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Electric field suppression of ultracold confined chemical reactions
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We consider ultracold collisions of polar molecules confined in a one-dimensional optical lattice. Using a
quantum scattering formalism and a frame transformation method, we calculate elastic and chemical quenching
rate constants for fermionic molecules. Taking 40K87Rb molecules as a prototype, we find that the rate of quenching
collisions is enhanced at zero electric field as the confinement is increased but that this rate is suppressed when
the electric field is turned on. For molecules with 500 nK of collision energy, for realistic molecular densities,
and for achievable experimental electric fields and trap confinements, we predict lifetimes for KRb molecules to
be 1 s. We find a ratio of elastic to quenching collision rates of about 100, which may be sufficient to achieve
efficient evaporative cooling of polar KRb molecules.
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The recent achievement of ultracold polar molecules [1–3]
has opened tremendous possibilities for the ultracold commu-
nity. Individual quantum states of the molecules can now be
addressed experimentally [2,4]. Beyond the idea of creating
molecular Bose-Einstein condensates or degenerate Fermi
gases of polar molecules, these “quantum-state-controlled”
molecules have applications in ultracold chemistry [5,6],
condensed matter and many-body physics [7,8], quantum
information [9,10], and precision measurement and tests of
fundamental laws [11]. These applications crucially depend
on the collisional properties of the polar molecules in the
presence of an electric field. To get a stable gas of molecules,
elastic processes should dominate over quenching (including
inelastic and/or reactive) processes. This is the case for
molecules for which chemical reactions are energetically
forbidden in their absolute ground state. For others, such as
KRb molecules, chemical reactions such as KRb + KRb →
K2 + Rb2 are energetically allowed [5,12,13], and evaporative
cooling might be difficult to achieve. Chemical rates increase
to the sixth power of the dipole moment induced by an
electric field, due to head-to-tail collisions of the polar
molecules [14,15]. On the other hand, these collisions may
be suppressed in a one-dimensional (1D) optical lattice [8,16]
that confines the molecules in planes perpendicular to the axis
of their polarization so that the dipoles mutually repel each
other.

In this article, we describe ultracold collisions of polar
molecules in an electric field confined in a 1D optical lattice.
We apply the theory to predict the elastic and chemical
rate of confined KRb + KRb → K2 + Rb2 reactions to
which particular attention is devoted [2,4,5,14] and for which
theoretical predictions are needed. We show that the electric
field suppression of confined chemical rates can help to achieve
efficient evaporative cooling of such molecules. We assume
that the wells of the 1D optical lattice are deep enough so
that the molecules cannot tunnel from site to site and can be
approximated by independent harmonic oscillator traps. In the
following, quantities are expressed in SI units, unless explicitly
stated otherwise. Atomic units (a.u.) are obtained by setting
h̄ = 4πε0 = 1.

We consider pairs of bosonic or fermionic polar molecules
of mass m and reduced mass µ = m/2 confined in a har-

monic oscillator trapping potential Vho = µω2z2/2, which
allows the molecules to collide in a two-dimensional (2D)
configuration space. The electric field is applied along the
z direction, perpendicular to the planes of free motion in
the trap. The Hamiltonian in the relative coordinate �R is
given by

H = − h̄2

2µ
∇2 + Vho + VvdW + Vdd + Vabs. (1)

The long-range interactions are represented by the van
der Waals potential VvdW = −C6/R

6, and the dipole-dipole
interaction Vdd = d2(1 − 3 cos2 θ )/(4πε0R

3), where d rep-
resents the effective dipole moment of the polar molecule
induced by the electric field [15]. Moreover, we represent
chemical reactions via the non-Hermitian, absorbing potential
Vabs = iAe−(R−R0)/Rc , with A = 10 K, R0 = 10 a0, and Rc =
10 a0 (a0 is the Bohr radius), which has been chosen
to successfully describe three-dimensional (3D) chemical
rates of KRb molecules in an electric field, measured in
Ref. [14].

Scattering wave functions � are most naturally described
at large intermolecular spacing in cylindrical coordinates
�R = (ρ,z,ϕ) in accordance with the symmetry of the confined

trapping potential. The interactions between molecules when
they are closer together, however, are better described in
spherical coordinates �R = (R,θ,ϕ). In our numerical calcu-
lations, we therefore use the appropriate coordinate system
and then weld the wave functions together at a suitable
matching distance. Note that the azimuthal angle ϕ is common
to both coordinate systems, and in fact the Hamiltonian
is independent of ϕ. Therefore, the quantum number M ,
representing the azimuthal projection of the orbital angular
momentum, is rigorously conserved. Note also that in the limit
of strong confinement, θ is restricted to values near θ ≈ π/2,
in which case the dipolar interaction is repulsive. This is
the primary principle behind the electric field suppression of
collisions.

When the molecules are close together, we solve the
coupled-channel equations of motion in spherical coordinates
using the diabatic-by-sector method [17]. We divide the
complete range of R into sectors labeled by an index p. In
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each sector, we expand the M-dependent wave function of an
initial channel i as

�M
i (R,θ ) = 1

R

∑
j

χM
j (Rp; θ )FM

ji (Rp; R). (2)

The adiabatic functions χM
j (Rp; θ ) are those that diagonalize

the M-dependent angular part HM (R,θ ) of the Hamiltonian
in Eq. (1) at the fixed radius R = Rp, the middle of the
sector p. The associated adiabatic energy is εj (Rp), which
converges to a harmonic oscillator energy εn of a state n

of the trap at large Rp. The radial functions FM
f i (Rp; R),

where f = 1,2, . . . represents an arbitrary final channel of
the system, are determined within each sector according to the
diabatic equations of motion(

− h̄2

2µ

d2

dR2
− E

)
FM

f i (Rp; R) +
∑

j

UM
fj (Rp; R) FM

ji (Rp; R)

= 0, (3)

where

UM
fj (Rp; R) =

∫ π

0
χM

f (Rp; θ )HM (R,θ )χM
j (Rp; θ ) sin θdθ.

(4)

E is the total energy of the system. To solve Eq. (3), we employ
the method of the propagation of the logarithmic derivative
matrix ZM = (FM )′(FM )−1 of Johnson [18] up to a suitable
matching radius Rm.

If Rm is sufficiently large, then the only potential energy
of any significance is the trap confinement potential Vho. At
this point, the wave function is more conveniently described
in cylindrical coordinates. Therefore, for an initial state ni of
the trap, we expand the M-dependent wave function as

�M
ni

(ρ,z) = 1

ρ1/2

∑
nf

gnf
(z)GM

nf ni
(ρ), (5)

where gnf
(z) are normalized harmonic oscillator functions in

z corresponding to a state nf of the trap. We checked that
the functions ρ1/2χM

f /R converged to the gnf
(z) functions

at large Rm. The radial functions GM serve to define the
reactance matrix KM via GM

nf ni
(ρ) ∝ ρ1/2JM (knf

ρ)δnf ni
+

ρ1/2NM (knf
ρ)KM

nf ni
, in terms of Bessel functions JM,NM . For

closed channels, modified Bessel functions must to be used
instead; knf

= √
2µ(E − εnf

)/h̄ represents the wave vector of
the relative motion of the state nf . For the initial oscillator
state ni , kni

= √
2µEc/h̄, where Ec = E − εni

is the initial
collision energy. The KM matrix is found by a matching
procedure from the spherical wave function that captures the
short-range physics and the cylindrical wave function that
captures the asymptotic boundary conditions. This is done by
equating Eq. (2) to Eq. (5) along with their radial derivatives,
at a constant radius R = Rm [17]. The matching procedure
yields two regular and irregular spherical radial functions and
derivatives. The accuracy of the procedure is checked by their
Wronskian matrix, which converges at large Rm to a diagonal
unit matrix.

The KM matrix in turn determines the scattering matrix
SM = (I + iKM )−1(I − iKM ), where I represents a diagonal

unit matrix. The cross sections for elastic and quenching
collisions are given by [19–21]

σ el = h̄√
2µEc

∑
M

∣∣1 − SM
nini

∣∣2
�, (6)

σ qu = h̄√
2µEc

∑
M

(
1 − ∣∣SM

nini

∣∣2)
�, (7)

and the rate coefficient is given by Kel,qu = σ el,qu × v, where
v = √

2Ec/µ is the collision velocity. The factor � rep-
resents symmetrization requirements for identical particles:
� = 1,2, accordingly, as the particles are distinguishable
or indistinguishable. To compare with experimental results,
one should average the rate coefficients over a Maxwell-
Boltzmann distribution of the velocity v, but we do not
perform this average here. Finally, due to exchange symmetry
of indistinguishable molecules, the quantum numbers in the
asymptotic representation Eq. (5) satisfy the relation

(−1)n+M = γ, (8)

with γ = +1 for bosonic molecules and γ = −1 for fermionic
molecules.

For concreteness, we now consider collisions of fermionic
40K87Rb molecules, prepared in same internal states. We
use the actual mass and permanent dipole moment of these
molecules, and set the coefficient of their van der Waals
interaction to C6 = 21 000 a.u. [14] (1 a.u. = 1 Eha

6
0 , where

Eh is the Hartree energy). We consider only pairs of molecules
initially confined to the ground state of the harmonic oscillator,
with ni = nf = 0, and we take the collision energy to be
Ec = 500 nK, relevant in the ongoing KRb experiment. Under
these circumstances, we find converged results at a matching
radius Rm = 104a0. As the pairs of fermionic molecules are
in the ground harmonic oscillator state n = 0, only odd values
of M are allowed in Eq. (8). This circumstance removes the
occurrence of undesired head-to-tail collisions (M = 0) of the
molecules in an electric field at ultralow collision energy. At
Ec = 500 nK, we find that scattering is largely dominated
by the single partial wave M = 1. Despite the fact that the
molecules are in the ground state of the trap, we need to
employ one open channel (n = 0) and three closed channels
(n = 2,4,6) to converge the results to 10%.

The characteristic lengths (a) and energies (E) of the
different interactions involved in the chemical process are
presented in Table I. They are given for the various interactions

TABLE I. Characteristic lengths and energies of the different
interactions involved in the KRb + KRb collision; 1 D = 1 Debye =
3.33610−30 C m.

Interaction avdW,dd,ho (units of a0) Evdw,dd,ho (µK)

C6 = 21 000 a.u. 264 19.6
d = 0.1 D 179 85.2
d = 0.2 D 716 5.3
d = 0.3 D 1611 1.06
d = 0.566 D 5734 0.083
ν = 50 kHz 1069 2.4
ν = 100 kHz 239 48
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by avdW = (2µC6/h̄
2)1/4 and EvdW = h̄2/(2µa2

vdW) for the
van der Waals interaction, add(d) = µd2/h̄2 and Edd(d) =
h̄6/(µ3d4) for the dipole-dipole interaction, and aho(ν) =√

h̄/(2πνµ) = √
h̄/(ωµ) and Eho(ν) = h̄2πν = h̄ω for the

harmonic oscillator trap. This is useful for characterizing the
different regimes involved in the chemical process. When
avdW or add < aho, intermolecular forces take place where the
confinement is small and the collisions are effectively 3D.
When aho < avdW or add, the reverse is true and the collisions
are effectively 2D. For fermions in n = 0 and when an electric
field is applied, the molecules meet primarily side by side
and repel each other. For weakly polarized molecules, trap
frequencies of 50 kHz and 1000 kHz are representative of
the 3D and 2D limits, respectively (see Table I). For more
strongly polarized molecules at d > 0.3 D, the 2D limit is
reached for both confinements as aho < add. We consider the
two confinements in the following. We note that the present
theoretical formalism can treat both 3D and 2D limits in
an electric field. This is in contrast with former theoretical
studies [22,23], which do not take into account the electric
field and do not describe the 2D limit where aho < avdW or add.

We present in Fig. 1 the elastic and quenching rate
coefficient as a function of the induced dipole moment d, for a
trap frequency of ν = 50 kHz (upper panel) and ν = 1000 kHz
(lower panel). The elastic rates (blue lines) have the same
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FIG. 1. (Color online) Collision of 40K87Rb molecules in the
ground state of a confining trap. The elastic (blue) and quenching
(red) rate coefficients are plotted as a function of the dipole moment
d for ν = 50 kHz (upper panel) and ν = 1000 kHz (lower panel), for
a fixed collision energy of Ec = 500 nK. A pure 2D SC formula (thin
blue line) and a pure 2D Born approximation (BA) formula (dashed
blue line) have also been reported from Ticknor [24].

trend for the two different confinements, increasing with the
dipole moment. For d > 0.2 D, the elastic rates converge to
a semiclassical (SC) formulation (thin blue lines) of pure 2D
dipolar scattering [24], which increases linearly with d. For
d < 0.2 D, the elastic rates are in better agreement with a pure
2D Born approximation (BA; dashed blue lines) that scales
as d4 [24]. For d � 0 D, the elastic rates take a finite value,
which is determined by an unknown scattering phase shift
which depends on the short-range potential of KRb–KRb. We
note that the overall elastic rate is in better agreement with the
pure 2D estimations for the larger confinement ν = 1000 kHz
than for the smaller confinement ν = 50 kHz, as one expects.

In contrast, the quenching rates (red lines) have a different
trend with dipole moment for the two different confinement
strengths. For ν = 50 kHz (upper panel), the quenching rate
first decreases and then increases again as a function of
d. This behavior already contrasts with the quenching rate
in 3D collisions, which increases as d6 in the absence of
z confinement [14,15]. The crucial difference comes from
the fact that destructive head-to-tail collisions (M = 0) are
removed by the confined geometry for fermions in the ground
state n = 0 [see Eq. (8)]. Under even greater confinement
(lower panel), the quenching rate continues to decrease with
increasing dipole moment [15,25], illustrating the electric field
suppression of confined chemical rates.

To better understand the qualitative trend of the quenching
rates, we present in Fig. 2 the height Vb of the effective
potential energy barrier (see Ref. [15]) corresponding to the
lowest adiabatic energy curve εf =1(Rp), as a function of d

for ν = 50,1000 kHz. We follow the qualitative arguments
given in Ref. [15] that the behavior of the quenching rates are
suppressed by the need for the molecules to tunnel through this
barrier to the region of chemical reactivity. For ν = 50 kHz,
the barrier increases for small dipole moments, since the dipole
interaction is repulsive for M = 1. However, anisotropy of the
interaction couples different channels together. Therefore, at
higher dipole moments, the lowest adiabatic curve is repelled
more strongly from the others, ultimately lowering the barrier
height and increasing the quenching rate. For the stronger
confinement ν = 1000 kHz, the barrier height continues to
grow as the dipole moment increases, leading to continued
suppression of quenching by four orders of magnitude over
the range of dipole moment shown. There are two ways
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FIG. 2. Barrier height Vb as a function of the dipole moment d

for ν = 50 kHz (solid line) and ν = 1000 kHz (dashed line).
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to see this ongoing suppression of quenching. First, since
aho(1000 kHz) < avdW or add, the molecules exert strong
dipolar forces on each other at long range where they are still
described by harmonic oscillator states. Thus, the interaction
remains overwhelmingly repulsive and the molecules do not
get close enough to react. Alternatively, we note that the
trap confinement is tight enough so that the spacing between
the harmonic trap levels is large, and therefore the repulsion
between adiabatic channels is small. The incident adiabatic
channel is therefore less likely to be lowered due to the
presence of other locally open adiabatic channels at short
range. As a result, the barrier height continues to increase as
d increases, driven solely by the increasing dipolar repulsion.

The calculations show another interesting trend as con-
finement is increased. Namely, at zero dipole moment, the
quenching rate is higher for the tighter confinement ν =
1000 kHz. This is consistent with the barrier height Vb being
smaller for the higher trap frequency (Fig. 2). This difference
arises from the fact that the collision energy is measured
relative to the asymptotic energy of the potential, which is
the zero-point energy of the confining potential. The tighter
trap has a higher zero-point energy (Table I), and hence the
apparent barrier is lower.

Finally, Fig. 1 shows that for an experimentally achievable
frequency trap of ν = 50 kHz (upper panel), we predict a loss

rate of ∼10−7 cm2 s−1 per molecule for the maximum dipole
moment d = 0.2 D achieved so far in the KRb experiment.
For a realistic planar density of molecules ∼107 cm−2, this
corresponds to molecular lifetimes of ∼1 s, which is 100
times longer than if the molecules were not confined. Equally
important is the ratio of elastic to quenching collisions.
At d = 0.2 D for ν = 50 kHz, we predict ∼100 elastic
collisions before a chemical reaction occurs. This ratio may
be sufficiently high to achieve efficient evaporative cooling of
KRb molecules in a 1D optical lattice and to pave the way for
a long-lived quantum gas of polar molecules.

Note added in proofs. We have been aware of a comple-
mentary study which can be found in Ref. [26].
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