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We predict a new kind of instability in a Bose-Einstein condensate composed of dipolar particles.
Namely, a comparatively weak dipole moment can produce a large, negative two-body scattering length
that can collapse the Bose-Einstein condensate. To verify this effect, we validate mean-field solutions to
this problem using exact, diffusion Monte Carlo methods. We show that the diffusion Monte Carlo
energies are reproduced accurately within a mean-field framework if the variation of the s-wave scattering
length with the dipole strength is accounted for properly.
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The recently achieved Bose-Einstein condensation of
atomic chromium [1,2] has added two new twists to the
study of ultracold matter. First, Cr condensates realize the
first spin-three spinor condensate [3,4]. Second, they ex-
hibit, due to Cr’s comparatively large magnetic dipole
moment, observable anisotropic long-range interactions
[5]. These long-range interactions allow the relative ori-
entation between well separated atoms or molecules to be
controlled, either by tuning external fields or else by ad-
justing trap anisotropy. An extensive theoretical literature
has predicted novel properties for these gases. For ex-
ample, rotonlike features have been predicted for trapped
gases [6,7], along with unique phases such as checkerboard
and supersolid phases [8–10].

Rapid experimental progress in cooling and trapping
suggests that condensation of ground state molecules
with large permanent dipole moments, such as OH
[11,12], RbCs [13], KRb [14], and NH [15], may be
achieved soon. These species would represent truly
strongly interacting dipoles, with interparticle interaction
strengths up to �103 times larger than in chromium.
Indeed, the dipolar interactions could become the domi-
nant energy scale in such systems, driving transitions to
correlated states of these gases.

Thus far, dipolar Bose gases at zero temperature have
been described using an approximate mean-field, Gross-
Pitaevskii (GP) description, which has proven adequate to
describe experiments in Cr [5]. Stability diagrams and
excitation spectra have been derived within this formalism
[16–24]. Somewhat surprisingly, the validity of the GP
equation for dipolar gases with strong, anisotropic long-
range interactions has not been assessed in detail to date.
Per se, it is not clear that a Hartree wave function, as used
in the GP framework, can properly describe systems inter-
acting through potentials that fall off as �1=r3 at large
interparticle distances. Neutral atom-atom interactions,
e.g., fall off as�1=r6 and mean-field treatments are shown
to predict the properties of dilute atomic Bose gases with
high accuracy. This requires, however, replacing the true

interaction by an appropriate Fermi pseudopotential. For
electronic systems with repulsive 1=r interactions, a
Hartree-Fock formalism is a suitable starting point for
computing the electronic structure of atoms and molecules.
An accurate determination of observables, however, often
requires correlation effects beyond those described by a
Hartree-Fock wave function.

Because the applicability of the GP equation is com-
pletely unknown for dipolar interactions, we undertake
here its verification. We report essentially exact many-
body diffusion Monte Carlo (DMC) calculations for dipo-
lar Bose gases interacting through realistic two-body
model potentials. The results reveal that the GP equation
is adequate to describe the gas, provided that the pseudo-
potential is parametrized in terms of a ‘‘dipole-dependent’’
s-wave scattering length a�d� as anticipated in Ref. [17]
[and provided, as usual, that na�d�3 � 1]. A main finding
of this Letter is that the variation of scattering length with
dipole moment plays a vital role in the stability of the gas
against macroscopic collapse. Even if the dipole-dipole
interaction itself is not strong enough to instigate collapse,
nevertheless the dipole-dependent scattering length may
become sufficiently negative to do so.

Consider the Hamiltonian H for N interacting bosonic
dipoles with mass m, assumed to be polarized along the z
axis, under external harmonic confinement,

 H �
XN
j�1

�
�@2

2m
r2
j �

1

2
m!2 ~r2

j

�
�
XN
j<k

V� ~rjk�; (1)

where ! denotes the trapping frequency, ~rj the position
vector with respect to the trap center of the jth dipole, and
~rjk the distance vector ~rjk � ~rj � ~rk. We model the boson-
boson potential V� ~r� by a short-range hard core with cutoff
radius b and a long-range tail with dipole moment d,

 V� ~r� �
�
d2 1�3cos2�

r3 if r 	 b;
1 if r < b;

(2)

where � denotes the angle between the vector ~r and the
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laboratory z axis. The length D
 � md2=@2, at which the
characteristic two-body potential and kinetic energies co-
incide, is used in the following to characterize the aniso-
tropic long-range interaction.

The Hamiltonian H in Eq. (1) applies, in cgs units, to
bosons with either magnetic or electric dipole moments.
Importantly, the induced dipole moments that drive the in-
teraction can be tuned in either case [25]. Consequently,
the ratio D
=b, and hence the relative importance of the
dipolar interaction compared to the short-range interaction,
can be changed essentially at will. This motivates us to
investigate the zero temperature equilibrium properties of
dipolar Bose gases over a wide range of D
=b, including
the short-range dominated regime with D
=b� 1 and the
long-range dominated regime with D
=b� 1. Note that,
to date, the effects of dipolar interactions have been ob-
served experimentally only for atomic Cr withD
=b � 0:4
(taking b to be the s-wave scattering length).

We start our discussion by considering two interacting
dipoles, N � 2. After separating off the center of mass part
of H, we rewrite the Hamiltonian for the relative coordi-
nate in spherical coordinates and solve the corresponding
two-dimensional Schrödinger equation numerically using
standard techniques. We first determine scattering and
bound state solutions in the absence of an external con-
fining potential, i.e., for ! � 0. Figure 1(a) shows the
zero-energy s-wave scattering length a as a function of
D
=b. We refer to a calculated for d2 � 0 as the ‘‘bare’’
scattering length and to a calculated for finite d2 as the
‘‘dipole-dependent’’ scattering length. For D
 � 0, no
two-body bound states exist and a is equal to b. The
scattering length a decreases with increasing D
 and di-
verges and changes sign at D
=b � 8:5, signaling the
creation of a two-body bound state. At D
=b � 19, a
shows a second divergence corresponding to a second
s-wave bound state being pulled in.

Trapped two-body systems could be prepared experi-
mentally by loading ultracold polar molecules into a very
deep optical lattice and realizing doubly occupied lattice
sites. To determine the energy spectrum of two trapped
dipoles, we fix the short-range two-body length b, i.e., b �
0:0137aho, and vary D
=aho, where aho denotes the oscil-
lator length aho �

�����������������
@=�m!�

p
. The dashed lines in Fig. 1(b)

show the total energy E=N per dipole as a function of
D
=aho. Comparison of Figs. 1(a) and 1(b) reveals that
the energetically lowest-lying state with positive energy
becomes negative at about the same value of D
 as that for
which the scattering length a diverges [the D
 values
shown in Figs. 1(a) and 1(b) extend, although scaled differ-
ently, over the same range]. Furthermore, the trap energies
nearly coincide with those for a noninteracting two-particle
gas, i.e., E=N � 1:5; 2:5; . . . ; @!, at D
 values for which
a � 0. The s-wave scattering length, which depends only
on the ratio D
=b, thus determines the gross features of the
energy level spectrum of two interacting dipoles under

external spherical confinement. The details of the energy
spectrum, however, depend additionally on the magnitude
of D
 or b.

For N > 2, we solve the Schrödinger equation using the
DMC technique with importance sampling, which deter-
mines the ground state energy of the time-independent
Schrödinger equation by propagating an initial ‘‘walker
distribution’’ in imaginary time and projecting out the
lowest stationary eigenstate [26]. To efficiently treat large
systems, a stochastic realization of the short-time Green’s
function propagator is used, which introduces a statistical
uncertainty of any DMC expectation value. Details of the
procedure will be presented elsewhere [27]. The symbols
in Fig. 2 show our DMC energies E=N per dipole for b �
0:0137aho (and d2 values for which V supports no two-
body bound states) as a function of D
=aho for N � 4, 10,
20, and 50. Statistical uncertainties are indicated by verti-
cal error bars. For completeness, the dashed lines show the
E=N data for N � 2 from Fig. 1(b). The energy E=N per
dipole decreases with increasing D
. In particular, E=N
becomes smaller than the ideal gas value of 1:5@! for
negative s-wave scattering lengths (D
=aho greater than
�0:06 in the figure). Finally, for fixed D
=aho, the attrac-
tive part of the dipolar interaction leads to a decrease of
E=N with increasing N. We find qualitatively similar be-

FIG. 1. (a) Solid lines show the s-wave scattering length a as a
function of the dipole strength D
, both in units of b, for the two-
body potential V, Eq. (2). Vertical dotted lines denote those
D
=b values at which a diverges and a new bound state appears
in the two-body potential. (b) Dashed lines show E=N for two
dipoles under external spherical confinement calculated for b �
0:0137aho as a function of D
=aho obtained by solving the linear
Schrödinger equation for the Hamiltonian given by Eq. (1). Solid
lines show the corresponding GP energy obtained by solving
Eq. (4) for the pseudopotential Veff , Eq. (3), using the dipole-
dependent scattering length. The GP energies are plotted for
each branch of the two-body spectrum. Note that the D
 values
shown in (a) and (b) extend over the same range.
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haviors for dipolar gases confined in elongated cigar-
shaped and pancake-shaped traps.

Our variational many-body calculations for dipolar
gases show that the region in configuration space where
the metastable condensate exists is separated by an ‘‘en-
ergy barrier’’ from the region where bound many-body
states exist. This energy barrier is familiar from variational
treatments of atomic Bose-Einstein condensates with at-
tractive interactions [28–30]. The existence of this barrier
is crucial for our DMC calculations to converge to the
metastable condensate state for sufficiently large D
=aho

and not to the clusterlike ground state. The dipolar gas
collapses at the D
=aho value for which the energy barrier
vanishes. Our DMC calculations show that the condensate
prior to collapse is only slightly elongated, which is con-
sistent with our finding that the collapse is induced primar-
ily by the negative value of a. After collapse, the particles
assemble into a bound cluster, whose size is far smaller
than the original condensate.

We now assess the validity of the GP equation for
trapped dipolar Bose gases, which can be derived by
performing a functional variation of the expectation value
of the Hamiltonian given by Eq. (1), calculated with re-
spect to a product wave function �, ��~r1; 
 
 
 ; ~rN� �QN
j�1 �� ~rj�. For this procedure to be meaningful, the two-

body interaction potential V, Eq. (2), has to be replaced by
a pseudopotential Veff [17]:

 Veff� ~r� �
4�@2a�d�

m
�� ~r� � d2 1� 3cos2�

r3 ; (3)

whose zero-energy T matrix, calculated in the first Born

approximation, reproduces the full zero-energy T matrix of
the model potential V, Eq. (2). The strength of the contact
term of Veff is not, as might be expected naively, given by
the cutoff radius b but by the dipole-dependent s-wave
scattering length a�d�. The GP equation for the single
particle orbital �� ~r� then reads

 �
�@2

2m
r2�

1

2
m!2r2��N� 1�

4�@2a�d�
m

j��~r�j2

��N� 1�d2
Z 1� 3cos2�

j ~r� ~r0j3
j�� ~r0�j2d3 ~r0

�
�� ~r� � ��� ~r�; (4)

where � denotes the chemical potential. We solve the
nonlocal equation (4) numerically by the steepest descent
method. At each time step, the integration over the dipole
potential is evaluated in momentum space with the aid of
fast Fourier transforms [18].

The solid lines in Fig. 2 show the GP energies E=N per
dipole for various N as a function of D
=aho. Figure 2
shows excellent agreement between the GP and DMC
energies (symbols) for all N considered. To illustrate that
this agreement depends crucially on the value of the
dipole-dependent s-wave scattering length a in the contact
part of the pseudopotential Veff , Eq. (3), a dotted line in
Fig. 2 shows the GP energy per dipole forN � 10 obtained
using the cutoff radius b instead of a. Figure 2 indicates
that this simple description overestimates E=N severely
when the dipole length D
 becomes comparable to and
larger than the short-range length b.

Recently, an alternative, non-Hermitian, pseudo-
potential was proposed for two interacting dipoles [31].
This pseudopotential was applied, although unfortunately
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FIG. 3 (color online). Partial stability diagram for a dipolar
condensate. The white regions depict parameters for which the
gas is predicted to be mechanically unstable. Shaded areas are
regions of stability, and dark shaded areas denote parameters that
are expected to produce stable condensates even in free space.
The top axis translates the dipole length D
 into a dipole
moment, assuming a trap of frequency � � 1 kHz and a mo-
lecular mass 20 amu.

FIG. 2. Symbols show the energy per particle E=N calculated
by the DMC method for b � 0:0137aho as a function of D
=aho

for N � 4, 10, 20, and 50. Vertical error bars indicate statistical
uncertainties. For completeness, a dashed line shows E=N,
calculated using B splines, for N � 2. Solid lines show E=N
calculated by solving the nonlinear GP equation, Eq. (4), with
the dipole-dependent scattering length. For comparison, a dotted
line shows E=N for N � 10 calculated by solving the nonlinear
GP equation, Eq. (4), with the bare scattering length, i.e., the
cutoff radius b.
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in an incorrect form, to extract properties of the dipolar gas
[32]. Our results in this Letter strongly confirm that the
original, simpler pseudopotential (3) advanced in Ref. [17]
is actually quite accurate, and no extension is necessary at
this point.

The dipole-dependent scattering length has important
implications for the stability of a condensate, as shown in
the N-vs-dipole stability diagram in Fig. 3. For concrete-
ness, we have included an alternative horizontal axis,
representing the dipole moment in Debye, assuming a
trap of frequency � � 1 kHz and a molecular mass
20 amu, typical for light molecules. The shaded and white
areas in Fig. 3 denote parameters for which the GP equa-
tion does and does not possess a solution, respectively. The
dark shaded areas represent where the condensate is ex-
pected to be stable for any number of molecules, even in
free space, as given by the criterion a�d�>D
=3 [33].
Apart from these regions of ‘‘absolute’’ stability, the con-
densate for a fixed dipole moment will ultimately become
unstable as the number of molecules is increased. Indeed,
for certain values of dipole where a�d� takes large, negative
values (say, near D
=aho � 0:27), a condensate is not
supported at all.

Alternatively, for fixed N, the condensate stability can
be probed as a function of the dipole moment. This is likely
a parameter more amenable to fine-tuning in the laboratory.
In this case, an initially stable condensate will collapse
after the dipole exceeds a certain value. There then follows
a region of instability, followed by another region of
stability as the dipole is made yet larger and the scattering
length takes positive values. This alternating pattern of
stable and unstable condensates continues beyond the
two-and-a-half cycles we have shown in Fig. 3. This pat-
tern is in contrast to the generally held view of polar
condensate collapse, which would posit a single collapse
when the dipole reaches a large critical value. Instead,
there are many critical values, generated each time a new
bound state is absorbed into the two-body potential.
Because this collapse is largely s-wave dominated, the
gas is much more nearly isotropic near the collapse point
than has previously been reported.

In summary, we have tested, for the first time, the
validity of the GP equation for describing Bose-Einstein
condensates interacting via dipolar forces. We find that the
GP equation works well as compared to essentially exact
DMC methods, as long as the dependence of the s-wave
scattering length on dipole moment is accounted for. Doing
so, we predict a rich stability diagram for such a system,
with alternating regions of stability and instability as the
dipole moment is varied.
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