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Abstract. We investigate the scattering cross section of aligned dipolar
molecules in low-temperature gases. Over a wide range of collision energies
relevant to contemporary experiments, the cross section declines in inverse
proportion to the collision speed, and is given nearly exactly by a simple
semiclassical formula. At yet lower energies, the cross section becomes
independent of energy, and is reproduced within the Born approximation to
within corrections due to the s-wave scattering length. While these behaviors
are universal for all polar molecules, nevertheless interesting deviations from
universality are expected to occur in the intermediate energy range.
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1. Introduction

The energy dependence of scattering cross sections for atoms at ultralow collision energies
is very simple. Either the cross section is nearly independent of energy, for distinguishable
particles or identical bosons; or else the cross section vanishes altogether, for identical fermions.
This behavior emerges in the limit where the deBroglie wavelength exceeds any natural
length scale of the interatomic interaction, and the scattering is characterized by a single
quantity, the s-wave scattering length a (alternatively, the p-wave scattering volume Vp for
fermions). Although a dominates the threshold scattering, nevertheless its value must usually
be determined painstakingly from experiments. This is because atomic interaction potentials,
even those constrained by spectroscopic data on vibrational levels of the diatom, are usually
insufficiently accurate to predict the scattering length [1].

By contrast, for low-energy collisions between polarized dipolar molecules, the near-
threshold scattering is often approximately determined once the mass and dipole moment
are known. The interaction between two molecules of reduced mass M and dipole moment
µ is characterized by a dipole length, given by D = Mµ2/h̄2.5 Under a wide variety of
circumstances, to be discussed in this paper, D is the dominant length scale and sets the
threshold cross section, i.e. σ ∼ D2. Moreover, this circumstance holds for identical fermions
as well as bosons. In this sense, the scattering of two dipoles is nearly universal at threshold,
apart from possible modifications arising from s-wave scattering.

For realistic collisions in present-day experiments, however, collision energies are not
always in this threshold region. When the threshold region is left behind, there is significant
numerical evidence to suggest that a universal behavior still emerges, and that the cross section
scales as σ ∼ D/K , where K is the wave number of the relative motion [2]. The switch
between the two types of behavior corresponds roughly to the natural energy scale of the dipolar
interaction, ED = µ2/D3

= h̄6/M3µ4. Below this energy nonzero partial waves contribute only
perturbatively, and only at large intermolecular separation; whereas at higher energies, many
partial waves contribute and the scattering is semiclassical.

5 D is determined, roughly, by equating a typical centrifugal energy, h̄2/M D2, to a typical dipolar energy, µ2/D3.
This is the same reasoning that leads to the definition of the Bohr radius, by equating centrifugal and Coulomb
energies for hydrogen.
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Figure 1. The total scattering cross section σ , averaged over all incident
directions, for two distinguishable polarized dipoles. This cross section therefore
includes contributions from both even and odd partial waves. In this calculation
we have chosen boundary conditions that ensure the s-wave scattering length
vanishes. In the low-energy limit, σ reduces to the Born approximation result
(the sum of the two terms in equation (17), with a = 0, blue curve); while
at high energies it is given by the semiclassical eikonal approximation in
equation (33) (red curve). The solid line is a full numerical solution to the
Schrödinger equation. Here D = M〈µ1〉〈µ2〉/h̄

2 and ED = h̄6/M3
〈µ1〉

2
〈µ2〉

2 are
the characteristic dipole length and energy scales defined in the text.

These two behaviors may thus be said to define the operational limit between ‘cold’
and ‘ultracold’ regimes of scattering for dipoles. We propose that the onset of cold collisions
occurs when the temperature of the gas passes well below the molecule’s rotational constant
Be (or else its 3-doublet splitting) so that the orientational degrees of freedom freeze out.
These temperatures are typically in the mK–K range. This cold collision regime, in which
semiclassical scattering occurs, persists until the temperature gets as low as ED (typically
nK–µK temperatures for dipolar molecules). Temperatures below ED define the ultracold
regime, where true threshold scattering is apparent. Actual values of these temperatures depend
strongly on the species considered and on the applied electric field.

Our goal in this paper is to make these ideas precise. We will illustrate the universal
behavior of dipole–dipole scattering at low temperatures in the two regimes, and, more
importantly, we will see the circumstances under which this universality fails. Figure 1 shows
the basic elements of universality for dipole–dipole scattering. This figure plots the total
scattering cross section σ , averaged over all incident directions, versus collision energy. Both
quantities are presented in terms of the ‘natural’ units given above. The black curve is a complete
numerical close-coupling calculation. At low energies, E < ED, σ approaches a constant value
that is well-approximated using the Born approximation (blue). For the sake of this comparison,
we have carefully chosen the wave function’s boundary conditions to achieve zero scattering
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length. At higher energies E > ED, σ falls off as 1/
√

E , and is given by the semiclassical
eikonal approximation (red). Both approximations will be derived below.

In this paper, we present alternative close-coupling calculations that reveal deviations from
this universal behavior. For example, at threshold, the cross section can deviate substantially
from the Born result. This occurs when threshold resonances in s-wave scattering dramatically
increase the cross section above the Born result [3]–[6]. More interestingly, in the intermediate
energy regime E ≈ ED where neither approximation holds, our close-coupling calculations
show that the behavior of the cross section versus energy depends on details of the physics
on length scales small compared to D. For this reason, it is conceivable that elastic scattering
experiments that probe deviations from universality will be an important tool in unraveling
information on the short-range physics of close encounters. Finally, we also discuss the angle-
dependence of cold collisions, in which the incident direction of the collision partners is varied
with respect to the polarization axis; this is a measure of the importance of the anisotropy of
the dipole–dipole interaction. These results should serve as simple and accurate guidelines to
low-energy collision cross sections needed to understand scattering or thermal equilibration in
contemporary experiments.

2. Formulation of the problem

For a pair of dipoles with reduced mass M and polarized in the ẑ-direction by an external field,
the two-body Schrödinger equation reads (in CGS units)[

−
h̄2

2M
5

2 +〈µ1〉〈µ2〉
1 − 3 cos2 θ

R3
+ VSR

]
ψ = Eψ. (1)

Here the dipole interaction

Vd( ER)= 〈µ1〉〈µ2〉
1 − 3 cos2 θ

R3

is defined in terms of ER = (R, θ, φ), the relative displacement of the two dipoles, and 〈µ1〉 and
〈µ2〉 are their induced dipole moments. These dipoles are field dependent, and their values are
set by the field and the internal structure of the dipole. For the long range part of the physics
where the dipole–dipole interaction dominates, this is an excellent approximation. Dipole
orientations are relevant only when the dipole–dipole interaction µ2/R3 becomes comparable
to the Stark energy µE that locks the dipole orientation to a laboratory axis. The radius at which
this happens is typically far smaller than the dipole length D, hence this physics is subsumed
into the short-range physics, which we do not treat explicitly. The validity of this approximation
has already been suggested in [2], which did explicitly include the rotational substructure of
the molecules, yet indicated universal behavior in the scattering. By ignoring internal molecular
structure, we are in effect modeling molecules trapped in their absolute ground state, as in an
optical dipole trap. In particular, we assume that inelastic scattering is disallowed, a topic taken
up in the next paper of this issue [7].

The potential term VSR represents all the short-range physics, i.e. the potential energy
surface of chemical significance when the dipoles are close together. This detail will be specific
to each pair of collision partners considered. To simplify the discussion, we will replace the
complex details of VSR by imposing a boundary condition at a fixed interparticle separation R0.
We will assert that the wave function ψ vanishes uniformly on this boundary. This is obviously
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a simplification, but one that nevertheless allows comparison of alternative short-range physics.
Alternative boundary conditions have been considered elsewhere, and ultimately will likely be
necessary to exactly model experimental data [3, 4]. For our present purposes, however, we
emphasize physics occurring on much larger length scales, at which the physics is accurately
treated. Having made this approximation, we ignore VSR in the following.

The resulting Schrödinger equation then admits a natural length scale D = M〈µ1〉〈µ2〉/h̄
2

and a natural energy scale ED = h̄6/M3
〈µ1〉

2
〈µ2〉

2. By recasting (1) in the scaled units
r = R/D, ε = E/ED, and by ignoring VSR, we arrive at the universal Schrödinger equation
(assuming that the molecules have the same orientation relative to the field axis)[

−
1

2
5

2
−

2C20

r 3

]
ψ = εψ, (2)

where C20(θ, φ)= (3 cos2 θ − 1)/2 is the standard reduced spherical harmonic [8]. Although
the equation (2) has a universal form, nevertheless its solutions may depend on details of the
short-range physics, represented here by the cutoff radius r0 = R0/D. Our main objective is
to explore circumstances under which solutions are universal, i.e. independent of r0, under the
conditions of modern cold molecule experiments.

As a preliminary argument in this direction, let us consider the relative sizes of the two
characteristic lengths D and R0. For most atomic and molecular species, the size scale R0

below which short-range physics can matter is of the order of the van der Waals length, which is
typically ∼100 a0, which is also the distance at which the internal fields generated by the dipoles
are comparable to the applied field (at least for typical laboratory field strengths). By contrast,
for molecules with typical 1 Debye dipole moments, D will be orders of magnitude larger. For
example, in the OH radical, with µ= 1.68 Debye, DOH = 6770 a0; for the representative alkali
dimer KRb, with µ= 0.566 Debye, DKRb = 5740 a0; and for the highly polar LiCs molecule
with µ= 5.5 Debye, we find DLiCs = 6 × 105 a0. Correspondingly, the characteristic energies
are low: ED,OH = 445 nK, while ED,KRb = 83 nK, and ED,LiCs = 7 pK. In making these estimates,
we assume the molecules are completely polarized; D gets shorter, and ED higher, if they are
only partially polarized6.

The finite size of R0 can destroy universality in three ways. Firstly, at low energies, we
will see that scattering cross sections are of order D2. This would be spoiled by the geometric
cross section ∝R2

0 , if R0 were comparable to, or larger than, the dipole length D itself. However,
we have just argued that this is usually not the case for polar molecules. Secondly, there is the
possibility that the s-wave scattering length a is larger than D, and this would also alter the
universal result at low energy. Indeed, this very idea has been invoked as a means of tuning
the interaction between dipolar molecules [14]–[19]7 or else as a tool for probing details of
these interactions [3]. Often, the effect of the scattering length is non-negligible, as we will see
below.

The third instance where R0 may matter is in the extreme high-energy limit, where the
universal cross section falls as D/K , where K is the wave number. In this case the cross
sections will again tend to the geometrical ∼R2

0 for our artificially imposed hard wall, and will
dominate at energies where R2

0 > D/K , which translates to about 4.5 K in OH, well above Stark

6 For species whose magnetic dipole moment mediates the interaction, these scales can be quite different. For
atomic chromium, for instance, one finds DCr = 27 a0, far smaller than its natural scattering length. A substantial
body of literature now treats the complete details of the Cr–Cr interaction potential, for example [9, 10, 13].
7 There are additional possibilities beyond the scattering length for tuning interactions, see [20].
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decelerator energies, and at which point other degrees of freedom of the molecule are relevant.
Thus non-universal behavior may not be a concern at ‘high’ energies either, from the standpoint
of current experimental investigations.

In this paper we compute scattering cross sections for dipoles over a wide range of collision
energies. We do this in three ways: (i) a fully numerical close-coupling expansion of the wave
function in partial waves; (ii) a Born approximation that exhibits the correct universal behavior
(σ ∼ D2) in the ultracold limit (E < ED); and (iii) a semiclassical eikonal approximation that
exhibits the correct universal behavior (σ ∼ D/K ) in the cold collision regime (E > ED). We
briefly describe these methods in the following subsections.

2.1. Close-coupling formalism

We expand the total wave function into partial waves in the conventional way:

ψ(r, θ, φ)=
1

r

∑
lm

Flm(r)Ylm(θ, φ), (3)

where the radial functions Flm satisfy a set of coupled-channel Schrödinger equations

−
1

2

d2 Flm

dr 2
+

l(l + 1)

2r 2
Flm −

2

r 3

∑
l ′

C (m)
ll ′ Fl ′m = εFlm, (4)

and the coupling matrix element is given by [8]

C (m)
ll ′ = 〈lm|C20|l

′m〉

= (−1)m
√
(2l + 1)(2l ′ + 1)

(
l 2 l ′

−m 0 m

) (
l 2 l ′

0 0 0

)
. (5)

Owing to the cylindrical symmetry of the Hamiltonian, the angular momentum projection m
is a good quantum number, and we can solve a separate set of coupled equations for each value
of m. However, the boundary conditions of the wave function may not respect this symmetry,
i.e. the incident wave could arrive from any direction, not just along the symmetry (z)-axis.
Thus, we consider a complete sum over m in wave function (3). Similarly, symmetries of the
3 − j symbols in (5) guarantee that each partial wave l is coupled only to the partial waves
l ′

= l, l ± 2 by the dipole interaction. Thus we can consider even partial waves separately from
odd partial waves, and will do so in the following. For identical particles in the same internal
state, these situations correspond to bosons and fermions, respectively.

Equation (4) admits as many linearly independent solutions as there are channels (lm).
Individually, they are defined by the boundary conditions (for each m)

F l ′m
lm (r = r0)= 0,

F l ′m
lm (r → ∞)= δll ′e−i(kr−l ′π/2)

− S(m)ll ′ ei(kr−l ′π/2),
(6)

where k =
√

2ε = DK is the wave number in dipole units. These scattering boundary conditions
serve to define the scattering matrix S(m)ll ′ . From this matrix one can construct the scattering
amplitude describing scattering in direction k̂f = (θ, φ) from an incident direction k̂i [22, 23]:

f (k̂i, k̂f)= −
2π

k

∑
ll ′m

ilY ∗

lm

(
k̂i

)
T (m)

ll ′ i−l ′Yl ′m

(
k̂f

)
, (7)
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in terms of the T matrix, T = i(S − I ). By integrating over the final directions, we arrive at the
total cross section for dipoles incident along k̂i:

σtot(k̂i)

D2
=

∫
dφd(cos θ)| f |

2

=
4π

k
= f

(
k̂i, k̂i

)
. (8)

This last line is the familiar optical theorem result. This is the type of cross section that can be
measured in cold beam experiments, where, say, one species is trapped and the other is incident
on the trap from the terminus of a Stark decelerator. If the molecules are magnetically trapped,
then an electric field can be applied at an arbitrary angle relative to the collision axis [24].

Finally, the total cross section, averaged over an assumed isotropic distribution of initial
directions, is

σ

D2
=

∫
dk̂i

σtot

(
k̂i

)
D2

=
π

k2

∑
ll ′m

∣∣∣T (m)
ll ′

∣∣∣2

. (9)

This cross section is more relevant to in situ collisions in a trap, which serve to re-thermalize
the gas and provide evaporative cooling.

Numerical solutions to coupled-channel equations (4) are determined using a variable
stepsize version of Johnson’s algorithm [26]. To ensure convergence of total cross sections,
we include partial waves up to l ∼ 100 at the highest collision energies of ε = 104. Vice versa,
at the lowest collision energies we can get away with partial waves up to l ∼ 30, but must apply
boundary conditions (6) as far out as r = 20 000.

2.2. Born approximation

At the lowest collision energies, the Wigner threshold laws are well known to be different for
dipolar interactions than for, say, van der Waals interactions. The elastic scattering phase shift
δl in partial wave l > 0, due to a potential with 1/r s long-range behavior, is [25]

tan δl ∼ Ak2l+1 + Bks−2, (10)

for some constants A and B that depend on short-range details. The first term in (10) arises from
the action of the short-range potential, while the second is due to purely long-range scattering
outside the centrifugal barrier. For the van der Waals potential (s = 6), both contributions go
to zero faster than ∼k at zero energy, and do not contribute to the threshold cross section.
However, for the dipole–dipole interaction (s = 3), the second term is ∼ k for all partial waves.
The contribution to the cross section, ∝ sin2 δl/k2, is then independent of energy in all partial
waves, and this cross section arises from long-range scattering [11, 12].

This circumstance leads to the applicability of the Born approximation in threshold
scattering of dipoles [15], [17]–[19], [27, 28]. At ever lower collision energy, scattering occurs
at ever larger values of r outside the barrier. But at long range the dipole–dipole interaction
∝1/r 3 is weak, and the perturbative Born approximation is applicable. These remarks do not
apply, however, to s-wave scattering, where there is no barrier.
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The Born approximation for the scattering amplitude reads

f (k̂i, k̂f)= −
1

2π

∫
d3re−iEkf·Er Vd(Er)eiEki·Er . (11)

Replacing each plane wave by its standard partial wave expansion and re-arranging yields

f (k̂i, k̂f)= −
1

2π

∫
d3r

(
−

2

r 3

)
C20(r̂) 4π

∑
l ′m′

i−l ′Yl ′m′(k̂f)Y
∗

l ′m′(r̂) jl ′(kr)

× 4π
∑
lm

ilY ∗

lm(k̂i)Ylm(r̂) jl(kr). (12)

Consolidating the integrals into radial and angular varieties, we arrive at

f (k̂i, k̂f)= 2π
∑
ll ′m

ilY ∗

lm(k̂i)C
(m)
ll ′ 0ll ′i−l ′Yl ′m′(k̂f), (13)

where C (m)
ll ′ is the angular integral (5) defined above, and 0ll ′ is the radial integral

0ll ′ = 8
∫

∞

0
r 2 dr

jl(kr) jl ′(kr)

r 3

=
π0((l + l ′)/2)

0((−l + l ′ + 3)/2)0((l + l ′ + 4)/2)0((l − l ′ + 3)/2)
.

=


32

l(l + 1)
, l ′

= l,

32

3(l + 1)(l + 2)
, l ′

= l + 2.
(14)

Comparing Born result (13) with expression (7) identifies the T -matrix in the Born
approximation as

T (m),Born
ll ′ = −kC (m)

ll ′ 0ll ′ . (15)

The Born approximation must be applied with a caveat. For purely s-wave scattering, where
l = l ′

= 0, the matrix element C (0)
00 vanishes, and so therefore does the T -matrix element

T (0),Born
00 . The Born approximation is therefore mute on the question of s-wave scattering. As

argued above, s-wave scattering, described by a scattering length a, is part of the non-universal
behavior of scattering anyway. To produce realistic scattering results, it is possible to supplement
T Born with an empirical s-wave contribution, which is determined from the full close-coupling
calculations [14], [17]–[19], [21].

Summarizing all these results, the threshold cross section in the Born approximation,
averaged over incident directions, is given by the incoherent sum

σBorn

D2
=
π

k2

∑
ll ′m

∣∣∣T (m),Born
ll ′

∣∣∣2

. (16)

Evaluating the sums, the even and odd partial wave cross sections at threshold can be given as

σ e
thresh = σ e

Born + 4πa2
= 1.117D2 + 4πa2,

σ o
thresh = σ o

Born = 3.351D2,
(17)
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where 4πa2 allows for the existence of a scattering length a, which is not determined in the Born
approximation. For identical particles, cross sections (17) must be multiplied by 2, as usual;
for distinguishable particles, both even and odd partial waves are possible, and these cross
sections are to be added.

Low-energy limits (17) were independently verified in near-threshold calculations using a
coupled-channel adiabatic representation [5, 6], which also illustrated how threshold angular
distributions are affected by the competition between long-range (Born) coupling and s-wave
scattering resonances, as discussed in section 4.

2.3. Eikonal approximation

At sufficiently high energies, a semi-classical analysis yields the simple D/K scaling of the
cross section. Note, in reference to figure 1, that the deBroglie wavelength becomes smaller
than the natural dipole length scale, 2π/K < D, when E > 2π 2 ED. This marks the onset of
semi-classical scattering. This semi-classical onset can lie at µK temperatures, or even colder,
owing to the large dipole length scale and therefore the small value of ED. Many partial
waves contribute to the scattering amplitude in the semi-classical regime, and differential cross-
sections are increasingly concentrated in the forward direction.

The eikonal method was long ago developed to find approximate scattering solutions of
wave equations such as (2) valid in the semi-classical or ray-optics limit, in which the potential
is assumed to vary little on the scale of the wavelength. A derivation of the eikonal wavefunction
will not be given here, as it can be found in familiar texts [29] and in a comprehensive review
paper by Glauber [30], and in the nuclear physics literature [31]. Suffice it to say that a
phase-amplitude ansatz, coupled with the assumption of a slowly varying amplitude, leads
directly to an approximate wavefunction

ψ(Er)= eiEki ·Er exp
[
−

i

k

∫ z

V (b, φ, z′) dz′

]
. (18)

Following Glauber, this wavefunction is expressed in cylindrical coordinates with a new
quantization (or z)-axis aligned with the average collision momentum, Ekavg = (Eki + Ekf)/2. The
cylindrical radius about this axis, b, can be associated with a classical impact parameter: φ is
the azimuthal angle about the quantization axis. Due to the shift of quantization axis away from
the direction of the applied field, EE , we now note the field direction explicitly in the potential
V (Er)= [1 − 3(r̂ · Ê)2]/r 3.

The two factors in the eikonal wavefunction are familiar in the context of the
one-dimensional Wentzel–Kramers–Brillouin (WKB) method, where they coincide with an
expansion of the WKB phase i

∫
dz

√
2(ε− V )≈ ikz − (i/k)

∫
dzV to first order in V/ε.

Accordingly, we anticipate that the eikonal method will be most accurate when the incident
energy is large compared to the magnitude of the dipole–dipole interaction, a more stringent
criterion than the semi-classical constraint noted above.

The analysis of scattering amplitudes associated with the approximate eikonal
wavefunction is simplified by a judicious choice of coordinates. Note, in particular, that the
momentum transfer Eq = Eki − Ekf is orthogonal to the quantization axis defined by Ekavg. For
simplicity, we define an x-axis along Eq, in which case the y-axis is orthogonal to the collision
plane and lies along Ekavg × Eq. In this reference frame, the impact parameter is written in
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vector form as Eb = b cos(φ)x̂ + b sin(φ)ŷ, and the relative displacement of the dipoles is
Er = Eb + zk̂avg.

Insertion of the eikonal wavefunction, valid where the potential is non-negligible, into the
integral equation for scattering leads to the eikonal scattering amplitude

f Ei(Ekf, Eki)=
k

2π i

∫
b db dφeiqb cos(φ)

[
eiχ(Eb)

− 1
]
, (19)

where k = |ki| = |kf| =
√

2ε, q = |Eq| = 2k sin(θs/2), and where the eikonal phase is

χ(Eb)= −
1

k

∫
∞

−∞

dz′ V (b, φ, z′). (20)

With the explicit form of the dipole–dipole potential

V (b, φ, z)=
1

(b2 + z2)3/2

[
1 − 3

(Eb · Ê + zk̂avg · Ê)2

b2 + z2

]
, (21)

the phase is readily evaluated; setting σ = z/b one finds

χ = −
1

kb2

[∫
∞

−∞

dσ

(1 + σ 2)3/2
− 3(b̂ · Ê)2

∫
∞

−∞

dσ

(1 + σ 2)5/2
− 3(k̂avg · Ê)2

∫
∞

−∞

σ 2dσ

(1 + σ 2)5/2

]
. (22)

The integrals are straightforward, giving

χ = −
2

kb2

[
1 − (k̂avg · Ê)2 − 2(b̂ · Ê)2

]
. (23)

Referring the electric field to our coordinate axes (x̂ = q̂, ŷ = k̂avg × q̂, k̂avg)

Ê = sin α cos β x̂ + sinα sinβ ŷ + cosαk̂avg, (24)

the phase is simply

χ(b, φ)=
2

kb2
sin2 α cos(2φ− 2β). (25)

The eikonal amplitude now has the form

f Ei
=

k

2π i

∫
b db dφ eiqb cosφ

[
exp

{
i

2

kb2
sin2 α cos(2φ− 2β)

}
− 1

]
. (26)

Explicit evaluation of the resulting integrals has proven quite difficult. However, to extract total
cross-sections, Glauber’s general proof of unitarity of the eikonal approximation [30] permits
use of optical theorem (8).

For forward scattering, q = 0 and the first phase vanishes identically. Expressing the result
in terms of the orbital angular momentum l = kb gives

f Ei(k̂i, k̂i)=
1

2π ik

∫
` d` dφ

[
exp

{
i
2k

`2
sin2 α cos(2φ− 2β)

}
− 1

]
, (27)

but note that this appears undetermined since q̂ and, consequently, x̂ and ŷ are not defined
when q = 0! In this limit, α = arccos(k̂ · Ê) is well-defined, but β = arctan(ŷ · Ê/x̂ · Ê) is not.
Fortunately, it is easy to show that the azimuthal integral is independent of β, with the result

f Ei(k̂i, k̂i)=
1

ik

∫
` d`

[
J0

(
2k

`2
sin2 α

)
− 1

]
. (28)
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From the optical theorem, the total cross section is then

σ Ei

D2
=

4π

k2

∫
∞

0
` d`

[
1 − J0

(
2k

`2
sin2 α

)]
. (29)

This result provides some insight into partial wave analysis in the semi-classical regime, which
approximately separates into two regions: for l <

√
k sin(α), the integrand is nearly linear in l,

while for larger l it declines steeply as k2sin4(α)/ l3. Using these approximations, the integral
evaluates to ksin2(α), the exact result (32) given below.

More carefully, we set

s =
2k

`2
sin2 α, `d`= −k sin2 α

ds

s2
, (30)

and so express the total eikonal cross section in terms of a dimensionless integral

σ Ei

D2
=

4π sin2 α

k

∫
∞

0

ds

s2
[1 − J0(s)] . (31)

The integral evaluates to unity, with the result

σ Ei
tot(k̂i)

D2
=

4π

k

[
1 −

(
k̂i · Ê

)2
]
. (32)

Remarkably, the cross section is identically zero when the direction of incidence is aligned with
the field axis. Since, as will be discussed below, this semi-classical cross section accurately
describes dipolar collisions in the temperature range currently accessible experimentally, there
are a variety of observables which might test this angle-dependence of the total elastic cross
section. While equilibrium properties of the gas would not be sensitive to the angle-dependence,
non-equilibrium properties, such as transmission of fast dipoles through a trapped dipolar gas,
would be expected to show strong dependence on the alignment of the beam with the field axis.

Averaged over incident directions within a confined gas, one then expects

σEi

D2
=

8π

3k
=

8π

3K D
, (33)

which is the final result. As shown in figure 1, Glauber’s method yields not only the
correct scaling, but quantitatively reproduces the universal results discovered in close-coupling
calculations [2].

The basic structure of this result was surmized by Gallagher [32] in a study of
Rydberg–Rydberg collisions: from the uncertainty principle, an interaction of energy 1/b3 and
lasting for a duration b/k, should satisfy 1/b2k ∼ 1 in scaled units, so that σ ∼ b2

= 1/k. Using
an isotropic −1/r 3 interaction, DeMille et al [33] also applied the eikonal approximation and
determined a cross section σ/D2

= 2π 2/k. Kajita’s Fourier technique [34] yields the high-
velocity result σ/D2

= 40π
√

2/3k. In essence, this technique is a renormalized perturbation
theory that can produce a unitarity-limited upper bound to the cross section. Thus while it
obtains the correct 1/k scaling, it overestimates the correct eikonal result.

3. The rise and fall of universal scattering

Figure 1 has already presented the message of universality, in that the Born and eikonal limits
are achieved in the appropriate energy ranges. However, the calculations in this figure were
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carefully selected to have zero scattering length, by choosing an appropriate cutoff radius r0. By
changing r0, we are able to generate any scattering length a. Experimentally, the value of a can
be altered by changing the electric or magnetic field strength. Changing r0 could also change
the scattering phase shift of any other partial wave. However, this is only likely for those partial
waves whose centrifugal barrier lie below the collision energy, because these partial waves are
the only ones to probe physics at the scale of r0.

The importance of the centrifugal barriers in determining the range of applicability
of the low-energy (Born) scaling was emphasized in [5, 6], through adiabatic calculations
which converge much more rapidly than close-coupling calculations at the lowest energies.
The adiabatic curves have pronounced barriers (in all but the s-wave channel) separating
repulsive centrifugal behavior at large r from attractive dipolar behavior at small r . The heights
of the lowest barriers (approximately coincident with ED) determine the range of energy
over which the threshold behavior of the cross section is approximately constant. They also
suggest the sensitivity to r0 at intermediate energies, where incident flux can surmount the
barrier.

Figure 2 shows the effect of changing r0 on the ‘universal’ cross section from figure 1. In
figure 2(a) is shown the result for even partial waves. The black line is the a = 0 result, and it
amicably reaches the universal Born and eikonal limits. The other curves employ values of r0

that produce scattering lengths of a = 0.1D (red) and a = −0.1D (blue). This change has made
a significant difference in the low-energy limit, where now the Born approximation is merely
a lower limit to the cross section. Note also that for a < 0 the cross section initially decreases
with increasing energy, just as it does for alkali atoms [35]

However, at higher energies E > ED, this change in r0 has no effect on σ . One way to
look at this is that the phase shifts have changed for many partial waves, but because there are
so many of them added together to get the cross section, these changes average out. Another
point of view is that the semiclassical scattering occurs at high impact parameter, and is thus
indifferent to what happens at r = r0. In the intermediate energy range, the change is still quite
significant, since phase shifts are changing for only those few partial waves that skip over their
centrifugal barriers.

Figure 2(b) shows the same circumstance, but for odd partial waves. The same three values
of r0 are employed here, and so the three curves are labeled by the scattering lengths from part
(a). In this case the cross sections always approach the Born limit, since there is no aberrant
s-wave scattering to derail them. In the high-energy limit, too, σ is again insensitive to r0. It
is only in the intermediate energy range that a small deviation is seen. This suggests that for
odd partial waves the behavior of the cross section is indeed nearly universal. This would be
true, for example, in collisions of fermionic molecules (e.g. 40K87Rb [36]) in identical hyperfine
states.

To further emphasize the consequence of an s-wave scattering length, figure 3 reports the
cross section σ for the even partial waves as a function of r0, in the threshold limit, using
E/ED = 10−3. The range of r0 shown here corresponds to a complete cycle of the scattering
length from zero, through infinity, and back to zero again. Consequently, the numerically
evaluated cross section shows a resonance, at which point the cross section is determined by a2,
not D2. Even away from the resonance peak, the s-wave contribution can significantly increase
the cross section. We are thus led to conclude that universality at low energies, in cases where
s-wave scattering is allowed, is similar to the universality for atoms. Namely, the form of the
cross section (independent of energy) is universal, but its value relies on a (field-dependent)
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Figure 2. Cross sections as in figure 1, but separated into contributions from all
even (a) or all odd (b) partial waves. In contrast to figure 1, here the cross section
is plotted on a linear scale, to emphasize differences between different curves. In
each case, three different values of the cutoff radius r0 are chosen, corresponding
to three different s-wave scattering lengths a, as indicated in the legend. The
same three values of r0 are used in both panels. In each panel differences in the
three curves demonstrate the breakdown of universality. Elastic scattering is thus
much more universal for odd partial waves (identical fermions) than for even
partial waves (identical bosons or distinguishable particles).

scattering length that must be determined empirically. The Born approximation does provide
a useful lower limit, however. For odd partial waves, while resonances exist, they are shape
resonances, hence narrow at low energies and less likely to destroy universal behavior.

The s-wave contribution to the Hamiltonian nominally vanishes, since C (0)
00 = 0. However,

it is not unreasonable that s-wave scattering has a strong influence near threshold. To see this,
we evaluate an effective s-wave interaction at long range, via its coupling to the l = 2 partial
wave, in second-order perturbation theory (compare [37]):

V0(r)≈ −
|2C (0)

02 /r 3
|
2

l(l + 1)/2r 2
= −

C4

r 4
, (34)
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Figure 3. Cross section σ for various values of the cutoff radius r0.
The numerically determined cross section is always larger than the Born
approximation, sometimes significantly higher, due to a large s-wave scattering
length.

where, in dipole units and using l = 2, the coefficient is C4 =
4
3

√
5. This in turn leads to

a characteristic length scale for the s-wave interaction, analogous to the characteristic
van der Waals length,

r4 =

(
2µC4

h̄2

)1/2

= (2C4)
1/2 . (35)

In dipole units, this is r4 = 1.09D, comparable to the dipole length itself. Based on this
consideration, it is perhaps not too surprising that s-wave scattering plays a significant role.

4. Dependence on incident angle

Thus far we have focused on the cross section as averaged over all incident angles. One of the
interesting aspects of the dipole–dipole interaction, however, is its anisotropy. The cross section
σtot(θi) may therefore depend on the angle θi = arccos(k̂i · Ê) of the incident collision axis, with
respect to the polarization direction. This cross section is easily calculated numerically from
(8), and also from the useful eikonal estimate (32).

To show the utility of the eikonal expression, we present in figure 4 σtot versus θi, for a
collision energy E/ED = 104 where the eikonal approximation should be fairly accurate. The
total close-coupled cross section (black solid line) is the sum of contributions from even and
odd partial waves. Note that the contributions from these two sets of partial waves are nearly
equal here in the semiclassical limit where many partial waves contribute, and effects of dipole-
indistinguishability are small. The angular distribution of each shows oscillations, but in the
sum, representing distinguishable particles, the angular dependence is smooth. Moreover, for
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Figure 4. Dependence of scattering cross sections σtot on the incident angle
θi between the collision axis and the polarization axis of the dipoles. This
calculation is performed at a high collision energy, E/ED = 104. The distribution
is well-approximated using the eikonal result (32), except when the collision and
polarization axes nearly coincide.

angles where the collision axis is orthogonal to the polarization axis, θi ≈ π/2, the eikonal
approximation (dotted line) is quite good.

A major deviation occurs, however, for dipoles aligned parallel to the collision axis. Here
the eikonal result calls for vanishing cross section, whereas the close coupling calculation yields
a nonzero cross section. For θi = 0, the incident wave eiEki·Er is invariant under rotations about the
field axis, and so contains only m = 0 partial waves. It is not too surprising that a semi-classical
analysis will break down for low-m states. Furthermore, for m = 0 states, the wavefunction is
large where the potential is strongest (near r = 0), so the eikonal assumption V/ε � 1 is no
longer valid. Most interesting about this deviation from eikonal behavior, is the importance
of back-scattering from the strong potential in this geometry, as indicated by the pronounced
difference between even and odd partial waves. Observations near θi = 0 will accordingly be
most sensitive to exchange scattering, and, presumably, to short-range physics.

Cross-section variations with the angle of incidence have also been studied at low
energies [5, 6]. When the s-wave scattering length is negligible, a universal anisotropic
distribution is obtained, entirely due to long-range scattering. However, when the s-wave
scattering length dominates, near the peak in figure 3, a completely isotropic distribution is
found, as in the case of ultracold atomic collisions. Interestingly, this implies that effects of
anisotropy are to be seen at the lowest temperatures only when the scattering length is small,
and cross sections are accurately represented by the Born approximation.

5. What this means for you

Scaled units are fine for proving a theoretical point, as we have hoped to do here. However,
since dipole length scales vary widely between different molecules and at different electric field
strengths, it is also useful to consider specific examples that measure cross sections in cm2.
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Figure 5. Elastic cross section for scattering of pairs of fermionic 40K87Rb
molecules in identical internal states, averaged over incident directions.
This calculation is based on the ‘universal’ calculation that includes only
dipole–dipole interactions. The top curve is the cross section for fully polarized
molecules with dipole moment 〈µ〉 = 0.566 Debye. The dipole is halved for each
successively lower curve.

Before presenting such an example, we first recapitulate our main results, cast in terms of
the explicit dimensionful factors. Scattering in the ultracold limit is given by

σ e
thresh = σ e

Born + 4πa2
= 1.117

M2
〈µ1〉

2
〈µ2〉

2

h̄4 + 4πa2,

σ o
thresh = σ o

Born = 3.351
M2

〈µ1〉
2
〈µ2〉

2

h̄4 .

(36)

The semiclassical result, valid for cold collisions, E > ED = h̄6/M3
〈µ1〉

2
〈µ2〉

2, is

σEi =
8π

3

〈µ1〉〈µ2〉

h̄

√
M

2E
. (37)

(Recall that our eikonal derivation does not distinguish between even and odd partial wave
contributions. To a good approximation, both the even and odd contributions would be half this
value.) These formulae show explicitly that the cross sections at low and high energy differ not
only in their dependence on energy, but also in their dependence on the parameters—reduced
mass and dipole moments—of the molecules.

To give a concrete example, consider the ground-state 40K87Rb molecules that were
recently produced at temperatures of several hundred nK [36]. This molecule has a dipole
moment of 0.566 Debye, and, being a fermion, would collide only in odd partial waves if
it is trapped in a single quantum state. We therefore plot in figure 5 the odd partial wave
cross section computed above, but cast in realistic units for this molecule. The largest cross
section corresponds to the full dipole moment, 〈µ〉 = 0.566 Debye. Each successively lower
curve divides the dipole moment into half from the previous one. For this reason, each low-
energy cross section drops by a factor of 16 from the one above, while at high energy each cross
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section drops by a factor of 4. Because the dipole moment is something that can be changed by
the application of a greater or lesser electric field, cross sections spanning this stunning range
of magnitudes should be observable in experiments.

Also interesting is the energy scale encompassed by this figure. In the experiment, the gas
is trapped at a temperature of 350 nK. At low electric field values, hence low dipole moments,
these molecules are in the ultracold regime, and scatter according to the Born prescription. At
higher fields, however, ED approaches the temperature of the gas, and experiments might start
to observe the non-universal behavior of the scattering.

In summary, we have characterized the total scattering cross section for dipolar molecules,
both in the cold limit ED < E < Be, and in the ultracold limit E < ED. The behavior of
this scattering is universal for cold collisions, and nearly so for ultracold collisions. In the
temperature regime intermediate between these two, universality breaks down, and empirical
cross sections will likely reveal information about the intermolecular potential energy surface.
We expect these conclusions to hold in the regime where the molecules are sufficiently polarized
that the dipole length D exceeds any other natural scale of the interaction. Moreover, the
dipoles should remain well polarized in the lab even down to small intermolecular separation,
i.e. µE � µ2/R3 for r > 100 a0.
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