
Pair wave functions in atomic Fermi condensates

A. V. Avdeenkov* and J. L. Bohn
JILA and Department of Physics, University of Colorado, Boulder, Colorado 80309-0440, USA

sReceived 28 April 2004; published 24 February 2005d

Recent experiments have observed condensation behavior in a strongly interacting system of fermionic
atoms. We interpret these observations in terms of a mean-field version of resonance superfluidity theory. We
find that the objects condensed are not bosonic molecules composed of bound fermion pairs, but are rather
spatially correlated Cooper pairs whose coherence length is comparable to the mean spacing between atoms.
We propose experiments that will help to further probe these novel pairs.
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Fermi condensates have been recently observed in dilute
atomic gases, first in40K f1g and subsequently in6Li f2,3g.
This new state of ultracold matter represents a Fermi gas so
strongly interacting that Cooper pairs become correlated in
physical space as well as in momentum space, similar to the
pairs in high-Tc superconductors. Such materials are believed
to exist in a “crossover” regime, intermediate between weak-
coupling sBCSd superconductivity and Bose- Einstein con-
densationsBECd of tightly bound fermion pairsf4g. An ul-
tracold atomic Fermi system is an ideal environment to
explore the crossover regime, since the effective interactions
can be tuned via a magnetic field Feshbach resonance. This
possibility has led to various predictions based on a “reso-
nance superfluidity” theory of the gasf5–7g. The BEC limit
of the crossover regime was already achieved experimentally
in the fall of 2003, with the creation of BEC of diatomic
molecules composed of fermionic atomsf8–10g.

Because of its close link to high-Tc superconductivity, the
crossover regime has been a topic of intense theoretical in-
vestigation, beginning from its predictionf4,11,12g and con-
tinuing through its recent adaptation to ultracold atomic
gasesf5–7,14–17g. A primary outcome of crossover theory is
that the Cooper pairs begin to become localized in space due
to many-body correlations as the interparticle interaction be-
comes large and attractive. In the high-Tc superconductor
literature, these pairs are referred to as “preformed bosons,
which can exist both above and below their transition tem-
perature to a Bose-condensed state. The pairs in the cross-
over region are smaller than traditionally delocalized Cooper
pairs, yet are not rigorously bound molecules. In this article
we explore the link between pairs in the crossover regime
and molecules by explicitly constructing their wave func-
tions for the conditions of the experiment in Ref.f1g. We find
that the pairs evolve smoothly into real molecules as the
scattering length is tuned from negative to positive values.
We also suggest experiments whereby the spatial correlations
of the pairs can be probed. Note that a recent preprint comes
to a similar conclusion for a uniformsi.e., untrappedd Fermi
gasf18g.

This finding runs counter to the expectations of Refs.
f2,14,15g, where the pairs are identified with actual mol-

ecules that are associated with the closed channel wave func-
tion in two-body scattering theory. If this were the case, then
the pair wave function would decay exponentially as a func-
tion of interparticle separation, regardless of which side of
the resonance it is on. That this is not the case will be dem-
onstrated below. Additionally, Ref.f14g identified the onset
of the crossover regime by setting the binding energy of the
molecule"2/ma2 equal to the Fermi energy"2s3p2nd2/3/2m,
wherem is the atomic mass andn is the number density of
atoms. Doing so, one finds that in this regime the scattering
lengthshence the molecular sized is comparable to the inter-
atomic spacing, and the pairs are not yet recognizable as
distinct molecules. They should rather be considered as spa-
tially correlated objects.

Accordingly, we study in this article the correlation length
of atom pairs. Our starting point is the resonance superfluid-
ity approachf19g adapted within the Thomas-Fermi descrip-
tion f20g. For concreteness, we consider the two-component
Fermi gas of40K near a Feshbach resonance between the
u9/2−9/2l andu9/2−7/2l statesf21g. This system possesses
a Feshbach resonance whose zero-energy scattering is de-
scribed by an s-wave scattering length parametrized by
asBd=abgs1−w/DBd, with abg=174a0, w=7.8 G, andDB is
the magnetic field detuning in Gauss. For our numerical
simulation we have chosen the radial frequencynr =400 Hz
and the trap aspect rationr /nz=80, as in Ref.f1g.

The primary objects of the resonance superfluidity theory
are the normal and anomalous distributions,r andk, repre-
senting the distribution of atoms in each species and of cor-
related pairs, respectively.k can be regarded as the wave
function of pairs or the pair amlitudef12,13g. Because we
work in the local density approximation, it is convenient to
define these quantities as functions of the locationR of each
pair’s center-of-mass in the trap, and the relative momentum
k of the pair. The equations of motion for these quantities
take the BCS-type formf6,7,20g:

rsk,Rd = nsk,Rdu2sk,Rd + f1 − nsk,Rdgv2sk,Rd,

ksk,Rd = usk,Rdvsk,Rdf1 − 2nsk,Rdg,

Esk,Rd = Îhsk,Rd2 + DsRd2,*Email address: avdeyenk@murphy.colorado.edu
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S1 ±

hsk,Rd
Esk,RdD ,

hsk,Rd =
"2k2

2m
+ VmfsRd + VtrapsRd − lc,

VmfsRd = VbgrsRd, rsRd =E d3k

s2pd3rsk,Rd,

DsRd = − VbgE d3k

s2pd3ksk,Rd − gfsRd,

fsRd =
g

2lc − n
E d3k

s2pd3ksk,Rd, s1d

wherensk ,Rd=hexpfEsk ,Rd /kBTg+1j−1 is the Fermi-Dirac
distribution,VmfsRd is the mean field potential,DsRd is the
energy gap,Vbg=4p"2abg/m, abg is the backgroundsnon-
resonantd contact interaction,n=sB−B0dDm is the detuning
in energy units,g=ÎVbgDBDm is a coupling representing the
conversion of free fermions into pairs,DB is the field width
of the resonance,Dm is the magnetic moment difference be-
tween two hyper fine levels of the two-component Fermi gas,
lc is the chemical potential, andVtrap is the external atomic
harmonic trapping potential. The chemical potential is fixed
by conservation of the mean number of atomsN. In this
theory, a “molecular field”f is introduced to simplify the
theoretical description of free fermions transforming into
spatially correlated pairs. Notice thatf is not a distinct
physical entity, but is determined oncek is known.

Though derived for interacting fermions, Eqs.s1d can also
be applied in the BEC limitf4,22,23g. In this limit it is well
known thatv2sk ,Rd31 and that the BCS equation for the
gap reduces to the Schrödinger equation for the relative mo-
tion of two interacting bosons, with energy eigenvalue 2lc
="2/ma2 representing the binding energy of thesrigorously
boundd bosonic moleculesf22,24g. After a simple derivation
we can extend this result to the case of trapped atoms. Then
the anomalous distribution becomes, in the BEC limit,

ksk,Rd =
mDsRda2

k2a2 + 1
=

Î8pa3

k2a2 + 1
3 FsRd, s2d

whereFsRd=Îm2a/8pDsRd as derived inf25g. This refer-
ence also demonstrated that HFB equations transform into
the Gross-Pitaevskii equation and thatFsRd serves as a so-
lution for a molecular BEC interacting through a repulsive
interaction with scattering lengthaB=2a. This result holds in
the BEC limit, whereD / ulcu!1. sA more careful analysis,
following f26g, will give corrections, but this is not the main
goal of this letter.d Moreover, the first term on the right-hand
side of Eqs.s2d is the Fourier transform of the molecular
wave functions1/Î2padse−r/a/ rd in the relative coordinater.
In this way the same wave functionk that represents Cooper
pairs on the BCS side of the resonance actually represents a
condensate of real molecular bosons on the BEC side. In
general this molecular wave function depends onR, meaning
that the gas may contain molecules in its high-density center,

but correlated Fermi pairs at its lower-density periphery. For
example, in this case twice the chemical potential is not quite
the molecular binding energy but slightly depends on density
f24g.

The number of pairs can be calculated from the anoma-
lous distribution asNb=edRdkksk ,Rd2. In the BEC limit
ksk ,Rd2⇒rsk ,Rd for small temperatures, which means that
almost all atoms are paired. Moreover, usings1d ands2d it is
easy to check that in this limit the density of pairs transforms
into the density of real molecules:

rbsRd =E dkksk,Rd2 = FsRd2. s3d

Thus the same functionksk ,Rd describes the density of Coo-
per pairs away from resonance, pairs in the crossover regime,
and molecules on the BEC side of the resonance as the de-
tuning is varied.

The many-body physics of the crossover regime can be
quantified in terms of a “smooth” parameter such as the pair
coherence length, usually defined as the rms radius of the
pair f22g:

j2sRd =
E drksr ,Rd2r2

E drksr ,Rd2

< fkFsRd/mpDsRdg2. s4d

Using the above result, it is clear that in the BEC limit
kr2l=a2/2 in the center of the trapsnote that the size of a
molecule is usually taken instead as the mean value ofr,
krl=a/2d. On the BCS side of the resonanceÎj2sRd defines
the “size” of the Cooper pair. Thus the calculation of the
coherence length gives us an insight into how the pairs
evolve in the crossover regime.

We present the coherence length versus detuning in Fig. 1
ssolid lined for the trap aspect ratio, number of atoms, and
temperature of the JILA experimentf1g. For detuningsDB
.0.5 G the coherence length approaches the familiar BCS
result sdash-dot lined. For negative detuningsDB,−1 G on
the BEC side of the resonance, the molecular size approaches
the size evaluated from two-body theorysdashed lined. In
between, the coherence length varies smoothly, illustrating
the gradual evolution of pairs into molecules. The sizes of
these objects remain finite across the resonance, in spite of
the divergent behavior of the scattering length. This size sup-
pression is the result of many-body physics in the unitarity
limit of kFa.1, where the physics of the gas is expected to
saturate and to depend only weakly on the scattering length.

To illustrate in greater detail the smoothness of the tran-
sition between pairs in the crossover regime and molecules,
we consider their wave functions, as shown in Fig. 2. This
figure shows pair wave functionsr ·ksr ,R=0d in the center
of the trap, for detunings corresponding to “ordinary” Coo-
per pairsfDB=1.0 G, Fig. 2sadg, pairs in the crossover re-
gime fDB=0.1 G, Fig. 2sbdg, and moleculesfDB=−0.5 G,
Fig. 2scdg. Wave functions of the pairs decay away on a
length scale set by the coherence length, but in an oscillatory
way reminiscent of a damped harmonic oscillator. This be-
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havior is a many-body effect, and in fact the scale of the
oscillation is set by the interparticle distancessolid bard. The
relative motion of true molecular bound states of course de-
cay strictly exponentially, as in Fig. 2scd. For small detuning,
however, the correlation length becomes comparable to the
molecular size, and the ringing wave functions begin to re-
semble overdamped oscillators, i.e., they decay exponen-
tially fFig. 2sbdg. In this way the character of the pair wave
functions evolve smoothly into molecular wave functions.
This interpretation is somewhat complicated by the fact that
the shape of the pair wave function strongly depends on the
trap geometry. Even for small detunings, but far from the
trap’s center, the coherence length is still large.

In order to qualitatively understand the JILA experiment
f1g we now consider the positive detuning,sBCS side of Fig.
1d. We see that at a detuning of around 0.5 G the size of the
pairs becomes comparable to the interparticle distancesdot-
ted line in Fig. 1d. This criterion marks the crossover regime,
where the atom pairs are not momentum-correlated objects
like BCS Cooper pairs, nor are they yet full-fledged mol-
ecules. Significantly, this detuning is approximately where a
condensate fraction can be observed in the JILA experiment
f1g, implying that the condensed objects consist of correlated
pairs rather than real molecules. To estimate the condensate
fraction, we assume for simplicity that all pairs are Bose

FIG. 1. Coherence length versus magnetic field detuningssolid
lined for 40K atoms in the JILA experiment, in the center of the trap.
For comparison, the dashed curve represents the rms molecule size
a/Î2 corresponding to atoms with a scattering lengtha=abg

−g2/n. The dash-dotted curve is the BCS limit of the coherence
length. The dotted curve represents the interparticle distance in the
center of the trap. The solid and the dash-dotted curves almost
coincide for detuning larger than 0.6 G. The trap aspect ratio 1/l
=80, the temperature isT=0.08TF, and the trap containsN=5
3105 atoms.

FIG. 2. Pair wave functionr ·ksr ,R=0d versus interparticle separationr in the center of the trap considered in Fig. 1. The panels
correspond to the detuningsDB=1.0 G sad, DB=0.1 G sbd, andDB=−0.5 G scd. On the negative detuning side of the resonance, the pairs
are true molecules. For comparison, the solid bar insad shows the interparticle distance in the center of the trap.
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condensed at experimental temperatures, so that the conden-
sate fraction is simplyNb/ sN/2d. The true condensate frac-
tion presumably depends on thesunknownd interaction be-
tween the pairs. Thisin situ condensate fraction is presented
as a function of magnetic field detuning in Fig. 3ssolid lined.
This fraction becomes significant only for detunings less
than about 0.5 G from resonance, just where the size of the
pairs becomes comparable to the interparticle spacingscom-
pare Fig. 1d. The condensate fraction is quite large near zero
detuning. In the ideal case of a uniform gas this fraction
would be 1 on resonance, but it is generally smaller for a
trapped gas.

In the JILA experiment, the Fermi condensate is not di-
rectly imaged, but rather is probed by a magnetic field sweep
that converts the atoms into molecules. This sweep is fast
enough that it does not affect the many-body properties of
the gas, but slow enough that atoms are efficiently gathered
into molecules. The final detuning is far below resonance
s,−10 G in Ref.f1gd, so that the molecules are far smaller
than the pairs that are being probed. An infinitely fast sweep
that instantaneously projects pairs onto molecules would
therefore not yield a significant number of molecules. The
condensate fraction, however, could still be a significant
fraction of unity f18g.

In the present calculation, we do not treat the time depen-
dence of the magnetic field, and therefore cannot model the
experiment as performed. We can, however, suggest another
experiment that could probe the crossover regime more fully.
Let us consider a hypothetical experiment where it would be
possible to apply an infinitely fast sweep from a positive
detuningDBBCS to a final detuningDBBEC, i.e., literally pro-
jecting pairs onto molecules. The final condensation fraction
f observed by expansion and imaging will then be defined as
a product of two probabilities: the first is the projection of
the pair wave functionksr ,Rd onto the molecular wave
function s2d, normalized byNb; the second is the fraction of
atoms that are paired,(Nb/ sN/2d):

fsDBBEC,DBBCSd = SE drdRksr ,Rd
1

Î2pa

e−r/a

r
FsRdD2

3
Nb

N/2
. s5d

This projection depends not only on the mapping of the wave
function of a pair onto the wave function of the molecule but
also on the condensate wave function asFsRd. The fermi-
onic condensate wave functionksr ,Rd cannot be so easily
separated as the product of center-of-mass and relative func-
tions as in the BEC cases2d. It should be said that even in the
BEC case the molecular wave functions ins2d will depend
on R, which means that the molecular size will be different
from point to point in the trap. But this dependence is quite
weak, especially for large negative detunings, and is there-
fore neglected. In the case of a large positive detuning
DBBCS, the size of a Cooper pair is considerably larger than
the size of a molecule and the number of pairsNb is quite
small itself so the overlap integrals5d will be quite small. It
is clear that the observed condensate fraction will depend on
the geometry of the trap as well as on the detuningDBBEC of
the final point of the sweeping.

We have calculated the condensate fraction, as seen by
this projection technique, for three different target molecules
defined byDBBEC, corresponding to molecules of sizesa/2
=1000a0,500a0, and 100a0 sFig. 3d. As anticipated, the con-
densate fraction measured in this way would be smaller if the
pairs are projected onto smaller molecules. Thus there are
two conditions required to support a large observed conden-
sate fraction: first theDBBCSdetuning on the BCS side of the
resonance should be small enough to support a considerable
number of pairs compared to the total number of atoms, and,
second, theDBBEC on the BEC side of the resonance should
be chosen so that the corresponding scattering length will not
be very different from the coherence length corresponding
DBBCS. The second condition means that the size of the pair
should be comparable with the size of the molecule. For the
experiment with40K atoms these conditions are fulfilled for
DBBCS,0.6 G andDBBEC.−1 G. Of course these results
strongly depend on the geometry of the trap and the tempera-
ture. An experimental map offsDBBEC,DBBCSd should prove
quite illuminating as a probe of the length scales and con-
densation fractions in the crossover regime.

In conclusion, we found that the recent experimentf1g can
be explained semi-quantitatively by counting the number of
Cooper pairs on the BCS side of the Feshbach resonance. We
suggested a new scenario to probe the crossover regime by
mapping the condensate of fermionic pairs on the BCS side
of the resonance onto molecules on the BEC side. We found
that a considerable condensate fraction can be observed
when the coherence length of the pairs is on the order of the
interparticle distance.

This work was supported by the NSF. We acknowledge
useful discussions with C. Regal, M. Greiner, and D. S. Jin.

FIG. 3. Condensate fraction versus detuning, as measured by
projecting onto molecules, according to Eq.s5d, for the trap consid-
ered in Fig. 1. The molecules projected onto correspond to atomic
interactions with scattering lengths 2000a0, 1000a0, and 200a0

sdashed, dot-dashed, and dotted lines, respectivelyd. The solid line
is the in situ condensate fraction, given byNb/ sN/2d.
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