributions for the
spectrum shown in Fig. 1. In (a) is shown the B = 0 spectrum, while
in (b) is shown the E = 0 spectrum.

To approximate the Dy2 model given in the previous section,
we set the width w to the root-mean-squared width determined
from the nonzero matrix elements computed above. This width
is w0 = 24.7 mK.

The interaction matrix is constructed by filling those ele-
ments that are not zero by symmetry with random variables
determined from the GOE distributions (11), while treating
the diagonal elements of Hrv and Hmag as before. In this way
we can generate many realizations of models of Dy2 and
find an ensemble of independent Brody parameters that can
be averaged to reduce the collective uncertainty of the set.
Approximately 30 such realizations are required to reduce
the uncertainty to 5%. The resulting Brody parameters are
then νE = 0.94 ± 0.05 and νB = 0.98 ± 0.05, respectively.
We conclude that our basic model of Dy2 is fully chaotic, and
is equally chaotic in energy and magnetic field spectra.

The random matrix version of the theory affords also the
opportunity to turn off the chaos in a controlled way. Namely,
as the value of w is reduced, the magnitudes of the matrix
elements of Van are reduced, generating less level repulsion in
the eigenvalues of H , and bringing the spectrum closer to the
essentially random spectrum of Hrv + Hmag. That is, the Brody
parameters are generally expected to be increasing functions
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FIG. 3. Brody parameters νE and νB for the simulation of “sub-
dysprosium” as a function of the width parameter w in the units of
w0 = 24.7 mK, and for Dy2 calculation (shown in Fig. 1) evaluated
from discrete energy values for B = 10 G [red (dark gray) cross at
0.98+0.02

−0.25], and from resonance positions at E = 0 K [black cross at
0.93+0.07

−0.28]. Error bars for values at large crosses are not shown.

of w. We refer to such a model, with less chaos than a more
realistic dysprosium model, as the “subdysprosium” model.

We note that a similar model was described in Ref. [1].
There are some significant differences, however. Reference [1]
distributed the magnetic moments randomly and, more signif-
icantly, allowed the diagonal spectrum to have its own Brody
parameter, independent of the size of random off-diagonal
matrix elements. A main conclusion from that calculation
was that the Brody parameter of the magnetic field resonance
spectrum rose as a function of channel coupling just the same,
regardless of the original diagonal Brody parameter. This was
strong evidence that the chaos in the observed spectra lay in
the avoided crossings in figures such as Fig. 3(d) of Ref. [1],
or Fig. 1 of this paper. Reference [1] did not, however, make a
direct comparison between energy and magnetic field spectra
for a given channel coupling, as we do here.

For our model, the resulting parameters νE for magnetic
field B = 10 G (for reasons explained below) and νB for energy
E = 0 are shown versus w in Fig. 3. For full strength of
anisotropic coupling, w = w0, both spectra have essentially
unit Brody parameters and are both fully chaotic, and agree
with the results of the model in the previous section (solid
points). Both Brody parameters drop rapidly as w decreases,
but νE drops much more rapidly. Therefore, for a given version
of subdysprosium that is not completely chaotic, the magnetic
field spectrum of Fano-Feshbach resonances would appear
more chaotic than would the energy spectrum at a given
magnetic field. For much smaller values of w the spectra both
return to random, Poisson-type NNS, and do not differ as
dramatically.

A caveat in preparing this Fig. 3 is that the energy spectrum
is computed at a magnetic field B = 10 G, rather than B = 0.
This is because, for small B, the spectrum has two charac-
teristic energy scales. There is a small energy scale given by
the very regular spacing of Zeeman levels, and a larger energy
spacing given by the characteristic rovibrational energies. This
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leads to a bimodal NNS that is not well described by a Brody
distribution for any value of νE . Once a field is applied and
Zeeman energy splitting becomes comparable to rovibrational
splittings, this is no longer an issue.

III. SCHEMATIC MODEL OF MAGNETIC
FIELD DEPENDENCE

Examination of the onset of chaos in subdysprosium in
Fig. 3 suggests that the Brody parameter curves νE (w) and
νB (w) have the same shape, namely, a sigmoidal dependence
that rises at first then saturates at unity. The two curves can
be made to nearly overlap by shifting one of them along the
logarithmic w axis. Another way to say this is that for a given
value of w in the model, the two kinds of spectra have different
effective values of w, scaled by some factor. In this section we
explore this idea.

To do so, it is worthwhile to construct an even simpler model
that incorporates the essential features of the subdysprosium
model, but that lends itself better to analytical understanding.
These essential features are as follows: an underlying spectrum
of pseudovibrational states representing the molecule in zero
field; a collection of pseudomagnetic moments that map these
energies to magnetic field values; and a strong mixing that
generates chaos.

A. It’s only a model

To this end, we contemplate a set of Nv energy levels Ei

to represent the B = 0 molecule. These energies have mean
spacing E0, which defines the unit of energy. They are chosen
randomly in the energy interval [−NvE0, 0], appropriate to
pseudovibrational states lying below a threshold at E = 0.
Each of these is assumed to have a d-fold degeneracy of
pseudomagnetic levels, bringing the total number of states in
the model to N = Nvd. These degenerate states are enumer-
ated by pseudomagnetic quantum numbers, m = 1, 2, . . . d.
The degeneracy of these states is lifted in a magnetic field,
which each one getting an additional energy mμB, which
represents all the states rising in energy with magnetic field.
The combination μB effectively defines the magnetic field unit
B0 = E0/μ.

The Hamiltonian of the model is then given in matrix form
as

Hschematic = D + V + μBM, (12)

where D and M are diagonal matrices,

D = diag(E1, E1, . . . , E1, E2, E2, . . . , E2, . . . , ENv
), (13)

where each energy Ei is repeated d times; and

M = diag(1, 2, . . . d, 1, 2, . . . , d, . . . , d ). (14)

In this way, all the original pseudovibrational levels move
to intercept the E = 0 axis somewhere in the interval B ∈
[0, NvE0/μ] [see Fig. 4(a)]. The energy and magnetic field
spectra are therefore characterized by mean spacing of, re-
spectively,

�E = NvE0

Nvd
= E0

d
, �B = E0/μ

d
. (15)
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FIG. 4. Simulated spectra for the schematic model of chaotic
molecules in a magnetic field in the case of 10-fold degeneracy. In (a)
is shown the nonchaotic version w = 0, illustrating the movement of
levels from the energy axis to the magnetic field axis. In (b) is shown
a chaotic spectrum with w = 0.8; compare to Fig. 1.

Chaos is introduced into the model via the coupling matrix
V , in the same way it was for the subdysprosium model.
That is, the elements of V will be drawn from the Gaussian
orthogonal ensemble given in (11). Sample spectra for w =
0.8 E0 are shown in Fig. 4(b). These spectra reproduce, at
least qualitatively, the features of the more realistic model in
Fig. 1. Note especially that the lines are nearly, but not quite,
parallel, representing the regularization of magnetic moments
of all the states.

B. Chaos in the model

Using this schematic model, we compute the Brody pa-
rameters νE (w) and νB (w) as functions of w, and for several
different values of spin degeneracy d. The results are shown
in Fig. 5. In general, all curves show the familiar sigmoidal
dependence that shows how the chaos turns on as w is
increased.

The specific curves are different, however. In general, larger
spin degeneracies d cause the curves νE (w) and νB (w) to shift
to smaller values of w, indicating an earlier onset of chaos.
Moreover, for a given value of d > 1, νB is shifted to smaller
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FIG. 5. Brody parameters νE and νB for the schematic model
presented in Sec. II A as a function of the width parameter w.

w than νE , as in the subdysprosium model, suggesting that
for a given model with a given value of w, the magnetic field
spectrum exhibits a greater degree of chaos by this measure.
For d = 1, the two Brody parameters coincide.

Qualitatively, these features can be understood in simple
terms. For example, in the energy spectra the mean energy
spacing is �E = E0/d. The spectrum, random when w = 0,
starts to see significant mixing and level repulsion when
off-diagonal matrix elements in the Hamiltonian, of order
w, become comparable to the mean spacing of the diagonal
elements. Thus, for d = 1 the transition to chaos is nearly
complete when w = 1 (recall that w is given in units of E0

in the plot). But, for larger values of d, the coupling w should
be compared to a smaller mean spacing E0/d, so that the level
repulsion, hence chaos, appears at smaller values ofw ∼ E0/d.
Thus, the Brody parameters νE (dashed curves in Fig. 5) are
shifted leftward in the figure for larger d.

Similarly, for a given degeneracy d, the magnetic field
spectrum becomes chaotic for smaller w than does the cor-
responding energy spectrum. This suggests that the magnetic
field spectrum possesses a larger ratio of effective coupling to
mean level spacing, at least in the range explored, than does
the energy spectrum. We can see this as follows.

To find the B = 0, energy spectrum, we solve the matrix
diagonalization

(D + V )x (α) = eαx (α) (16)

for the energy eigenvalues eα and eigenstates x (α). The size of
w in the matrix V , as compared to the mean spacing �E of
the diagonal elements of D, controls the degree of chaos and
the value of the Brody parameter.

Similarly, the E = 0, magnetic field spectrum is given by
setting the energy to zero, thereby solving

(D + V + μBM )y = 0 (17)

for the spectrum of B values. Since M is a positive-definite
matrix, M1/2 and M−1/2 exist, and this matrix equation is
equivalent to the diagonalization

(D̃ + Ṽ )ỹ (α) = bαỹ (α), (18)

where the transformed matrices, in units of magnetic field, read
as

D̃ = − 1

μ
M−1/2DM−1/2, Ṽ = − 1

μ
M−1/2V M−1/2, (19)

and the eigenstate is changed to

ỹ = M1/2y. (20)

The magnetic field spectrum derives from a qualitatively
different eigenvalue problem (18) than the one in Eq. (17)
that gives the energy spectrum. For one thing, the unperturbed
spectrum (diagonal elements of D̃) no longer have a uniform
density of states. To see this, note that the diagonal elements
of D̃ have the form Bi = −Ei/(mμ). Thus, the spectrum is
squeezed to smaller values of B for larger values of m, as can
be seen in Fig. 4(a). The small region of magnetic field in the
interval B ∈ [0, NvB0/d], contains a number of states given
by

d∑
m=1

Nv

d
m = Nv

d

d(d + 1)

2
. (21)

The density of states in this near-zero-field interval is then

ρB = d(d + 1)

2B0
. (22)

This is higher than the value d/B0 given by taking the total
number and dividing by the total magnetic field range. It is
worthwhile to restrict attention to this magnetic field region
where the density of states is relatively uniform. Such a region
can cover as many magnetic field resonance values as desired,
by simply increasing Nv .

Similarly, the matrix Ṽ is no longer necessarily drawn from
the GOE since its matrix elements become −Vij /(μ

√
mm′),

and are diminished by the m quantum numbers of the states
involved. In this case, the matrix element distributions no
longer share a common width as implied by (11). Rather,
for each given pair of numbers m, m′, the matrix elements
Vij are Gaussian distributed, with an effective width wmm′ =
w/(μ

√
mm′).

The net distribution of all matrix elements will no longer
be Gaussian, in general, but for the sake of approximation we
can define a Gaussian distribution whose width is defined by
the root-mean-square deviation of the matrix elements. That
is, given the mean-squared width 〈V 2

ij 〉 = w2/2, the mean-
squared width of any off-diagonal element of Ṽ is

w̃2

2
= 1

d2

∑
m

∑
m′

w2

2μ2

1

mm′ = w2

2μ2

1

d2

(
d∑

m=1

1

m

)2

. (23)

For the sake of estimation, we will pretend that Ṽ is a member
of a GOE with width w̃.

Then, roughly, the degree of chaos in the magnetic field
spectrum is determined by the ratio of w̃ to the mean level
spacing in the magnetic field range of interest,

w̃

1/ρB

= w

μB0

d + 1

2

d∑
m=1

1

m
. (24)
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The corresponding parameter determining the degree of chaos
in the energy spectrum is w/(1/ρE ), where ρE = E0/d is the
density of states for the energy levels. The relation between
these two is therefore

w̃

1/ρB

= w

1/ρE

fc(d ), (25)

where fc is a correction function given by

fc(d ) = d + 1

2d

d∑
m=1

1

m
. (26)

This factor is unity for d = 1, i.e., for no spin degeneracy.
In this case, the energy spectrum is just rescaled by the
magnetic moment to become the magnetic field spectrum, and
the Brody parameter ought therefore to come out the same. For
nonzero spin degeneracy d > 1, however, fc > 1, implying
that the magnetic field spectrum should be more chaotic (larger
Brody parameter) than the energy spectrum. This conclusion is
restricted to the near-zero-field region B ∈ [0, NvB0/d]. In this
region, the density of states ρB grows rapidly as a function of
degeneracy (∼d2), faster than the comparatively slow growth
of the width parameter w̃ ∼ ln d/d.

IV. CONCLUSIONS

In summary, we have verified, by numerical and semiana-
lytic considerations, that a molecule that exhibits partial chaos
in its energy spectrum below its dissociation threshold, may
appear to exhibit a greater degree of chaos as measured in

its spectrum of Fano-Feshbach resonances. This conclusion,
drawn from the nearest-neighbor-spacing distribution, is con-
sistent with the general models of Ref. [1]. In both models, the
transition from the B = 0 energies to the E = 0 magnetic field
resonance positions involves a series of avoided crossings or,
alternatively, nontrivial magnetic moment fluctuations of the
molecular states.

It is of course difficult to change the degree of chaos in a
given molecule and to make a full study of the dependencies
in Fig. 3. Nevertheless, the Dy2 molecule as measured in
Ref. [1] has Brody parameters νB somewhat less than unity.
It is therefore conceivable that a measurement of the energy
spectrum of Dy2 at fixed magnetic field, for example by
microwave spectroscopy, would be capable of testing the
hypothesis that νE < νB for this molecule. Effectively varying
the degree of chaos native to a molecule may have to wait
until similar spectra are measured in alternative, less chaotic
molecules elsewhere in the periodic table.
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[14] K. Życzkowski, M. Lewenstein, M. Kuś, and F. Izrailev, Phys.
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