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We formulate a generalized mean-field theory of a mixture of fermionic and bosonic atoms, in which the
fermion-boson interaction can be controlled by a Feshbach resonance. The theory correctly accounts for
molecular binding energies of the molecules in the two-body limit, in contrast to the most straightforward
mean-field theory. Using this theory, we discuss the equilibrium properties of fermionic molecules created from
atom pairs in the gas. We also address the formation of molecules when the magnetic field is ramped across the
resonance, and we present a simple Landau-Zener result for this process.
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I. INTRODUCTION

The use of magnetic Feshbach resonances to manipulate
the interactions in ultracold quantum gases has greatly en-
riched the study of many-body physics. Notable examples
include the crossover between BCS (Bardeen-Cooper-
Schrieffer [1]) and BEC (Bose-Einstein condensate [2,3]) su-
perfluidity in ultracold Fermi gases [4-6], and the “Bose
Nova” collapse in Bose gases [7]. Recent experimental de-
velopments [8—13], have enabled the creation of an ultracold
mixture of bosons and fermions, where an interspecies
Feshbach resonance may introduce a rich source of new phe-
nomena. From the theoretical point of view, studies of Bose-
Fermi mixtures to date have been mostly limited to nonreso-
nant physics, focusing mainly on mean-field effects in
trapped systems [14-24], phases in optical lattices [25-30],
or equilibrium studies of homogeneous gases, focusing
mainly on phonon-induced superfluidity or beyond-mean-
field effects [31-37]. Pioneering theoretical work on the
resonant gas includes Ref. [38], in which a mean-field equi-
librium study of the gas is supplemented with a beyond-
mean-field analysis of the bosonic depletion; and Ref. [39],
where an equilibrium theory is developed using a separable-
potentials model.

The aim of this paper is to develop and solve a mean-field
theory describing an ultracold atomic Bose-Fermi mixture in
the presence of an interspecies Feshbach resonance. This
goal appears innocuous enough at first glance, since mean-
field theories for resonant Bose-Bose [40,41] and Fermi-
Fermi [42-44] gases exist, and have been studied exten-
sively. In both of these theories, the mean-field
approximation consists of considering the bosonic Feshbach
molecules as being fully condensed, and this greatly simpli-
fies the treatment, since the Hamiltonian reduces to a stan-
dard Bogoliubov-like integrable form [45].

The fundamental difference between these examples and
the Bose-Fermi mixtures is that in the latter, the Feshbach
molecules are fermions, and therefore their center-of-mass
momentum must be included explicitly. The most obvious
mean-field approach consists in considering the atomic Bose
gas to be fully condensed. However, as we will show below,
resonant molecules are really composed of two bound atoms,
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which spend their time together vibrating around their center
of mass. It follows that outright omission of the bosonic
fluctuations of the atoms disallows the bosonic constituents
to oscillate (i.e., fluctuate) at all, and therefore this leads to
an improper description of the physics of atom pairs.

This paper is organized as follows. In Sec. II, we intro-
duce the field theory model used to study Feshbach reso-
nances, describing briefly the parametrization used, and out-
lining the exact solution of this model in the two-body limit.
The section ends with a test of this two-body theory by com-
paring the binding and resonance energies predicted by the
model and the virtually exact analogues obtained from two-
body close-coupling calculations. Section III introduces the
simplest mean-field many-body theory of the gas, obtained
by disregarding all bosonic fluctuations. The solution of the
theory is outlined, and its limitations highlighted. In spite of
these limitations, mean-field theory provides a useful lan-
guage for dealing with the problem, the utility of which will
persist even beyond the limits of applicability of the theory
itself.

Finally, in Sec. IV we introduce our generalized mean-
field theory, which is, in short, similar to the mean-field
theory described in Sec. III, but with the notable improve-
ment of using properly renormalized molecules as building
blocks, instead of their bare counterparts. This approach is
not trivially described in the Hamiltonian formalism, where
substituting dressed molecules for free ones would lead to
double counting of diagrams. In this section, we therefore
shift to the Green-function—path-integral language, where
this double-counting can be avoided quite easily. Finally, we
proceed to the numerical solution of this theory, and note that
for narrow resonances the results are consistent with their
mean-field equivalents. This encourages us to develop a
simple theory to study the molecular formation via magnetic
field ramps, and, using an approach based on the Landau-
Zener formalism [46,47], we derive analytic expressions in
Sec. V.

Throughout this paper, we work with zero-temperature
gases in the free-space thermodynamic limit. These are limi-
tations that render the results obtained here hard to directly
compare with experimental results. One of the main possible
future directions of this work should include solving the
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same problem in a trap, and generalization to higher tem-
peratures.

II. THE MODEL

We are interested primarily in the effects of resonant be-
havior on the otherwise reasonably understood properties of
the system. To this end, we use a model that has become
standard in the past few years. This model has been useful in
studying the effect of resonant scattering in Bose [41,48,49]
and Fermi [50-55] gases. In the case of the Bose-Fermi mix-
ture, this model has been used in Refs. [38,56,57]. We refer
to these works for further details about the origin and justi-
fication of the Hamiltonian we use here, and for details on
the solution in the two-body regime.

The Hamiltonian for the system reads

H=H,+H,, (1)
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Here d,,, 5p, are the annihilator operators for, respectively,
fermions and bosons, and ép is the annihilator operator for
the molecular field [50,54,55]; y=4a,/m, is the interaction
term for bosons, where a;, is the boson-boson scattering
length; Vy,, v, and g are parameters related to the Bose-
Fermi interaction, yet to be determined; the single-particle
energies are €*=p?/2m,, where m, indicates the mass of
bosons, fermions, or pairs; and V is the volume of a quanti-
zation box with periodic boundary conditions.

The first step is to find the values for Vigs Vs & in terms of
measurable parameters. We will, for this purpose, calculate
the two-body T-matrix resulting from the Hamiltonian in Eq.
(2). Integrating the molecular field out of the real-time path
integral leads to the following Bose-Fermi interaction Hamil-
tonian:

Jgtwo body _ I(V )2 Awa A 5 (3)
1 v bg t apP_pp
This expression is represented in center-of-mass coordinates,
and E is the collision energy of the system. From the above
equation, we read trivially the zero-energy scattering ampli-
tude in the saddle-point approximation,

2
r=(n-5).

which corresponds to the Born approximation (this is akin to
identifying the scattering amplitude f=a, in the Gross-
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Pitaevskii equation, where the interaction term would be
m—Mab) We emphasize that this approximation is only valid in
the zero-energy limit, and it does not, therefore, describe the
correct binding energy as a function of detuning. However,
with this approach we obtain an adequate description of the
behavior of scattering length as a function of detuning,
which allows us to relate the parameters of our theory to
experimental observables via the conventional parametriza-

tion [48,50]
— i) , (5)

2
= m_bfa"g(l (B-By)

where ay, is the value of the scattering length far from reso-
nance, Ay is the width, in magnetic field, of the resonance,
my; is the reduced mass, and B is the field at which the
resonance is centered.

The identification of parameters between Egs. (4) and (5)
proceeds as follows: far from resonance, the
interaction is defined by a background scattering length, via
ng—zﬂi: To relate the magnetic-field-dependent quantity
B-B, to its energy-dependent analog v requires defining a
parameter dz=dv/dB, which may be thought of as a kind of
magnetic moment for the molecules. It is worth noting that v
does not represent the position of the resonance nor the bind-
ing energy of the molecules, and that, in general, J is a
field-dependent quantity, since the thresholds move quadrati-
cally with field because of nonlinear corrections to the Zee-
man effect. For current purposes, we identify Jz by its be-
havior far from resonance, where it is approximately
constant. Careful calculations of scattering properties using
the model in Eq. (2), however, lead to the correct Breit-
Wigner behavior of the two-body T-matrix [58].

Finally, we get the following identifications:

27Tabg

bg = s
Mg

8=\ ng‘SBABv

v=383(B - By). (6)

Synthesizing the approach described in [56], and diagram-
matically represented in Fig. 1, we can obtain the exact two-
body T-matrix of the system by solving the Dyson equation

T=gD + gDI1gD% + gD%I1gD gl1gD g + -+ = gDg,

)

where 7 is the T-matrix for the collision, and which has the
formal solution

2

8
T=¢gDg="——F—"">5=. 8
§Dg = oy — (8)
These quantities take the explicit form
Vi 1
DY(E) = (—Zg + ) ©)
g E-v
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T= o0 + o—o/\o—o +

T = gDy + gDgIl gDy +
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FIG. 1. Feynman diagrams representing the resonant collision of a fermion and a boson. Solid lines represent fermions, dashed lines
bosons, and double solid-dashed lines represent the effective composite fermions.
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where m,; is the boson-fermion reduced mass and A is an
ultraviolet momentum cutoff needed to hide the unphysical
nature of the contact interactions. Note that D° represents an
effective molecular field, accounting for the fermion-boson
background interaction, and, as described in detail in [56], it
is obtained by integrating the original molecular field, and
performing a Hubbard-Stratonovich transformation [59] to
eliminate the direct boson-fermion interaction in favor of the
effective molecular field D°.

Regularization of the theory [42,56] is obtained by the
substitutions

_ 1
Vog=Voe| = — 1 —
1 mbfAng

V=v+gg = (11)

Finally the two-body T-matrix takes the form

32 -1
Mye

i E| . (12)
N2

1
T(E) =
(E) 22

ng+_E— ;

Poles of the T-matrix: Testing the model

Bound states and resonances of the two-body system are
identified in the structure of poles of the T-matrix [Eq. (12)].
This is illustrated in Fig. 2, where real and imaginary parts of
the poles’ energies are plotted as a function of magnetic field.
The resonance portrayed in the figure is the 544.7 G reso-
nance present in the [9/2,-9/2)|1,1) state of *°K-3"Rb. For
B<544.7 G (corresponding to detunings v<0), the two-

body system possesses a true bound state, whose binding
energy is denoted by the solid line. In this case, the pole
occurs for real energies. This bound state vanishes as the
detuning goes to zero, where the resonance occurs.

For positive detunings, »>0, on the other hand, the poles
are complex, and the inverse of the imaginary part is propor-
tional to the lifetime of the metastable resonant state.

In this regime, there is no longer a true bound state, but
there may be a scattering resonance, indicated in Fig. 2 by a
thick dashed line. This resonance appears for magnetic fields
B>544.7 G for this particular resonance, well before the
disappearance of the bound state. This value is highly depen-
dent upon the value of the background potential. We will see
in Sec. IV that for V,,,=0, the resonance actually appears at
positive detunings. In the case of “°K-*’Rb, Ve <0, imply-
ing that there is a weak potential resonance in the open chan-
nel that interferes with the closed-channel resonance, and
causes it to cross the axis at negative detunings. For Vi,
>0 (Ref. [60]), the positive background scattering length is
set by a bound state in the open channel, which does not
affect the resonance states, but which interferes with the
bound state at negative detunings.
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FIG. 2. The top panel shows the scattering length versus mag-
netic field for the 544.7 G resonance, present in the |9/ 2,
-9/2)|1,1) states of the *°K-8’Rb collision. The bottom panel
shows the poles of the model two-body T-matrix [Eq. (12)] param-
etrized for the same resonance, as a function of magnetic field.
Thick solid and dashed lines denote the real parts of relevant poles,
representing bound and resonance states, respectively. The thin
dashed lines are the real parts of unphysical poles. The empty
circles and squares represent the position of the resonance and the
bound state, obtained via a virtually exact close-coupling calcula-
tion, and are presented to show the level of accuracy of the model.
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The thin dashed lines in Fig. 2 are a physically meaning-
less solutions to the Schrédinger equation, in which the am-
plitude in the resonant state would grow exponentially in
time, rather than decay. These poles do not, therefore, iden-
tify any particular features in the energy-dependent cross
section of the atoms, and will not modify the physics of the
system. Finally, Fig. 2 contains data obtained from virtually
exact close-coupling calculations that show the extent of va-
lidity of the model. For the purposes at hand, this agreement
is sufficient.

It should be noted that the agreement is not as good for
positive background scattering length systems, since the
open-channel bound state determining this scattering length
is not adequately described by the model, which treats the
background physics as an essentially zero-range interaction.
This implies that the relation between the background scat-
tering length and open channel bound-state energy is exactly
E,,:I/Z,ua%g, while in the physical system this relation de-
pends on the details of the interaction potential. This problem
has been addressed in the literature [61], but no treatable
field theory has yet been proposed.

III. MEAN-FIELD THEORY

In this section, we introduce the many-body physics of the
system by first analyzing it in a mean-field approach. Be-
cause of the statistical properties of the system, we will see
right away that mean-field theory does not recover the cor-
rect two-body physics in the low-density limits. In spite of
this substantial weakness, however, the approach has several
qualitative features that persist even in the improved theory
that we introduce below. Furthermore, since the model is
exactly solvable, it will allow us to develop a language that
will help us to understand the problem in simpler terms, and
to identify some small physical effects, which, when ignored,
can greatly simplify the beyond mean-field approach pre-
sented in the next section.

A. The formalism

Starting with the Hamiltonian described by Eq. (1), we
obtain the mean-field Hamiltonian by substituting the boson

annihilator b by its expectation value ¢= (B) a complex

number. The number operator l;;I;p, therefore, becomes ||
=N,, where N, is the number of condensed bosons. The
grand-canonical Hamiltonian, therefore, becomes

H=Eb+ E (Eg—ﬂf+ ngnb)d;&p+ z (Ez/l+ V— Uy, é;ép
P p
+ g\/n_bz (é;ﬁp +H.c.), (13)
P

where n; is the density of condensed bosons, E,/V= 'yn,z,
— mpny, is the energy per unit volume of the (free) condensed
bosons, a constant contribution to the total energy of the
system, and gz, are the chemical potentials. These are
Lagrange multipliers that serve to keep the densities constant
as we minimize the energy to find the ground state. In the
following we will drop the volume term, absorbing it in the
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definition of the creation and annihilation operators, such
that the expected value of the number operator represents a
density, instead of a number.

Before proceeding with the analysis of this Hamiltonian,
we introduce the set of self-consistent equations we wish to
solve. To this end, we define the quantities ”2(/‘)’ representing
the total density of bosons (fermions) in the system, at de-
tuning v— . At finite detunings, some of these atoms will
combine into molecules, and the densities will be denoted as
n, £,m for bosons, fermions, and molecules, respectively.

The system, therefore, is described by six quantities,
namely three densities and three chemical potentials, which
require six equations to determine. These equations, which
can be derived by number-conservation constraints and en-
ergy minimization arguments, are

nf+nm—n19=0, (14a)
nb+nm—n2=0, (14b)
dQ)
ny=——-, (14¢)
dQ
Ny=—"), (144d)
dpy,
dQ
=_o, (14e)
do
M+ = P, (14)

where 0 =(H)/V is the Gibbs free energy. Equations (14a)
and (14b) follow from the simple counting argument that for
every molecule created, there is one less free boson and one
less free fermion in the gas. Equations (14¢) and (14d) are
simply the Lagrange multiplier constraint equations, Eq.
(14e) follows from the mean-field approximation, whereby
the bosonic field is simply a complex number, and minimi-
zation of the energy can therefore be done directly. Finally,
Eq. (14f) is the law of mass action, which follows from the
fact that to make a molecule, it takes one free atom of each
kind.

The next step is to write down () for the system by taking
the expectation value of the Hamiltonian in Eq. (13), obtain-
ing

Q=E,V+ 2 (€ = s+ Vigny) my(p)
P

+ 2 (4 v = 1,) 7(p) + 280, 2 Bp), (15)
P 14

where nf(p):@;dp) and nm(p):<c”;c”p) are the fermionic and
molecular momentum distributions, nmf(p)=<(?;dp> is an off-
diagonal correlation term arising from the interactions in
the system, and the densities are given by 7,
=f fﬂ% Npmmi(p). Equations (14a)—(14f) then read

nf+nm—n§3=0, (16a)
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ny+n,—ny=0, (16b)
dp
nf,m,mf = J ﬁ nf,m,mf(p) 5 (16C)
—
8t = Ny + Yy > =0, (16d)
Mp + p= My (16€)

The remaining task is now to find expressions to calculate
the expected values 7y, n(p). To this end, we follow a
Bogoliubov-like approach, similar to that described in [38].
The mean-field Hamiltonian is bilinear in all creation and
annihilation operators, which means that it can be diagonal-
ized via a change of basis, whereby introducing the operators

a,= Aaal, + Culp,

B,=Agi,+Cpl,, (17)
for some appropriately chosen coefficients A, g and B,, g, the
Hamiltonian will read

H'=Eo+ 2 \(p)ala, + 2 Np)BIB,.  (18)
p P

At this point, we note that the Hamiltonian is just a separable
sum of free-particle Hamiltonians, where the free particles
are fermions with dispersion relations N, g(p). We can
readily write down the distribution

70.8P) = O(=Ag o(P)), (19)

where © is the step function, and we calculate the densities
ng g The step function could be replaced by the free Fermi
distribution for nonzero temperatures, but the mean-field as-
sumption that all bosons are condensed would no longer
hold. If these were ordinary free fermions with dispersion
p*/2m—pu, Eq. (19) would reduce to the standard zero-
temperature Fermi distribution. We will see below that
N p(p) are dispersion relations of quasiparticles that are a
mixture of atoms and molecules.

Below we show how these ideas, together with Eqgs.
(14a)—(14f), give us the tools we require to calculate the
observable atomic and molecular densities as a function of
the chemical potentials.

To illustrate more explicitly the diagonalization proce-
dure, we define the vectors

A=(”f”), AT =@, (20)
Cp
and
&
B=<}’), B'=(aB)), (21)
By

whereby the Hamiltonian can be written as ATHA and
BH'B, where
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e ((55 = b+ Voghy) g\n, ) (22)

g\““’nb (62/1 +v- ILLﬂl)

and

A Ny 0

H' = ( () ) (23)

0 7\5(17)
Diagonalizing H, we get the two eigenvalues
hdp) +h,(p) 1
Naplp) = =27 = DA, + [h(p) = hAP)T
(24)

where we have defined hf(p)=(6[’,P — s+ Vi) and hy,(p)
:(624 +v—u,,), and the unitary eigenvector matrix

U—(A“ B“) 25
“\4, B/ (25)

The transformation in Eq. (17) can then be written as A
=U'B, and its inverse B=UA.

Our goal now is to write the densities 7,, ;m(p) in terms
of the known densities 7, g(p). In component notation
(where A;=a,, etc.), we can write

(AjA) = (BIU(U")BY = U;U(B]B),  (26)

where we have used the fact that since the Hamiltonian is
diagonal in the B basis, then (B}BQ:(B}BJ») O
Using this formalism, we obtain the relations

7/p) = Al 1.p) + | B> ns(p),

7/p) = A4 1.(p) + |Bg*15(p),

nfm(p) = AZAﬂna(p) + BZBBng(P) . (27)
Using these expressions in conjunction with Eqgs.

(16a)—(16e) will then allow us to compute the equilibrium
properties of the system.

This simplified, mean-field version of the solution can
only approximately reproduce the energies of atomic and
molecular states, as is shown in Fig. 3. In this example, we
have assumed a uniform mixture of “°K and *’Rb atoms with
densities 8.2X 10" cm™ and 4.9 X 10" cm™!, respectively.
These densities correspond to the central density of each spe-
cies assuming it is confined to a 100 Hz spherical trap. Far
from the resonance, these energies asymptote to zero (repre-
senting the atomic state) and to the detuning (representing
the bare molecular state that went into the theory). Near zero
detuning, these levels cross owing to the coupling term gyn,
in Eq. (22). The size of this crossing is therefore larger the
larger the bosonic density is. In the crossing region, the
eigenstates do not clearly represent either atoms or mol-
ecules, but linear combinations of the two.

B. Mean field: Noninteracting case

To better understand the structure of the mean-field
theory, in this section we detail its results for a noninteract-

063612-5



BORTOLOTTI, AVDEENKOV, AND BOHN

ot P 4

(B =45 +uw)/n

_10 I I I I I I I I I
-10 -8 -6 -4 -2 0 2 4 6 8 10

v/p

FIG. 3. The thick solid lines represent the “renormalized” mean-
field energy levels A, g(ky), while the thin dashed lines represent
their bare counterparts.

ing gas by setting g=V,,=y=0. We contrast two different
physical regimes, based on the ratio of bosons to that of
fermions, rye=mn,/n;.

In the case of high fermion density, we set r,;=0.6, and
plot chemical potentials and populations of the various states
in Fig. 4. Consider what happens in an infinitely slow ramp
from positive detuning (no molecules) to negative detuning

ny<ng
2 T T T T T T
1»
< ol RSP 151 N U
= - -7
= P
= 4t PR ATt 1
/// _ P b a
of -7 ]
-3 L L L L L L
-2 -15 -1 -0.5 0 0.5 1 1.5 2
l//Ef
0.8 T T T T T T
b a
0.6 1
B
Z04b_ _ o _____ S g
2 7
N/
0.2 % i
;N
. \
O 1 . 1 1 /A N -
-2 -1.5 -1 -0.5 0 0.5 1 1.5 2
I//E/

FIG. 4. Equilibrium chemical potentials (top panel) and popula-
tions (bottom panel) as a function of detuning for a noninteracting
gas with r,;=0.6. The solid lines represent fermions, dashed lines
molecules, and dashed-dotted lines bosons. The dotted lines in the
top panel represent the bare molecular and fermionic internal ener-
gies, respectively, v and 0. The vertical lines labeled (a) and (b) are
discussed in the text, and represent the detuning at which molecular
formation begins and ends, respectively.
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nb>nf

FIG. 5. Equilibrium chemical potentials (top panel) and popula-
tions (bottom panel) as a function of detuning for a noninteracting
gas with ry=6. The solid lines represent fermions, dashed lines
molecules, and dashed-dotted lines bosons. The dotted lines in the
top panel represent the bare molecular and fermionic internal ener-
gies, respectively, v and 0.

(introducing bound molecular states). For large positive de-
tuning, the fermionic and molecular chemical potentials are
the same, since the chemical potential of the condensed
bosons vanishes. For large enough detuning, the molecular
chemical potential remains below the detuning, so it is ener-
getically unfavorable to make molecules. When the detuning
dips below the chemical potential (detuning a in the figure),
fermions begin to pair with bosons to make molecules (see
populations in lower panel). This process continues until all
the bosons are consumed (detuning b), at which point the
populations stabilize. For detunings less than this, there re-
main both fermions and fermionic molecules in the gas, and
there are two Fermi surfaces present. Because the internal
energy of the molecules continues to diminish at lower de-
tuning, so does the molecular chemical potential. The two
Fermi surfaces, therefore, split from one another, although
the relative population of the two fermions is fixed.

By contrast, the case in which the bosons outnumber the
fermions is shown in Fig. 5, where we have set the density
ratio to r,y=6. As in the previous case, no molecules are
generated until the detuning drops lower than the chemical
potential of the atomic Fermi gas. Since there are enough
bosons to turn all the fermions into molecules, there are no
fermionic atoms at sufficiently negative detuning, and the
gas possesses only a single Fermi surface. The chemical po-
tential of the remaining bosons is still zero, since these
bosons are condensed. Formally, then, the chemical potential
for atomic fermions is negative, meaning that their formation
at negative detuning is energetically forbidden.
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TABLE 1. Parametrization of the three main Feshbach
resonances used in this thesis. All three resonances are in the

[9/2,-9/2)|1,1) states of the “°K-3"Rb collision.

By (G) Ap (G) o (K/G) Apg (au.)
492.49 0.134 3.624X 1075 -176.5
544.7 3.13 1.576 x 1074 -176.5
659.2 1.0 2.017X107* -176.5

C. Mean field: Interacting case

In most experimental circumstances, the density of bosons
is larger than that of fermions, since condensed bosons clus-
ter to the center of the trap, whereas fermions are kept away
by Pauli blocking. We therefore focus on this case hereafter,
setting the Bose and Fermi densities to 1,=4.9 X 10> cm™
and n,=8.2X 10" cm™>. The coupling term g\n, in Eq. (22)
is the perturbative expansion parameter for the problem, and
since it has units of energy, it must be compared with the
characteristic nonperturbed energy of the gas, which in this
case is Ey. Also since in the perturbative expansions it always
appears squared [see Eq. (7)], we can define the unitless
small parameter for the system as egy=g*n,/ E]%:gznf/ E?rbf.
For the 492 G resonance in Table I, we have €g=6.35
X 1072, and since r,;=6, the small parameter is of order
0.1, appropriate for perturbative treatment.

Figure 6 shows the equilibrium chemical potentials for the
system obtained via a self-consistent solution of Egs. (28)
and (16a)—(16e). This figure is qualitatively similar to the

2 1 1 1 1 1

WE,

(a) ’ v/Ef

0,8

0,6 i

WE,

0,4 1

0,2 i

0,0 ; . Bl F S

(b) v/Ef

FIG. 6. Mean-field equilibrium chemical potentials (top panel)
and populations (bottom panel) as a function of detuning. The solid
lines represent fermions, dashed lines molecules, and dashed-dotted
lines bosons.
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corresponding noninteracting result in Fig. 5, but contains
important differences. First, the nonzero boson-boson inter-
action generates a nonzero bosonic chemical potential
that breaks the degeneracy between the molecular and fermi-
onic chemical potentials. In physical terms, this means that
there is an energy cost in maintaining bosons unpaired, and
therefore we need to take this into account in the kinematic
analysis. Namely, to make molecules energetically favorable
no longer requires a detuning v such that v=pu,, but now
requires v= s+ u;. The net result is to shift the chemical
potential up and to the left by an amount w,, and to shift the
molecular population curve to the left by this amount.

A second difference is that molecule creation takes place
more gradually as a function of detuning in the interacting
case. This is simply the result of the avoided crossing smear-
ing out the molecular energy.

Finally, we exploit the simplicity of the mean-field ap-
proach to test some approximations that will simplify the
beyond-mean-field approach in the next section. These ap-
proximations have been tested numerically, and they give
corrections of the order of 0.1% or less in calculated molecu-
lar populations for all regimes of interest here. The approxi-
mations are (i) incorporate the boson-boson interaction 7NZ
by shifting the detuning and chemical potential as discussed
above; (ii) disregard the background scattering between
bosons and fermions, i.e., set ng=0, since this interaction is
dominated by its resonance part; and (iii) disregard the cor-
relation function (7,f(p)) (analogous to the boson polariza-
tion operator in the Green-function formalism), since its con-
tribution to u;, is much smaller than that of 'ynz. It is difficult
to directly verify the validity of these approximations in the
beyond-mean-field approach. Nevertheless, we expect that
these approximations remain valid, since the generalized
mean-field theory is, after all, a mean-field theory at heart.

IV. GENERALIZED MEAN-FIELD THEORY

In Sec. III, we reached the conclusion that the mean-field
approach to the resonant Bose-Fermi system does not prop-
erly account for the correct two-body physics of the system.
In this section, we wish to improve on this by introducing a
generalization to mean-field theory, via an appropriate renor-
malization of the molecular propagator, which is able to re-
produce the correct two-body physics in the low-density
limit. To accomplish this, we will have to abandon the
Hamiltonian treatment of the previous section, in favor of a
perturbative approach based on the Green’s-function formal-
ism, much as was done for two bodies in Sec. II. Throughout
this section, we use the approximations made above, namely
= Vog=(mf(p))=0.

We begin by recasting the rn field result from Sec. III in
the language of Green functions. The self-consistent Dyson
equations that describe this system are

GMY(E,P) = GY(E,P) + GUE, P)g*n,D°(E,P)GY¥(E,P),
DMY(E, P) = D(E, P) + D°(E, P)g*n,G(E, P)DM¥(E, P),
(28)

where the free propagators are simply
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Onnwa) B e +

FIG. 7. Feynman diagrams included in the mean-field theory.
Thin (thick) solid lines represent free (renormalized) fermions, thin
double-dashed—solid lines represent free molecules, and thick
double-dashed lines represent renormalized molecules. The little
wavy lines represent condensed bosons, whereby the arrow indi-
cates whether they are taken from or released into the condensate.

1
" w-&(p) +insgn[&p)]’

0

1
0 _
P w-E(p)+insgn[ép)]

and &EY-F (p):(eﬁ,”’F — ) These propagators are described
diagrammatically in Fig. 7. They represent the fact that a free
fermion may encounter a condensed boson and associate
with it, temporarily creating a molecule; or that a free mol-
ecule may temporarily split into a fermion and a condensed
boson. Self-consistency ensures that these processes may
be repeated coherently an infinite number of times. We
neglect the bosonic renormalization equation ¢MF=n)
+¢°n,G%E,P)D*(E,P), whereby a condensed boson may
pick up a fermion to create a molecule; this is equivalent to
the condition (7,f(p))=0.
Solutions to these equations take the form

1
GUE,P)™" - g*n,D"(E,P)’

G

(29)

Gy (E,P) =

1
DY(E,P)™" - ¢*n,GYWE,P)

Using the definitions of GIOF(E ,P) and D°(E,P) from Eq.
(29), we can find the poles corresponding to many-body
bound states. In this case, it can be shown that the poles are
exactly the mean-field eigenvalues X\, 4(p) from Sec. IL
Moreover, Egs. (30) are symmetric with respect to inter-
change of G and D, which implies that both renormalized
Green functions have the same poles, and the same residues.
We can therefore study the properties of the fermions by only
looking at the molecules. This is not completely surprising,
since, given that the condensed bosons are relatively inert,
every molecule corresponds exactly to a missing fermion,
and vice versa.

The most important deficiency of this mean-field ap-
proach is that it only allows molecules to decay into a free
fermion and a condensed boson, disregarding the possibility
that the bosonic by-product may be noncondensed. We must
allow noncondensed bosons somehow, and yet these bosons
make a perturbation to the result, as seen by the following
argument. The fundamental mean-field assumption is that the
gas is at zero temperature, and therefore the noncondensed

DMF(E,P) =

(30)
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=0 - o—0 0—0/1—0
—e - o—o

FIG. 8. Feynman diagrams included in the generalized mean-
field theory. Like in the mean-field case (Fig. 7), thin (thick) solid
lines represent free (renormalized) fermions, thin double-dashed—
solid lines represent free molecules, and thick double-dashed lines
represent renormalized molecules. The little wavy lines represent
condensed bosons, whereby the arrow indicates whether they are
taken from or released into the condensate. The novelty here is the
inclusion of the two-body dressed molecules from Fig. 1.

population should be negligible at equilibrium. Furthermore,
if a molecule is composed of a zero-momentum boson and a
fermion from the Fermi sea, dissociating into a noncon-
densed boson implies that the outgoing fermion would have
momentum lower than the Fermi momentum, an event that
Pauli blocking makes quite unlikely. Therefore, if a molecule
does indeed decay yielding a noncondensed boson, it should
immediately recapture the boson in a virtual process such as
that described in Fig. 1. It is only convenient that these
events are exactly the kind of events that will correctly renor-
malize the binding energy of the molecules, leading to a
theory that will reproduce the exact two-body resonant phys-
ics.

The Dyson equations describing this generalized mean-
field theory are

GiMY(E,P) = GUE, P) + GME, P)g*n,D(E,P)GZV(E, P),

DSMY(E, P) = D(E, P) + D(E, P)g*n,GXE, P)DMY(E, P).
(31)

Here we have replaced the free propagator D° by the renor-
malized molecular propagator D from Eq. (8). A diagram-
matic representation of this theory appears in Fig. 8. By anal-
ogy with the mean-field version, the solutions to these
equations are

1
GNE,P)" - g*n,D(E,P)’

GIMY(E,P) =

1
DSMF(E p) = . 32
(EF) D(E,P)™" - ¢*n,G)E,P) (32)

These equations preserve the symmetrical nature of the
mean-field theory described above, and also the avoided
crossing of atomic and molecular levels. This is demon-
strated in Fig. 9, where we reproduce the P=k; pole of D
from Fig. 2 as dashed lines. We also present in this figure the
corresponding poles for the generalized mean-field theory as
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FIG. 9. The thick lines represent the poles of DMF(k), and
correspond to molecular and fermionic energies. The dashed lines
represent the molecular two-body poles, corresponding to the mo-
lecular binding and resonant energies obtained disregarding the
background interaction [57]. As in the mean-field theory case, the
effect of the interaction with the condensate is to create an avoided
crossing between the atomic and molecular states. The “bulge” in
the upper solid curve is a consequence of Pauli blocking, which has
the consequence of favoring molecular stability. See [57] for more
details.

solid lines. As in Fig. 3, we note the splitting in two energy
levels, avoiding each other around v=0. The fundamental
difference in this case is that the molecular curve does not
asymptote to the bare detuning, but rather to the correct mo-
lecular binding and resonance energies.

Studying the equilibrium properties of the system is now
a matter solving the self-consistent set of Egs. (16a)—(16e)
while setting 7,y and A equal to zero. To do this, we first
need to extract the distributions 7, from the Green func-
tions DMF and G To avoid taking a distracting detour
here, we refer the reader to the Appendix for details. As in
the previous section, we will consider a mixture composed of
a free gas of fermionic *’K atoms, with a density of 8.2
X 10" cm™, and a gas of condensed ®’Rb bosons with den-
sity 49X 10" cm™ (corresponding to the respective
Thomas-Fermi densities of 10° atoms of either species in the
center of a 100 Hz spherical trap).

Figure 10 shows the equilibrium molecular population as
a function of detuning for the 492.5 G resonance. For the
densities assumed, the mean-field parameter eSM=g2nb/E?-
~(0.4 is indeed perturbative. For this narrow resonance, the
agreement between mean-field and generalized mean-field
theory is quite good, and we could as easily have used the
bare molecular positions to calculate this quantity. However,
the situation is completely different for the wide resonance at
544.7 G, for which the equilibrium molecular populations

PHYSICAL REVIEW A 78, 063612 (2008)

v/Ey
FIG. 10. Equilibrium molecular population as a function of de-
tuning for the narrow 492.49 G resonance. The solid line represents
results obtained via the generalized mean-field theory presented in
the text, while the dashed-dotted line represents the mean-field
results.

are shown in Fig. 11. Here the “perturbative” parameter has
the value eg,=38.7, and is not perturbative at all. For a
given small detuning, the simple mean-field approximation
would greatly overestimate the number of molecules in the

1

T

0.9

0.8

0.2

0.1

0 L L
-100 -50 0 50 100

v/Ey

FIG. 11. Equilibrium molecular population as a function of de-
tuning for the wider 544.7 G resonance. The solid line represents
results obtained via the generalized mean-field theory presented in
the text, while the dashed-dotted line represents the mean-field
results.
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gas at equilibrium. The more realistic generalized mean-field
theory accounts for the fact that the actual molecular bound-
state energy is higher than the bare detuning. This fact in turn
hinders molecular formation, according to chemical potential
arguments analogous to those in Sec. III B.

V. MOLECULE FORMATION

Moving beyond equilibrium properties, we are also inter-
ested in the prospects for molecule creation upon ramping a
magnetic field across the resonance. In Ref. [56], the mean-
field equations of motion for the system at hand were derived
as follows:

iﬁ§¢= (Vogpr + N D) b+ gy (33a)
A omp) == 2g Inlgmap)]l  (3b)
W) = 2¢ Il S, (330)

82 () =€ = € = v+ Vi D)
- 8¢0*[ne(p) = mu(p)], (33d)

where np(p)=<d;&p is the fermionic distribution, 7,,(p) its
molecular counterpart, and py =/ f:;pan,F(p) the fermi-
onic and molecular densities. Similarly, nMF(p):<é;dp) and
is the distribution for molecule-fermion correlation, with the
associated density pyg.

Reference [56] outlined the limitations of the nonequilib-
rium theory by claiming that to obtain the correct two-body
physics in the low-density limit, it would be necessary to
include three-point and possibly higher correlations. While
this fact is indeed true, we have amended it in the previous
section. For experimentally reasonable parameters, the
mean-field theory can be complemented by the correct renor-
malized propagator to accurately describe the equilibrium
properties of the gas. Encouraged by this argument, we now
apply it to the problem of a field ramp as well.

In the following, we wish to study molecular formation
via a time-dependent ramp of the magnetic field across the
resonance. To this end we use two approaches: the first con-
sists of propagating Egs. (33a)—(33d), ramping the detuning
linearly in time from a large positive value to a large nega-
tive one, and plotting the final molecular population as a
function of detuning ramping rate R. The second approach
consists in noticing that if »(¢) is a linear function of time,
then the mean-field Hamiltonian [Eq. (22)] is ideally suited
to a Landau-Zener treatment, whereby the final molecular
population as a function of detuning can be readily written as

n,/min(ny,ng) =1-e 7. (34)

Here n,,/max(n,,n;) is the fraction of possible molecules
formed, and R=1/ ﬁ—f is the inverse ramp rate, and the expo-
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FIG. 12. Transition probability into molecular state via a
magnetic-field ramp across the 492.5 G Feshbach resonance. The
solid lines are obtained via numerical solutions of Egs. (33a)—(33d),
while the dashed lines represent the Landau-Zener equivalent. In
the top panel, the gas is composed of more bosons than fermions,
=06, while in the bottom panel the opposite is true, ry;=0.6.

tial ti tant i . b _ hp o my
nential ime constant 1S given by 7= gznb— habgnbAB’

is the background scattering length, / is Planck’s constant,
and Ajp is the magnetic-field width of the resonance.

Remarkably, the characteristic sweep rate 7 does not de-
pend on the fermionic density. This arises from the fact that
in mean-field theory, the momentum states of the fermionic
gas are uncoupled, except via the depletion of the conden-
sate. Since in the Landau-Zener approach the depletion is
assumed small, it follows that the various fermionic momen-
tum states are considered independently, and thus the prob-
ability of transition of the gas is equal to the probability of
transition of each individual momentum state. This approxi-
mation is only valid for narrow resonances, such as the
492.5 G resonance in Table I.

Molecular formation rate versus ramp rate is shown in
Fig. 12 for the cases r;=6 (more fermions than bosons) and
rps=0.6 (more fermions than bosons). In both cases, the
Landau-Zener result agrees nearly perfectly with direct nu-
merical integration. This agreement is surprising in the case
of more fermions, since the width of the crossing is propor-
tional to the density of leftover bosons, and we expect that
this number will change substantially as the bosonic popula-
tion is depleted via the formation of molecules. This type of
time-dependent crossing should not be properly described by
the Landau-Zener formula. However, monitoring the time
evolution of the molecular population as a function of time
shows that the majority of the transfer takes place quite
abruptly somewhat after crossing the zero-detuning region,
whereby the change in bosonic density does not modify the
energy levels substantially.

where a,,
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VI. CONCLUSION

In this paper, we developed and solved a generalized
mean-field theory describing an ultracold atomic Bose-Fermi
mixture in the presence of an interspecies Feshbach reso-
nance. The theory is “generalized” in the sense that it cor-
rectly incorporates bosonic fluctuations, at least to the level
that it reproduces the correct two-body physics in the ex-
treme dilute limit. This theory, like any mean-field theory,
presents undeniable limitations. Nevertheless, any useful
many-body treatment must start from a well conceived
mean-field theory. Future directions of this work should in-
clude the generalization to finite temperature and the inclu-
sion of a trap, initially in a local-density approximation.
These advances would be essential to check for empirical
confirmation of the theory.
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APPENDIX: GREEN-FUNCTION METHODS FOR
FERMIONS

In this appendix, we briefly introduce some of the Green-
function techniques that we found useful in our calculations.

1. Free Green functions

We start from the Green function for a gas of free fermi-
ons, which is given, in the frequency-momentum representa-
tion, by

1
w—&p)+insgn[&p)]

where &(p)=p?/2m— u. The momentum distribution, at equi-
librium, is given by

G'(w,q) = (A1)

do .
n(p)=—i lim J —we“‘”’GO(w,q).
2

n— ot

(A2)

Here the limit comes from the equilibrium condition; the
frequency, in the Green-function definition, is the Fourier
space equivalent of time, whereby the real-time Green func-
tion represents the evolution of the system from time 7 to ¢’,
and the observables obtained this way represent expected
values of the kind (y(t)|O|¢At")). However, since we want
equilibrium conditions, we need to take the limit r—1¢',
which is nontrivial, since G° is defined by a Green-function
equation of the form £G%(t—t")o &(t—t"), where L is some
linear operator, and which highlights a peculiar behavior in
the limit we desire. However, since we know on physical
grounds that observables such as the momentum distribution
must be defined and well behaved at equilibrium, then by
first taking the expectation value integral, and then the limit,
we can circumvent the problem. In Eq. (A2), this implies that
we cannot quite get rid of the Fourier transform exponent

¢@t=1") until after the w integral.
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To perform the integral in Eq. (A2), we exploit the Fou-
rier exponent by noting that since 7 is positive, ¢/°7—0 as
w— +1%, so that the integral is identical to a contour integral
over the path defined by the real w axis, closed in the upper
complex w plain by an infinite radius semicircle, which, as
we have just seen, gives no contribution to the integral. We
can now integrate using the residue theorem.

We note that the integrand in Eq. (A2) has a simple pole
at w=&(p)—insgn[&(p)]. Thus, if &p) >0, then the pole is
in the lower complex plane, and the integral vanishes, and if
&(p) >0, then the pole is in the upper complex plane, with
residue 1. Using the residue theorem, and summarizing these
results, we finally get

n(p) = O(- &(p)),

which we recognize as the zero-temperature Fermi distribu-
tion.

(A3)

2. Interacting Green functions

According to Dyson’s equation, the Green function for an
interacting system has the form

1
w—&@p) -(w,p)’

where 2 (w,p) is an arbitrarily complicated function summa-
rizing all the interactions in the system, which is known as
self-energy.

The prescription to find ¥ is quite straightforward, and it
consists of adding all amputated connected Feynman dia-
grams for the system. The fact that, in general, the number of
such diagrams is infinite makes this task virtually impossible.
Nonetheless, Eq. (A4) is very powerful since it allows one to
include the effect of infinite subsets of the total number of
diagrams in the system by only having to explicitly calculate
a few representative ones.

An alternative standard approach leads to the exact result
(note: Abrikosov measures energy from w; here we measure
from 0, which is more standard)

” Alw, B(w,
Glo.p) = f dw,[ (©p)  _Bop)
0 w—w +in w+w —Iin

where A and B are, again, arbitrary complicated functions,
though they are known to be finite.

To understand A and B more closely, we need to introduce
the following well-known identity:

G(w.q) = (Ad)

. (AS)

1
lim —=P— ¥ imd(x),
v—0 X X 1v X

(A6)

where P is a Cauchy principal value, which represents the
contribution due to a discontinuity in a Riemann sheet
(branch cut), and the & function represents the contribution
due to the pole.

Applying Eq. (A6) to Eq. (A5), we get

A(w,p) B(w,p)
w-w +in o+ -ing|’

(A7)

Re G(w,p) :Pf dw’[

0
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- 7A(w,p) if ©>0

A8
7B(- w,p) if ®<0. (A8)

Im G(w,p) = {

Finally, Eq. (A2) represents a fundamental property of

Green functions, and it can be generalized to interacting sys-

tems simply substituting G° with G. Applying it to Eq. (AS5),
and performing the w integral first, we get

o0 0 _
n(p) = J dw'B(w,p) = f dw—l Im G(w,p). (A9)
0 —o0 T

Introducing the function p(w,p)=-2Im G(w,p), generally
called the spectral function, the above equation can be writ-
ten as

dw
n(p) =J - p(w,p)O(- ). (A10)
2m
An important property of the spectral function is that for
all p,

dw
f—p(w,p)=1. (A11)

2w
This can be understood as a sum rule in the following sense:
if we wish to calculate the number of holes in the system, we
would take the 7— 0~ limit in Eq. (A2). The distribution
would then have been nyq.s(p)=1-n(p)=[jdw’A(w’,p), so
that 1=f5do'[A(0’,p)+B(e’,p)]=[52p(w,p).

Using Eq. (A4), together with the definition of p, we can
write

PHYSICAL REVIEW A 78, 063612 (2008)

-2 Im X (w,p)
w— &p) - Re X(w,p)* + [Im X(w,p)*
(A12)

m@m=[

Furthermore, if 3 were to be real, or if, equivalently, the pole
of the Green function were to be real, for some momentum
p, then taking the limit Im % — 0 of Eq. (A4), and using Eq.
(A6), we get

p(w,p) =278 (w - &p) — Re 2(w,p)),

which can be simplified, using the properties of the & func-
tion, to

(A13)

plw.p) =27Z(p) & — wy(p)). (A14)
where Z, known as spectral weight, is given by
1
Z(p) = , (A15)

Jd
‘ 1 - — ReX(w,p)
Jw

W:wQ(P)
and wy(p) is the pole of the Green function, defined by
wo(p) = £€(p) — Z(wy(p),p) = 0.

The momentum distribution in this case is thus given by

(A16)

n(p) = Z(p) f N w— 0y(p))O(= w) = Z(p)O(- wy(p)).

(A17)
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