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We investigate the superfluid properties of a dipolar Bose-Einstein condensate (BEC) in a fully three-

dimensional trap. Specifically, we estimate a superfluid critical velocity for this system by applying the

Landau criterion to its discrete quasiparticle spectrum. We test this critical velocity by direct numerical

simulation of condensate depletion as a blue-detuned laser moves through the condensate. In both cases,

the presence of the roton in the spectrum serves to lower the critical velocity beyond a critical particle

number. Since the shape of the dispersion, and hence the roton minimum, is tunable as a function of

particle number, we thereby propose an experiment that can simultaneously measure the Landau critical

velocity of a dipolar BEC and demonstrate the presence of the roton in this system.
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Liquid 4He was the first experimentally accessible sys-
tem to exhibit dissipationless flow at low temperature, i.e.,
to demonstrate superfluidity in a quantum system. Landau
famously explained this phenomenon by identifying a
critical velocity vL below which elementary excitations
in the fluid could not be excited while conserving energy
and momentum [1]. Because of this connection to the
spectrum !ðkÞ of elementary excitations, the Landau criti-
cal velocity can be expressed as

vL ¼ min

�
!ðkÞ
k

�
: (1)

Remarkably, the Landau critical velocity vL does not
coincide with the speed of sound in liquid helium, but is
smaller due to the existence of an anomalously low-energy

roton mode at wave vector k� �A�1. This critical velocity
was ultimately verified in experiments of ion drift velocity
in liquid 4He [2].

More recently, a new class of superfluids has been
produced in the form of Bose-Einstein condensates
(BECs) of ultracold atomic gases. These gases have a
distinct advantage over liquid helium in that they are dilute
and hence easily characterized in terms of microscopic
interactions. In particular, their critical velocity is nomi-
nally given by the speed of sound in the center of the gas,
which can be easily calculated from the density and the
s-wave scattering length of the constituent atoms. Early
experiments at MIT sought to measure vL in a BEC of
sodium atoms by stirring the condensate with a blue-
detuned laser [3,4]. However, these experiments measured
a critical velocity for spinning off vortices rather than the
true Landau critical velocity. This is a generic feature of
such experiments in which the size of the object (in this
case, the blue-detuned laser) is large compared to the
healing length of the gas [5–8].

Still more recently, atomic BECs have been created
whose constituent atoms possess magnetic dipole moments
large enough to influence the condensate [9,10]. These
gases present a middle ground between atomic BECs and

dense superfluid helium. Namely, the dipolar BEC (DBEC)
is dilute enough to be understood in detail, yet its spectrum
may exhibit roton features in prolate traps, like those of
liquid He [11]. The characteristic momentum of such a
roton is set by the geometry of the trap in which it is held,
whereas its energy is controlled by the density of dipoles,
as well as the magnitude of the dipole moment [10]. Thus,
by Eq. (1), the Landau critical velocity is completely under
the control of the experimentalist. In contrast, vL in 4He
can be only weakly modified by changing the pressure of
the liquid [12]. Thus, the DBEC provides an unprecedented
opportunity to explore the fundamental relationship be-
tween the roton dispersion and superfluidity.
In this Letter we model an experiment on a DBEC

similar to the MIT experiments. We consider a blue-
detuned laser sweeping through a DBEC at a constant
velocity, then compute the resulting condensate depletion
due to the excitation of quasiparticles. We find an onset of
depletion at a critical velocity that is near the Landau
critical velocity at low densities. At higher densities, where
the roton determines vL, the critical velocity is a decreas-
ing function of density. Moreover, the simulations show a
critical velocity that is somewhat smaller than vL at higher
densities. We attribute this to the role that the roton plays in
the mechanical stability of a DBEC.
An ultracold, dilute DBEC containing N atoms is well

modeled within mean-field theory by the time-dependent
nonlocal Gross-Pitaevskii equation (GPE),

i@
@�ðr; tÞ

@t
¼

�
� @

2

2M
r2 þUðrÞ þ ðN � 1Þ

�
Z

dr0Vðr� r0Þj�ðr0; tÞj2
�
�ðr; tÞ; (2)

where�ðr; tÞ is the condensate wave function, normalized
to unity; and UðrÞ ¼ 1

2M!2
�ð�2 þ �2z2Þ is the cylindri-

cally symmetric harmonic trap potential with aspect ratio
� ¼ !z=!� where !z and !� are the axial and radial trap

frequencies, respectively. The two-body interaction poten-
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tial for polarized dipoles with dipole moment d and zero

scattering length is [13] Vðr� r0Þ ¼ d2 1�3cos2�
jr�r0j3 , where � is

the angle between r� r0 and the polarization axis. We
choose the polarization axis to be the trap axis ẑ so that
the system is cylindrically symmetric. To characterize the
strength of the dipole-dipole interaction (DDI), we define

the dimensionless quantity D ¼ ðN � 1Þ Md2

@
2a�

where a� ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
@=M!�

q
is the radial harmonic oscillator length of the

trap. The quantityD then characterizes either the density of
the gas or the dipole moments of the atoms in the gas.

We perturb this DBEC with a blue-detuned laser moving
at constant velocity v, which amounts to adding a potential

Ulasðr; tÞ ¼ U0

�
exp

��2½x2 þ ðy� yobðtÞÞ2�
� ~w2

0

�
(3)

where � ¼ 1þ ðz=z0Þ2, z0 ¼ � ~w2
0=�las is the Raleigh

length, ~w0 is the beam waist of the laser, �las is the
wavelength of the laser, yobðtÞ ¼ �ðt� t0Þ½vðt� t0Þ� de-
scribes the motion of the laser in the y direction and�ðtÞ is
the Heaviside step function. This potential describes a laser
that is stationary until t ¼ t0, at which time it moves to the
edge with velocity ~v ¼ vŷ.

The effect of this blue-detuned laser on a DBEC is
shown in Fig. 1 for a DBEC with aspect ratio � ¼ 20,D ¼
124, and a laser with ~w0 ¼ 0:4a� and U0 ¼ 2@!� where

the chemical potential of the unperturbed condensate is
� ¼ 26:3@!�. We estimate the Landau critical velocity for

this system to be vL � 1:5a�!�. For a laser velocity less

than this [Fig. 1(a)], the condensate is completely unaf-
fected whereas for a velocity larger than this [Fig. 1(b)],
quasiparticles are excited and the fluid would produce a net
force on the moving laser.

To determine the Landau critical velocity vL, we calcu-
late the condensate’s quasiparticle spectrum by solving the
Bogoliubov–de Gennes (BdG) equations [14]. Because of

cylindrical symmetry of the system, the condensate plus
BdG quasiparticles can be written as

�ðr; tÞ ! c 0ð�; zÞe�i�t þX
j

fcjðtÞujð�; zÞeiðm’�!jtÞ

þ c?j ðtÞv?
j ð�; zÞe�iðm’�!jtÞge�i�t; (4)

where !j is the quasiparticle energy, m is the projection of

the quasiparticle momentum onto the z axis and � is the
chemical potential of the ground state. Here, c 0ð�; zÞ is the
stationary condensate wave function, i.e., the solution of
Eq. (2) with time dependence e�i�t, and is normalized to
unity. The coefficients cjðtÞ must be sufficiently small so

that the BdG equations can be derived by linearizing the
GPE about them. Their time dependence describes slowly
varying quasiparticle occupations (compared to !�1

j ) in

out-of-equilibrium states.
In this formalism, the quasiparticles are characterized by

their energies !j and m quantum numbers. However, in

order to apply the Landau criterion to this system, the
quasiparticles must be characterized by a momentum, as
well. To do this, we calculate the expectation value of the

momentum, or hk�i �
ffiffiffiffiffiffiffiffiffi
hk2�i

q
, of the quasiparticles. Using a

Fourier-Hankel transform [14], we transform the modes
into momentum space and compute the expectation value
of the linear momentum of the jth quasiparticle in
momentum-space representation,

hk�ij ¼
�R

dkk2�½j~ujðkÞj2 þ j~vjðkÞj2�R
dk½j~ujðkÞj2 þ j~vjðkÞj2�

�
1=2

; (5)

where we have time-averaged cross terms / cos2!jt that

oscillate on fast time scales [15]. By associating these
momenta to the excitation energies !j, we determine a

discrete dispersion relation for this system. Although the
Landau criteria for superfluid critical velocity is derived for
a translationally invariant fluid, we apply it to this transla-
tionally variant system to provide a hint as to where a
critical velocity for quasiparticle excitations might be and
to test the application of this criterion to discrete systems.
Figure 2 shows the discrete dispersion relations of a

DBEC for various values of D. For D ¼ 0 (not shown),
the dispersion is given by the well-known harmonic oscil-

lator spectrum ! ¼ n�!� with hk�i ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n� þ 1

p
=a� and

n� ¼ 0; 1; 2; . . . . However, as D is increased, the spectrum

changes to develop a phonon character at lowmomenta and
a roton character at intermediate momenta. Indeed, for
D ¼ 175:2, and more so for D ¼ 230:0, there are some
quasiparticles that branch off from the dispersion towards

lower energies and approach a momentum hk�i �
ffiffiffiffiffiffi
20

p
=a�,

corresponding to the characteristic roton wavelength

�roton ’ 2�az, where az ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
@=M!z

p
is the axial harmonic

oscillator length [11,16]. The modes with similar momenta
but higher energy, on the upper branch of the dispersion,
exist in lower-density regions of the condensate while the

FIG. 1 (color online). The density profiles of a DBEC with
D ¼ 124 in a trap with aspect ratio � ¼ 20 after a blue-detuned
laser with axis ẑ, beam waist ~w0 ¼ 0:4a�, z0 ¼ 1:24a�, and

U0 ¼ 2@!� has traveled through the DBEC with velocity

(a) v ¼ 0:3a�!�, (b) v ¼ 3:0a�!�. In (a), there are no visual

excitations present in the system while in (b), excitations are
clearly present, indicating the presence of a critical velocity for
the system. The 1=e2 contour of the laser is shown by the red
dotted lines at the center of the condensates.
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quasiparticles on the roton branch exist in the high density
center of the condensate. Note that Fig. 2 includes only
quasiparticles with m ¼ 0, 1, 2.

In each case, the Landau critical velocity vL is deter-
mined according to Eq. (1) as the slope of the shallowest
line through the origin that intersects a point on the dis-
persion curve; these lines are indicated in the figure. For
smaller D, vL is determined by the low-momentum pho-
nonlike modes where ! is linear in hk�i. By contrast, for

larger D, vL is determined by the low-lying roton mode
and becomes a decreasing function of interaction strength
in contrast to a BEC with only contact interactions, where
vL grows as the square root of scattering length.

In evaluating vL from the discrete dispersion relation,
we have ignored two excitations. One is the unphysical
m ¼ 0 Goldstone mode. A second is the m ¼ 1 Kohn
mode, which has eigenvalue !1¼@!� independent of in-

teractions, and which corresponds to transverse sloshing of
the condensate [17]. The Kohn mode moves the conden-
sate’s center of mass rather than exciting quasiparticles
relative to the center of mass, which would imply the
breaking of superfluidity in a translationally invariant sys-
tem. In any event, we find that the occupation of the Kohn
mode is very small compared to the total condensate
depletion.

We now compare vL as determined from the discrete
dispersion relation with the onset of condensate depletion
due to the laser having been moved through the DBEC. To
quantify the breaking of superfluidity in the simulations,
we calculate the depletion of the condensate by finding the
quasiparticle occupations. In practice, this is achieved by
calculating the amplitudes cjðtÞ in Eq. (4) [18] via the

orthogonality relations of the BdG modes [15], including

their normalization
R
dr½u?j ðr0Þuj0 ðr0Þ � v?

j ðr0Þvj0 ðr0Þ� ¼
�jj0 , to give

cjðtÞ ¼
Z

dr0½u?j ðr0Þ�ðr0; tÞ ��?ðr0; tÞv?
j ðr0Þ�ei!jt; (6)

where �ðr; tÞ is the numerical solution of the time-
dependent GPE with the blue-detuned laser potential.
The quasiparticle occupations are then given by njðtÞ ¼
jcjðtÞj2

R
dr0ðjujðr0Þj2 þ jvjðr0Þj2Þ. In the simulations, the

system evolves for a time T after the laser has completely
left the system. We average the quasiparticle occupations
for a time T after this, giving the average excited state
occupations �nj ¼ 1

T

R
T
0 dt

0njðt0Þ. We find that T ¼ 5!�1
� is

sufficient to converge these averages.
Figure 3 illustrates the total quasiparticle occupation

ntot ¼ P
j �nj as a function of laser velocity for various

values of D using the laser parameters ~w0 ¼ 0:3a�, z0 ¼
0:7a�, and U0 ¼ 0:4@!�. For each D, ntot stays very small

until, at a certain critical velocity vcrit, it begins to increase
significantly. Operationally, vcrit is determined by the in-
tersection of linear fits below and above vcrit. Well above
vcrit, the occupations decrease with velocity since the laser
spends proportionally less time in the system as its velocity
is increased.
Notice that the overall depletion remains small with our

weak laser. We have deliberately remained in the perturba-
tive limit with our simulations to uncover the basic physics
without the complications of large laser size. Additionally,
we have checked that these lasers are not sufficient to
excite vortex states in the DBEC. In practice, larger con-
densate depletion would be obtained from a repeated back-
and-forth stirring, as was done in the MIT experiments, or
from a wider, stronger laser. While such a laser may spin
off vortices in the condensate, thus defining a critical
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FIG. 2 (color online). The discrete BdG quasiparticle disper-
sions for a DBEC in a trap with aspect ratio � ¼ 20 for various
values of D showing m ¼ 0 (blackþ sign), m ¼ 1 (teal
squares), and m ¼ 2 (pink circles) quasiparticles. As D is
increased, the dispersion develops a phononlike character at
low momenta and a rotonlike character at intermediate momenta.
The slopes of the black dotted lines represent the corresponding
Landau critical velocities for each D.
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FIG. 3 (color online). The occupations of the quasiparticles
excited from a DBEC with aspect ratio � ¼ 20 by a blue-
detuned laser moving with velocity v (plotted on the horizontal
axis) and with parameters ~w0 ¼ 0:3a�, U0 ¼ 0:4@!�, and z0 ¼
0:7a�, for various values of D. At a critical v (indicated by the

arrows), the occupations increase suddenly, indicating that the
laser has excited quasiparticles in the system and superfluidity
has been broken.

PRL 104, 094501 (2010) P HY S I CA L R EV I EW LE T T E R S
week ending

5 MARCH 2010

094501-3



velocity smaller than vL, the roton, for large enough D,
would still determine the critical velocity.

Critical velocities determined from numerical simula-
tions are presented in Fig. 4 as a function of D. Results are
shown for comparatively weak (U0 ¼ 0:4@!�) and strong

(U0 ¼ 2@!�) lasers. Also shown for comparison is vL

(dashed line) as determined from the discrete dispersion
relations. At smallD, the critical velocity grows slightly as
the phonon modes stiffen and the speed of sound increases.
This behavior is much like that of a BEC with purely
contact interactions.

At higher density, the critical velocity instead decreases,
due to the decreasing energy of the roton, and this is seen in
both simulation and vL. The agreement is less perfect than
in the phonon regime, however, with the simulated result
being lower. This is because the roton, being the collapse
mechanism for DBECs in traps with larger aspect ratios,
softens with increasing condensate density. The presence
of the laser in the DBEC serves to increase the density of
the system, softening the roton and thus decreasing the
critical velocity of the condensate, just as a stationary laser
leads a DBEC to instability [19]. For vanishingly small
lasers, the critical velocities extracted from numerical
simulation show better agreement with vL.

Finally, it is worthwhile to consider measurements of
critical velocities in experimentally accessible DBECs,
such as the 52Cr system in Stuttgart [9]. Consider 52Cr
atoms whose scattering lengths have been tuned to zero
in a trap with radial and axial frequencies !� ¼
2�� 100 Hz and !z ¼ 2�� 2000 Hz, respectively.
This corresponds to a radial harmonic oscillator length of
a� ¼ 1:391 �m, particle numbers of N � 570D, and criti-

cal velocities in the range of 0:11 cm=s. These circum-

stances suggest that it may be plausible to observe the
decline of the superfluid velocity with D for N * 8:5�
104 52Cr atoms, and hence to exhibit directly the roton’s
influence on superfluidity. This atom number corresponds
to a maximum condensate density of nmax ’ 9:5�
1014 cm�3, which, given the measured 3-body loss coeffi-
cient L3 ¼ 2� 10�28 cm6=s [10], should not produce sig-
nificant losses over the time scales considered here.
Additionally, we have checked that, for sufficiently large
D, the roton serves to determine vL for 52Cr DBECs with
nonzero s-wave scattering lengths within the experimental
uncertainty for 52Cr, �3a0 � as � 3a0 [20], which is ex-
pected because these scattering lengths are sufficiently less
than 52Cr’s dipole length add ’ 15a0 [10].
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FIG. 4 (color online). The superfluid critical velocities vcrit for
dissipation due to the excitation of quasiparticles in a DBEC as a
function of D. The black dashed line represents the Landau
critical velocity extracted from the discrete dispersion relations
of the system. The teal circles represent the results of numerical
simulation for a laser with parameters ~w0 ¼ 0:3a�, z0 ¼ 0:7a�,

and U0 ¼ 0:4@!� and the pink squares represent the results of

numerical simulation for a laser with parameters ~w0 ¼ 0:4a�,

z0 ¼ 1:24a�, and U0 ¼ 2@!�.
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