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We study the stability of singly and doubly quantized vortex states of harmonically trapped dipolar Bose-
Einstein condensates �BECs� by calculating the low-lying excitations of these condensates. We map the dy-
namical stability of these vortices as functions of the dipole-dipole interaction strength and trap geometry by
finding where their excitations have purely real energy eigenvalues. In contrast to BECs with purely contact
interactions, we find that dipolar BECs in singly quantized vortex states go unstable to modes with an increas-
ing number of angular and radial nodes for more oblate trap aspect ratios, corresponding to local collapse that
occurs on a characteristic length scale. Additionally, we find that dipolar BECs in doubly quantized vortex
states are unstable to decay into a different topological state �with two singly quantized vortices� for all
interaction strengths when the trap geometry is sufficiently prolate to make the dipoles attractive, and in
windows of interaction strength when the trap geometry is sufficiently oblate to make the dipoles repulsive.
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I. INTRODUCTION

The observation of strong dipolar effects in a Bose-
Einstein condensate �BEC� of harmonically trapped 52Cr
�1,2� atoms marks encouraging progress towards understand-
ing these systems. In contrast to the isotropic contact inter-
action present in condensates of alkali-metal atoms, the
dipole-dipole interaction is long ranged, anisotropic, and is
predicted to induce interesting ground-state structures �3,4�
and excitation spectra in both fully and partially trapped sys-
tems. For example, an excitation spectrum much like the
roton-maxon spectrum in superfluid He is predicted in dipo-
lar BECs �DBECs� with both three-dimensional �3D� �3,5�
and quasi-two-dimensional �2D� �6� geometries. Addition-
ally, the presence of dipolar effects has recently been shown
to be critical in explaining the rich behaviors of spinor BEC
systems �7,8�, the effects of which are strongly conditioned
by the attractive part of the dipole-dipole interaction. For this
reason, it is instructive to compare the dipolar system to a
BEC with attractive contact interactions. In this paper, we
find the properties of the two systems to be in stark contrast.

To see this contrast, we consider the effects of the dipole-
dipole interaction on a condensate with a single vortex core
�9�. The conditions for the generation of such a DBEC vortex
state are studied in Ref. �10�. First, consider a trapped BEC
with attractive contact interactions, characterized by the
s-wave scattering length as of the constituent particles and
with no vortex. For such a system, there always exists a
critical particle number above which the condensate goes
unstable, with preference to collapse in the region of maxi-
mum density at the center of the trap �11,12�. Stirring the
condensate into a vortex state serves to stabilize the system
by introducing a kinetic energy component due to angular
momentum that offsets the interparticle attraction. So, in
general, the vortex will sustain a larger number of particles
than the nonvortex state, and is more stable.

The case for a DBEC, however, is quite different. Con-
sider a DBEC with its dipolar entities polarized in the z
direction. Because the dipole-dipole interaction is aniso-
tropic, the structure and stability of a DBEC depends

strongly on the trap aspect ratio �=�z /��, where �z and ��

are the axial and radial trap frequencies, respectively. For
smaller �, the dipole-dipole interaction distends the conden-
sate into a prolate shape, where macroscopic collapse can
occur due to long-range attraction in the direction of polar-
ization. As � is increased, the condensate is stabilized since
the dipole-dipole interaction is predominately repulsive in
this more oblate geometry. For a moderate number of par-
ticles, the energy cost of stacking the dipoles in the direction
of polarization is outweighed by the tight harmonic confine-
ment in this direction. However, for a sufficiently large num-
ber of particles, a DBEC in an oblate trap is subject to an
instability due to local density fluctuations, which are foreign
to the contact potential case. The attractive part of the dipole-
dipole interaction dominates in regions where the higher-
density fluctuations occur, initiating a local collapse of the
condensate. As will be discussed below, this instability is
intimately connected with an excitation that goes soft at a
critical number of dipoles, and that has been dubbed the
“discrete roton” �3�. Signatures of this local collapse have
been articulated in the simulations of Ref. �13�, where the
manifestation of the roton in the collapse of a DBEC is
shown for the early stages of collapse.

In the presence of a singly quantized vortex, the region of
high density is forced away from the center of the trap due to
the zero density of the vortex core. Depending on the aspect
ratio � of the trap, this either serves to stabilize �for smaller
�� or destabilize �for larger �� the DBEC. For smaller �, the
vortex core simply breaks the prolate shape of the conden-
sate along the direction of polarization, eliminating much of
the attractive dipole-dipole interaction in this direction and
thus increasing the energy due to interactions. Conversely,
for larger � the vortex increases the density in the periphery
of the core and thus encourages local collapse. Just as the
roton wavelength is set by the confinement length in the
direction of polarization �z�, the local density fluctuations
occur at the same length scale regardless of the trap geom-
etry. Widening the trap radially while keeping the axial trap-
ping frequency fixed makes more room for regions of density
fluctuations instead of enlarging the existing regions. This
marks a clear and important distinction between the dipole-

PHYSICAL REVIEW A 79, 013621 �2009�

1050-2947/2009/79�1�/013621�7� ©2009 The American Physical Society013621-1

http://dx.doi.org/10.1103/PhysRevA.79.013621


dipole and contact interactions. An additional consideration
relevant to the stability of DBECs with a vortex are the ex-
citations of the vortex core itself �14�. As we will see below,
these excitations are unlikely to play a role in destabilizing
the vortex for oblate, or even mildly prolate, traps.

Our paper is organized as follows: In Sec. II we describe
the model that we use to study the ground state with a vortex,
including the algorithm that we employ to carry out our cal-
culations. In Sec. III we discuss the Bogoliubov–de Gennes
�BdG� formalism and present our calculations of the BdG
spectrum in reference to the stability of the system. Finally,
in Sec. IV we calculate the BdG spectrum of a DBEC with a
doubly quantized vortex. Interestingly, in a more prolate trap
geometry where the dipoles are mostly attractive we find that
the BdG spectrum looks very similar to the BEC with purely
attractive contact interactions, while in a more oblate trap
geometry where the dipoles are mostly repulsive we find that
the BdG spectrum looks very similar to that of the BEC with
purely repulsive contact interactions, having windows of dy-
namical stability for certain dipole-dipole interaction
strengths �15,16�.

II. METHODS

At ultracold temperatures, a condensate of N bosons
trapped in an external potential U�r� may be described
within mean field theory �17� by the nonlocal Gross-
Pitaevskii equation �GPE�:

�−
�2

2M
�2 + U�r� + �N − 1�

�� dr��0
*�r��V�r − r���0�r����0�r� = ��0�r� ,

�1�

where �0�r� is the condensate wave function with unit norm,
r is the distance from the trap center, M is the boson’s mass,
and V�r−r�� is the two-particle interaction potential. For a
cylindrically symmetric harmonic trap, the external potential
is given by U�r�= 1

2 M��
2��2+�2z2�, where �=�z /�� is the

trap aspect ratio. The interaction potential for a dipolar sys-
tem has the form �18�

V�r − r�� =
4	�2as

M

�r − r�� + d21 − 3 cos2 �

�r − r��3
, �2�

where d is the dipole moment and � is the angle between the
vector r−r� and the dipole axis. To illuminate purely dipolar
effects, we set as=0 in this work, a limit that has been
achieved experimentally in a BEC of atomic 52Cr by employ-
ing a Fano-Feshbach resonance �19�.

To characterize the structure and stability of a DBEC with
a vortex, we introduce the dimensionless characteristic di-
pole strength,

D = �N − 1�
Md2

�2aho
, �3�

where aho=	� /M�� is the radial harmonic oscillator length.
Notice that increasing �decreasing� D corresponds to either

increasing �decreasing� the number of particles in the con-
densate or the square of the dipole moment of the particles.
So for a DBEC of, say, 52Cr, one must change the number of
atoms in the condensate in order to change D, since the mag-
netic dipole moment of 52Cr �6�B� is effectively fixed.

The second term in Eq. �2� describes the two-body dipole-
dipole interaction for dipoles that are polarized along the trap
axis �z axis� �20�, as may be achieved by applying a strong
external field to the condensate. This term is long ranged
��1 /r3�, anisotropic, and has a coordinate-space singularity
as the distance between the particles goes to zero. These
concerns are handled by treating the mean field dipole term
in the GPE, d2
dr��0

*�r�� 1−3 cos2 �

�r−r��3
�0�r��, by means of con-

volution. This method eliminates the singularity in coordi-
nate space since the dipolar mean field in momentum space,

ṼD�k�, is given by �21�

ṼD�k� =
4	

3
�3kz

2/k2 − 1� . �4�

The dipolar mean field in coordinate space may then be cal-

culated in terms of ṼD�k�,


D�r� = F−1�ṼD�k�ñ�k�� , �5�

where F−1 is the inverse Fourier transform operator and ñ�k�
is the Fourier transform of the condensate density.

In general, these transforms must be computed in three
dimensions to capture the three-dimensional �3D� nature of
the system. However, the system that we are considering
possesses cylindrical symmetry in both the trapping and di-
polar interaction potentials. With such a symmetry, the con-
densate states may be written in cylindrical coordinates as
eigenstates of the orbital angular momentum projection s,
�0�r�=�0�� ,z�eis� �22�. The s=0 state corresponds to a ro-
tationless condensate, while the s�0 states correspond to
condensates with vortices of charge s, or equivalently, with
�s units of orbital angular momentum per particle. This for-
mulation allows for a distinctive computational algorithm to
be applied to the problem, reducing a fully 3D calculation to
a 2D one by working in cylindrical coordinates and integrat-
ing out the simple � dependence of the state. Specifically, the
algorithm uses a one-dimensional �1D� Hankel transform of
order s in the � coordinate and a 1D Fourier transform in the
z coordinate to transform a function with the angular depen-
dence eis� into momentum space. For example, the transform
of the wave function �0�� ,z�eis� is

�0
˜�k� = 	2	i−se−isk� � �

−�

�

dze−ikzz�
0

�

�d��0��,z�Js�k��� ,

�6�

where Js�k��� is the Bessel function of order s. In practice,
the Fourier transform and the Hankel transform of order s are
performed on discrete grids. The application of this algo-
rithm to solving the GPE is detailed in Ref. �23�.

In addition to calculating the ground state with a specified
vorticity using this algorithm, we also extended it to calcu-
late the BdG excitation spectrum in the presence of a vortex
ground state �see Sec. III�, which describes the low-lying
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excitations and reveals critical information regarding the dy-
namical stability of the system. This extension of our algo-
rithm is described in the Appendix.

III. EXCITED STATES AND STABILITY

To study the elementary excitation spectrum of a DBEC
with a given projection of angular momentum s in the
ground state, we use the BdG ansatz and write a wave func-
tion of the time-dependent GPE of the form �with �=1�

��r,t� = ��0��,z� + ��r,t��ei�s�−�t�, �7�

where � is the chemical potential of the ground state,
�0�� ,z�eis�, and ��r , t� is given by

��r,t� = 
�u��,z�ei�m�−�t� + v*��,z�e−i�m�−�t�� , �8�

where 
�1 to ensure that the excitations have small ampli-
tudes, � is the frequency of the excitation, and the modes
u�� ,z�eim� and v*�� ,z�e−im� are normalized by �22�

� dr��u��,z��2 − �v��,z��2� = 1. �9�

The BdG modes are characterized by the quantum number
m, being their projection of orbital angular momentum onto
the z axis. This ansatz represents a vortex with angular mo-
mentum �s per particle giving rise to excitations with angu-
lar momentum ��s�m�. By inserting Eq. �7� into the time-
dependent GPE �Eq. �1� with � on the right-hand side
replaced by i� �

�t � and linearizing about 
, the coupled BdG
equations are derived by collecting terms evolving in time
such as e−i�t and ei�t, respectively,

�u��,z�eim� = �H0 − � +� dr��0
*���,z��

�VN�r − r���0���,z���u��,z�eim�

+� dr��0
*���,z��VN�r − r��

�u���,z��eim���0��,z�

+� dr�v���,z��VN�r − r���0���,z��

�eim���0��,z� , �10�

− �v��,z�eim� = �H0 − � +� dr��0
*���,z��

�VN�r − r���0���,z���v��,z�eim�

+� dr��0���,z��VN�r − r��v���,z��

�eim���0
*��,z� +� dr�u���,z��

�VN�r − r���0
*���,z��eim���0

*��,z� ,

�11�

where H0=− �2

2M �2+U�r� and VN�r−r��= �N−1�V�r−r��. By
using Hankel transforms to compute the interaction terms in
Eqs. �10� and �11�, we are able to account for the angular
dependence of the integrands by using a Bessel function of
the appropriate order, as described in the Appendix. To solve
these equations, we write them in matrix form, as in �15,23�,
and diagonalize them numerically to find the eigenvectors
�ui ,vi

*� and the eigenvalues �i.
We point out that while there are solutions of the BdG

equations of the form �ui ,vi
*�, there are always solutions of

the form �vi
* ,ui� with �i→−�i and m→−m. For the case of

s=0 BECs, there is a solution of the original form �ui ,vi
*�

with the same �i but with m→−m. This simply expresses the
fact that counter-rotating excitations are degenerate due to
the reflection symmetry of the s=0 ground state. The pres-
ence of a vortex breaks this double degeneracy. We shall say
that the excitation �ui ,vi

*� has a positive norm when

dr��u�� ,z��2− �v�� ,z��2��0. It can then be normalized such
that 
dr��u�� ,z��2− �v�� ,z��2�=1. The solution �vi

* ,ui� with
�i→−�i and m→−m will then have a negative norm, obey-
ing 
dr��u�� ,z��2− �v�� ,z��2�=−1. A positive norm mode
with a negative energy eigenvalue signifies that there exists a
lower energy solution of the GPE; the same situation is rep-
resented by a negative norm mode with a positive energy
eigenvalue �24�.

The solutions of the BdG equations characterize the sta-
bility of s=1 DBECs. The global thermodynamical instabil-
ity of s=1 DBECs is seen as a negative norm BdG mode
with m=1 and positive energy for all trap aspect ratios and
dipolar interaction strengths. This mode corresponds to the
system’s decay into the energetically favored rotationless
ground state, just as for BECs with purely contact interac-
tions. The component of the mode with angular dependence
e−i�m−s��=1 is in this case rotationless, capturing the symme-
try of the s=0 ground state. Since this mode populates the
core of the vortex, it is referred to as a core mode. However,
at ultracold temperatures, thermodynamical stability is less
relevant in characterizing the stability of a condensate since
there needs to be some thermal processes acting on the sys-
tem to dissipatively drive it into a lower energy state. We
therefore disregard thermodynamical instability in the fol-
lowing.

Instead, we focus on studying the dynamical stability of
s=1 DBECs. The emergence of a BdG energy eigenvalue
with a nonzero imaginary part corresponds to a dynamical
instability in the system �22�. For example, suppose that a
BdG mode �ui ,vi

*� has energy �i=�R+ i�I with �I�0; then
the mode will have the time dependences e��I−i�R�t and
e−��I−i�R�t, either exponentially growing or decaying in time.
Consequently, �I determines the rate of decay of the conden-
sate, given by �=1 /�I.

We determine where s=1 DBECs are dynamically stable
by finding the region in parameter space where all of the
BdG modes have purely real energy eigenvalues. This region
is shown by the colored portion of Fig. 1. The dashed line in
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this figure marks, for a given �, the D below which we find
a local minimum of the GP energy functional �23� by using
our reduced 2D algorithm. We find that, for all �, the D
above which the GP energy functional has no minimum cor-
responding to an s=1 ground state and the D at which the
BdG spectrum begins to possess imaginary energy, denoted
Dcrit, are never equal. Indeed, dynamical instability occurs
for values of D at which the GPE has a solution. This is
because in the 2D minimization of the vortex-state energy,
perturbations that break the s=1 angular momentum are not
allowed, these are only examined later with the BdG equa-
tions. Using a fully 3D calculation, we check the accuracy of
Dcrit for various trap aspect ratios by time evolving the con-
densate wave function with an initial random perturbation.
The Dcrit that we calculate using the 3D algorithm, corre-
sponding to the D at which we observe collapse under time
evolution, agrees with the Dcrit that we calculate by finding
imaginary energy eigenvalues in the BdG spectrum using our
2D algorithm. The pink �darker� region in Fig. 1 represents
the region where we find dynamically stable s=1 ground
states having radial ripples with local minima, as illustrated
by the inset. This feature has been explained in detail in Ref.
�5�.

We find that s=1 DBECs possess imaginary energy in
their BdG spectrum only when two modes of opposite norm
are degenerate with each other, just as is the case for a BEC
with contact interactions. This circumstance was recently
studied in Ref. �25�, where it is confirmed perturbatively for
BECs with contact interactions. Reference �15� also con-
firmed this claim using a two-mode approximation. Indeed,

we find that the same holds true for DBECs, where the only
difference between the two systems is the shape of the mean
field potential. At all aspect ratios, we observe, for some
finite value of D, two modes with opposite norm approach
and then go degenerate with each other at Dcrit. At the point
of degeneracy, the modes develop equal and opposite imagi-
nary energies, signifying dynamical instability. If two modes
that have the same norm approach each other, they undergo
an avoided crossing instead of becoming degenerate.

For a BEC with pure contact interactions in the s=1 vor-
tex state, the mode that defines the onset of dynamical insta-
bility is independent of aspect ratio �. Positive contact inter-
actions ensure dynamical stability while negative contact
interactions �for ��0.3� bring about a dynamical instability
due to an m=2 mode �26�. Additionally, the s=2 state is
dynamically unstable due to an m=2 mode for negative con-
tact interactions, while an m=2 mode defines windows of
dynamical stability for positive contact interactions. This
holds true for these systems no matter how oblate the trap.

The case for a DBEC, however, is quite different. Figure
2 illustrates the imaginary parts of the BdG spectrum for m
=1–5 for DBECs in traps with aspect ratios �=2 and �
=15. Where these imaginary energies are zero, from D=0 to
Dcrit, the condensates are dynamically stable. Notice that for
�=2, an m=2 mode develops imaginary energy at a D well
below the other modes, defining Dcrit for this aspect ratio.
However, an m=4 mode serves to define Dcrit for �=15.

Indeed, unlike BECs with contact interactions, modes
with different m quantum numbers serve to define Dcrit at
different aspect ratios for DBECs. For moderate trap aspect
ratios �such as �=2�, an m=2 mode defines Dcrit for the
DBEC, similar to the case for contact interactions. However,
as the trap aspect ratio is increased to more oblate shapes,
modes with larger m quantum numbers develop imaginary
energy eigenvalues at smaller values of D than the m=2
mode. Figure 3�a� illustrates this by plotting the differences
between the D’s at which the BdG modes with different an-
gular symmetries first develop imaginary energy eigenval-
ues, and Dcrit, as a function of �. Thus, for a given � the

FIG. 1. �Color online� The black dashed line marks the maxi-
mum dipole strength D, for a given trap aspect ratio �, above which
the Gross-Pitaevskii energy functional has no minimum correspond-
ing to the s=1 DBEC. The solid line marks a more restrictive sta-
bility line, determined by the onset of dynamical instability, sig-
naled by the emergence of an imaginary energy in an excitation
mode. The pink �darker� region represents where oscillations with
local minima are observed on dynamically stable states. The inset is
an isodensity surface plot of an s=1 DBEC at the point in param-
eter space indicated by the arrow. The ripples in the density are
explained in Ref �5�.
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FIG. 2. �Color online� �a� The imaginary part of the BdG exci-
tation spectrum for a number of m values for a DBEC in a trap with
aspect ratio �a� �=2 and �b� �=15. For �=2, the m=2 modes
clearly develop imaginary energy eigenvalues at a D smaller than
the other modes, defining Dcrit�8 for this aspect ratio. For �=15,
the m=4 modes develop imaginary energy at a D smaller than the
other modes, defining Dcrit�108 for this aspect ratio.

WILSON, RONEN, AND BOHN PHYSICAL REVIEW A 79, 013621 �2009�

013621-4



lowest curve identifies the symmetry of the unstable mode.
For 6���12, an m=3 mode defines Dcrit while for larger
aspect ratios, an m=4 mode defines Dcrit. Although it is not
shown here, we find that at even larger aspect ratios the
vortex decays into still higher m modes.

The relevance of the m-dependent dynamical instability is
that the dipole-dipole interaction leads a BEC to instability
locally and at a fixed length scale, the wavelength of which
is determined by the axial harmonic oscillator length. We
find that, at the onset of imaginary energy, these modes have
radial nodal spacings very similar to that of the roton on the
rotationless DBEC, namely � /2�	lz, where lz=	� /M�z is
the axial harmonic oscillator length. The angular dependence
of these modes behaves in the same way. Increasing � de-
creases the ratio lz /aho, so more radial nodes, fixed by lz, can
fit into the condensate for larger �. In the same way, more
angular nodes can fit into the condensate, therefore bringing
about dynamical instability by modes with larger m quantum
number, and hence more angular nodes.

All of the previously discussed BdG modes that we iden-
tify as being responsible for dynamical instability are axially
symmetric and nodeless in z. Modes that break this axial
symmetry can correspond to vortex excitations, where the
vortex core itself may tilt or bend, and have been termed
“kelvon” modes. Reference �14� reports that, for a singly
quantized vortex in a DBEC that is otherwise spatially ho-
mogeneous, the condensate is dynamically unstable to a
kelvon mode when an external periodic potential is applied
along the direction of the vortex. We find that, in a harmoni-
cally trapped DBEC, a mode with a single node at z=0 de-
termines Dcrit for ��0.28. Modes of this type might there-
fore correspond to a kelvon instability in prolate traps, but
we leave these considerations for future work.

As was done in Ref. �26� for self-attractive BECs in the
singly quantized vortex state, we perform time-dependent

simulations of a DBEC where D is chosen to be just above
Dcrit, enabling us to go beyond the small deviations from the
stationary vortex state and see the actual process of collapse.
Initializing the simulations with random noise, we observe
collapse, at all aspect ratios, with an angular symmetry cor-
responding to the m quantum number of the mode that first
develops an imaginary energy eigenvalue.

IV. STABILITY OF VORTICES WITH s=2

The dynamical instability of condensates with doubly
quantized vortices and contact interactions has been studied
extensively �15,16,27,28�. These studies report windows of
positive scattering length where the BECs are dynamically
unstable to an m=2 BdG core mode, as well as dynamical
instability for all values of negative scattering length due to
an m=2 mode. Knowing that the dipolar mean field in a
DBEC can be engineered to be more attractive or repulsive
for smaller or larger trap aspect ratios, respectively, we in-
vestigate the presence of these features in s=2 DBECs.
When the harmonic trap is more spherical, the dipoles are
free to stack vertically, creating an attractive mean field in
this direction. However, in pancake-shaped traps the dipoles
create a more repulsive mean field. Thus, for larger trap as-
pect ratios DBECs are more self-repulsive than for smaller
aspect ratios, mimicking the mean field of condensates with
repulsive contact interactions. As an example, we calculate
the contribution of the dipolar mean field to the energy of a
DBEC in a trap with aspect ratio �=2 and with �=15 for a
fixed D=10. In the �=15 trap, we find that this contribution
is about 5 times larger than in the �=2 trap.

Indeed, for a DBEC in a trap with aspect ratio �=2 we
find that there exists an m=2 mode with a complex energy
eigenvalue for all values of D. However, for �=15 we find
that there are windows in D where an m=2 BdG mode has a
complex energy eigenvalue, while this same mode has purely
real energy outside of these windows, as illustrated in Fig. 4.
For trap aspect ratios ��7.5, there are no windows of dy-
namical stability and the condensate is dynamically unstable
for all D. However, windows of dynamical stability appear
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FIG. 3. �Color online� �a� The difference between the D at
which BdG modes with different m quantum numbers first develop
imaginary energy eigenvalues and Dcrit, the smallest D at which any
mode develops an imaginary energy eigenvalue. Modes with larger
m serve to define Dcrit for more oblate traps. �b� The same, but for
negative contact interactions instead of dipole-dipole interactions.
An m=2 BdG mode is always the first to develop an imaginary
energy eigenvalue for this case, except for trap aspect ratios �
�0.3, for which an m=1 mode plays this role.
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FIG. 4. �Color online� The positive imaginary part of the energy
eigenvalues for a doubly quantized �s=2� DBEC in a trap with
aspect ratio �a� �=2 and �b� �=15. For �=2, an m=2 mode pos-
sesses imaginary energy for all values of D, signifying a dynamical
instability for all D. However, for �=15 there are windows of dy-
namical stability as the m=2 mode alternates having and not having
imaginary energy for different values of D, as is the case for a
purely repulsive s=2 BEC.
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for aspect ratios ��7.5 and continue for larger �. As is
reported in Ref. �15�, we find that there is an m=2 core mode
with negative norm and positive real energy that increases
monotonically as it goes successively degenerate with posi-
tive norm modes as D is increased to create the windows of
dynamical instability. This mode represents the s=2 conden-
sate’s instability to splitting into a condensate with two sin-
gly quantized vortices. The core mode is thermodynamically
unstable for all values of D and is only dynamically unstable
for the windows shown in Fig. 4.

V. CONCLUSION

We have implemented a 2D algorithm to study the stabil-
ity and excitations of harmonically trapped DBECs with
single vortices by taking advantage of the cylindrical sym-
metry of the system. By solving the BdG equations for the
s=1 DBEC, we systematically map its dynamical stability as
a function of trap aspect ratio and dipole-dipole interaction
strength D. The BdG spectrum reveals a dynamical instabil-
ity in the form of a complex energy eigenvalue. The value of
D at which this imaginary energy appears marks the thresh-
old of dynamical stability, Dcrit, for the given trap aspect
ratio. By inspecting the BdG spectrum for all m quantum
numbers, we determine the symmetry of the mode that is
responsible for the dynamical instability in the condensate.
We find, in contrast to BECs with purely contact interactions,
that DBECs with a singly quantized vortex go unstable to
modes with larger m quantum numbers for larger trap aspect
ratios, signifying a type of local collapse of these conden-
sates. We have checked the accuracy of Dcrit for various trap
aspect ratios by performing fully 3D simulations. Addition-
ally, we find that, in analogy to a self-repulsive BEC with a
doubly quantized vortex, at larger trap aspect ratios there are
successive regions in D where the s=2 DBECs are dynami-
cally unstable due to an m=2 core mode, while the conden-
sates are dynamically stable outside of these regions.
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APPENDIX: HANKEL TRANSFORMS
AND INTERPOLATION

Consider the Hankel transform of a function f���, f̃�k�,
where f����0 for ��R and f̃�k��0 for k�K, and define
S
RK. The discrete Hankel transform �DHT� of order m of
f��� is then given by �29�

f̃�kmi� =
2

K2�
j=1

N
f��mj�

Jm+1
2 ��mj�

Jm��mj�mi

S
� , �A1�

where i , j=1, . . . ,N, �mj =�mj /K, kmi=�mi /R and �mi is the
ith root of Jm���. Conversely, the inverse DHT of order m of

f̃�k� is given by

f��mi� =
2

R2�
j=1

N
f̃�kmj�

Jm+1
2 ��mj�

Jm��mj�mi

S
� . �A2�

Equations �A1� and �A2� show that in order to perform a
DHT of order m on a function, the function should be de-
fined on a grid proportional to the zeros of the m-order
Bessel function, �mi.

For the problem we are considering, the functions f���
and f̃�k� have the angular dependence eim� and e−imk�, re-
spectively, which is why the DHTs above are written with
Bessel functions of order m. It is important to note, as ex-
plained in �29�, that the DHT requires the radial part
of the function f���eim� be first expanded as f���
=� j=1

N cmjJm��mj
�
R �. To attain an accurate expansion, f���

should have the same small-� dependence as Jm��mj
�
R �, being

��m. This dependence is built into our problem, since the
kinetic energy term in the GPE, − 1

2�2, forces a �m depen-
dence on the radial part of the condensate wave function at
small � by acting on its angular part, eim�. Physically, this is
the known result that the wave function near a vortex has the
radial dependence �m, where the vortex has charge m.

When we calculate the BdG modes for the vortex states
of a DBEC �see Sec. III�, we take DHTs of functions like
�

0
*�� ,z�e−is�u�� ,z�ei�m+s�� where �

0
*�� ,z� is defined on a grid

proportional to the zeros of the s-order Bessel function and
u�� ,z� is defined on a grid proportional to the zeros of the
Bessel function of order m+s. To perform a DHT on the �
coordinate of the function �

0
*�� ,z�u�� ,z�, the function must

be defined on a grid proportional to the zeros of the Bessel
function of order m, so �

0
*�� ,z� and u�� ,z� must both be

interpolated onto this grid. To accomplish this, we have de-
veloped an accurate interpolation scheme based on the DHT
itself.

As explained in Ref. �30�, the function f��� may be ex-
panded in an mth-order Bessel series,

f��� = �
i=1

N

cmiJm��mi
�

R
� , �A3�

where the coefficients cmi are given by

cmi =
2

R2�Jm+1��mi��2�
0

R

f���Jm��mi
�

R
��d� . �A4�

The integral in Eq. �A4� is just the Hankel transform �6� with

�mi /R=kmi, giving the transformed function f̃�ki�. If � is dis-
cretized in Eq. �A3�, then this prescription gives exactly Eq.
�A2�.

We wish to consider the case where our function is de-
fined on the grid �mi, proportional to the zeros of the Bessel
function of order m, but it needs to be defined on the grid �ni,
with n�m. To do this, we expand f��ni� in a Bessel series,

f��ni� = �
j=1

N

cmjJm��mj
�ni

R
� , �A5�
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where the coefficients cmj are given by Eq. �A4� and are
computed in terms of the zeros of the Bessel function of
order m. However, in Eq. �A5�, the function is expanded on
the grid �ni, proportional to the zeros of the Bessel function
of order n. The interpolation algorithm then simply follows
by inserting the expression for the coefficients,

f��ni� =
2

R2�
j=1

N
f̃�kmj�

Jm+1
2 ��mj�

Jm��mj�ni

S
� , �A6�

where f̃�kmj� is the discrete Hankel transform of f��mj�, Eq.
�A1�.
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