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Geometric stability spectra of dipolar Bose gases in tunable optical lattices
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We examine the stability of quasi-two-dimensional dipolar Bose-Einstein condensates in the presence of weak
optical lattices of various geometries. We find that when the condensate possesses a roton-maxon quasiparticle
dispersion, the conditions for stability exhibit a strong dependence both on the lattice geometry and the polarization
tilt. This results in rich structures in the system’s stability diagram akin to spectroscopic signatures. We show
how these structures originate from the mode matching of rotons to the perturbing lattice. In the case of a
one-dimensional lattice, some of the features emerge only when the polarization axis is tilted into the plane of
the condensate. Our results suggest that the stability diagram may be used as a novel means to spectroscopically
measure rotons in dipolar condensates.
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I. INTRODUCTION

The field of ultracold atoms has become a useful proving
ground for theories of condensed-matter systems. Progress
with Bose-Einstein condensation in particular, both experi-
mental and theoretical, has increased our understanding of
superfluidity and long-range order and their dependence on
interactions [1]. Recent years have seen increasing attention
given to condensed systems whose constituent bosons in-
teract via the dipole-dipole force, which is long-range and
anisotropic. Such dipolar Bose-Einstein condensates (dBECs)
have been achieved with atomic 52Cr [2], 168Er [3], and 164Dy
[4], and researchers are making active progress toward the
condensations of more strongly interacting polar molecules
[5–7] and Rydberg atoms [8]. The atomic dBEC experiments
have observed various consequences of the dipole-dipole
interaction, including geometry-dependent stability [4,9], d-
wave collapse [3,10], and deconfinement-induced collapse
[11].

Dipolar condensates are predicted to exhibit a roton-maxon
structure in their dispersion relations [12–14], qualitatively
similar to that observed in superfluid 4He half a century
ago [15–18]. In the case of dBECs, the depth and location of
the roton minimum can be tuned by variations of the interaction
strength, density, and trapping parameters. A system becomes
dynamically unstable when the roton energy is tuned to zero,
although quantum and thermal fluctuations may destroy the
condensate for small, but finite, roton energies [19,20]. Various
signatures of rotonization have been predicted recently, such
as reduced critical superfluid velocity [12], abrupt transitions
in Faraday patterns [21], roton-length-scale oscillations of
two-body correlations [22], roton confinement [23], and
short-wavelength immiscibility phases [24]. To date, none
of these effects have been observed in dBECs, although a
variant of Bragg spectroscopy recently measured the roton of
a nondipolar gas with cavity-mediated long-range interactions
[25]. Bragg spectroscopy, as calculated in Ref. [26], should
therefore be feasible in dipolar condensates.

The recently proposed method of stability spectroscopy
[27] is an appealing alternative for roton measurement that
produces multiple signatures, while exploiting the inherent
instability and sensitivity of rotonized systems. The general

idea is to probe the rotonized dBEC with a weak lattice of
periodicity λL and depth s, and then straightforwardly map
the stability as a function of these lattice parameters. For
quasi-one-dimensional (q1D) dBECs, it was demonstrated that
the critical lattice depth sc, above which no stable condensate
exists, depends strongly on the periodicity and exhibits local
minima whenever λL equals either half the roton wavelength
or a low roton subharmonic. The stability boundary sc (λL)
hence constitutes a spectroscopic measurement of the roton
wavelength, and it is easily measured because the lattice
depth and spacing can be adjusted by varying respectively the
intensity and angle of crossed off-resonant laser beams [28].
We emphasize that the necessary stability measurement is
effectively binary: the condensate is either stable or unstable.

The goal of the present paper is to generalize and extend
the method of stability spectroscopy to quasi-two-dimensional
(q2D) dBECs, elucidating the crucial roles played by lattice
geometry and polarization tilt. We will show that, in a 1D
lattice, the central feature of the q1D case (at λL = λrot)
persists in q2D, but the other features emerge only when the
polarization axis is tilted into the trapping plane. Additionally,
we consider the stability spectra that result from 2D triangular-
lattice perturbations, where multiple roton signatures are most
pronounced when the polarization is orthogonal to the trapping
plane. Although our results are computed numerically, we
explain the origins of the relevant stability structures by
applying perturbation theory to the Gross-Pitaevskii and
Bogoliubov–de Gennes equations. Section II describes our
mean-field formalism, Sec. III outlines the perturbation theory
employed in our analysis, Sec. IV presents and explains the
stability spectra for several interesting q2D cases, and Sec. V
concludes our discussion.

II. MEAN-FIELD FORMALISM

We consider a dilute gas of N interacting bosons that is
tightly confined in the ẑ direction by a harmonic trap of
frequency ωt and moves freely in the xy plane. The system
is then subjected to a weak lattice perturbation in the xy plane
represented by U (ρ). We scale lengths and energies by the
natural units of the problem, which are �t = √

h̄/mωt and h̄ωt

respectively. In the mean-field description of the system, the
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perturbed ground state �0(r) minimizes the grand canonical
Hamiltonian,

H [�] =
∫

d3r�∗(r)

[
−1

2
∇2 + 1

2
z2 + U (ρ) − μ3D

+1

2
N

∫
d3r ′|�(r′)|2V3D(r − r′)

]
�(r), (1)

where μ3D is the chemical potential and V3D(r) is the
interaction pseudopotential for polarized dipoles [29],

V3D(r) = 4πasδ (r) + 3add

1 − 3(d̂ · r̂)2

r3
. (2)

The interaction potential depends on the scattering length
as and the dipole length add = md2/3h̄2, as well as the
polarization direction d̂. The function �(r) is assumed to have
unit norm.

We make the simplifying assumption that both U (ρ) and
the interaction energy of the particles are small compared
to the tight trapping energy. This allows for the single-
mode approximation [30], in which the order parameter is
confined to zero-point oscillations along the z direction. The
z dependence of the order parameter then factorizes out as
�(r) = π−1/4e−z2/2ψ(ρ). With this ansatz, Eq. (1) reduces to

H [ψ] =
∫

d2ρψ∗(ρ)

[
−1

2
∇2

ρ + U (ρ) + 1

2
− μ3D

+1

2
N

∫
d2ρ ′|ψ(ρ ′)|2V (ρ − ρ ′)

]
ψ(ρ), (3)

where the q2D interaction V is given in momentum space as

Ṽ (k) = 4π√
2π

{
as + add

[
cos2 αF⊥

(
k√
2

)

+ sin2 αF‖

(
k√
2

)]}
. (4)

The functions F⊥(q) and F‖(q) are defined by

F⊥(q) = 2 − 3
√

πqeq2
erfc(q),

(5)

F‖(q) = −1 + 3
√

π

(
q2

x cos2 η + q2
y sin2 η

)
q

eq2
erfc(q)

with α and η being respectively the polar and azimuthal angles
defining the polarization direction d̂ [31]. Under the single-
mode approximation, the ground state satisfies the q2D Gross-
Pitaevskii equation

μψ0(ρ) = −1

2
∇2

ρψ0(ρ) + U (ρ)ψ0(ρ)

+N

∫
d2ρ ′|ψ0(ρ ′)|2V (ρ − ρ ′)ψ0(ρ) (6)

with the effective q2D chemical potential μ ≡ μ3D − 1
2 .

The dynamical excitations above the ground state ψ0 are
determined by solving the Bogoliubov–de Gennes equations.
These can be written compactly as(
H0 − μ + C + X X

−X −H0 + μ − C − X

)(
uj

vj

)
= Ej

(
uj

vj

)
,

(7)

where H0 = − 1
2∇2

ρ + U (ρ) is the noninteracting single-
particle Hamiltonian, C[χ ](ρ) = N

∫
d2ρ ′|ψ0(ρ ′)|2V (ρ −

ρ ′)χ (ρ) describes direct interactions with the condensate, and
X[χ ](ρ) = N

∫
d2ρ ′χ (ρ ′)ψ0(ρ ′)V (ρ − ρ ′)ψ0(ρ) is an inte-

gral operator describing exchange interactions. The functions
uj and vj are subject to the usual normalization condition∫

d2ρ(|uj |2 − |vj |2) = 1. The ground state ψ0 satisfying
Eq. (6) is dynamically unstable if one or more of the excitation
energies Ej is imaginary valued, causing local collapse on a
length scale set by the unstable mode [32].

In the absence of the perturbation U (ρ), the solutions to
Eqs. (6) and (7) are well known. Translational invariance
guarantees that momentum is a good quantum number. For
simplicity, we will assume periodic boundary conditions over
a rectangular domain of area A, which discretizes the momenta
of the system. It is also convenient to introduce the integrated
(over z) density n2D = N/A. The unperturbed ground state
and chemical potential are then ψ

(0)
0 (ρ) = 1/

√
A and μ(0) =

n2DṼ (k)|k=0, respectively. The excitations are parametrized
by their momentum quantum number k, and are given by [33](

u
(0)
k (ρ)

v
(0)
k (ρ)

)
=

⎛
⎝

√
k2/2+n2DṼ (k)

2ω(k) + 1
2

−sgn(Ṽ (k))
√

k2/2+n2DṼ (k)
2ω(k) − 1

2 )

⎞
⎠ ϕk(ρ), (8)

where ϕk(ρ) ≡ eik·ρ/
√

A and E
(0)
k = ω(k) ≡√

k2/2[k2/2 + 2n2DṼ (k)] is the Bogoliubov spectrum.
For certain densities and interaction parameters, the disper-

sion relation ω(k) may contain a local minimum at nonzero
momentum. The corresponding mode is referred to as a roton
mode. When the dipoles are polarized orthogonal to the plane
of motion, the interaction and dispersion depend only on the
momentum magnitude k, thereby causing the set of roton
modes to form a ring of radius krot in k space. Tilting the
dipoles into the plane, however, makes both the interaction
and disperion anisotropic. As an example, consider the case
in which the polarization is tilted somewhat towards the y

axis. Modes that propagate along ŷ create density antinodes
along lines of constant x, thereby accumulating dipoles in the
higher-energy side-to-side configuration. Conversely, modes
that propagate along x̂ tend to accumulate dipoles along lines
of constant y, where the dipoles are somewhat head to tail
because of the tilt. In a general sense, modes that propagate
along the tilt projection tend to have higher energy than those
that propagate in a direction orthogonal to the tilt projection,
and there is a continuous transition between the two as the
direction of a mode is varied. This anisotropy of dispersion
has been shown to lead to anisotropic superfluidity [31] and
coherence [34], as well as striped immiscibility states in binary
dipolar condensates [24]. We will see in Sec. IV A that this
anisotropy leads to emergent features in the stability spectrum
of a q2D dipolar condensate in a 1D lattice.

III. PERTURBATION THEORY

Reference [27] demonstrates that the main features of a q1D
stability spectrum can be understood in the context of simple
perturbation theory. We have found that this is also true for q2D
spectra. In this section, we briefly develop the essentials of per-
turbation theory which are necessary to understand the results
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of Sec. IV. We will establish first-order perturbative results for
the order parameter and mean-field potential, and then write
down the first-order perturbation equation for Bogoliubov
modes. Further details regarding rigorous perturbation
theories applied to the Gross-Pitaevskii and Bogoliubov–de
Gennes equations can be found in Refs. [35–39].

To study the response of the condensate to the
lattice perturbation U (ρ), we expand both the order
parameter and chemical potential in perturbation series
as ψ = ψ (0) + ψ (1) + · · · and μ = μ(0) + μ(1) + · · · ,
respectively. To first order, the Gross-Pitaevskii equation (6)
reduces to the linear perturbation equation

μ(1)ψ (0) = −1

2
∇2

ρψ
(1)(ρ) + U (ρ)ψ (0)(ρ)

+ 2n1D

∫
d2ρ ′ψ (1)(ρ ′)V (ρ − ρ ′) (9)

under the requirement that the order parameter remains
normalized to first order, implying that 〈ψ (0)|ψ (1)〉 = 0.
Multiplying both sides of Eq. (9) by ψ (0) and integrating
yields the correction to the chemical potential,

μ(1) = 〈ψ (0)|U |ψ (0)〉. (10)

We compute the correction to the order parameter by
expanding ψ (1) in the complete basis of complex exponential
functions {ϕk} introduced below Eq. (8). We then find that the
expansion amplitudes are given by

〈ϕk|ψ (1)〉 = −〈ϕk|U |ψ (0)〉
ε(k)

, (11)

where ε(k) ≡ k2/2 + 2n1DṼ (k) is an energy scale reminiscent
of the Hartree-Fock energy [40]. Given that ω(k) =√

ε(k)k2/2, the presence of a roton mode in the Bogoliubov
dispersion implies a local minimum in the Hartree-Fock-like
spectrum at a comparable value of k. For soft-roton systems,
the locations of these minima very nearly coincide. It is
easy to show that ε(k) → 2μ(0) in the zero-momentum limit,
indicating that Eq. (11) is well defined even for small k
whenever the unperturbed condensate is stable.

For the purposes of this paper, it is useful to define the
combined potential experienced by an atom at position ρ,
which is the sum of the external and mean-field potentials. We
evaluate this potential to first order from (11), which results in

Uc(ρ) ≡ U (ρ) − μ + N

∫
d2ρ ′|ψ(ρ ′)|2V (ρ − ρ ′)

=
∑
k �=0

eik·ρ k2

2ε(k)
〈ϕk|U |ψ (0)〉 + O(U 2) (12)

after some algebra. A typical lattice potential projects onto only
a few basis modes ϕk, which greatly simplifies the formulas for
both ψ (1) and Uc in practice. In the absence of interactions, the
combined potential is of course equal to the external potential
itself. However, dipolar interactions may cause the system to
rotonize, in which case the mean-field potential may amplify
the perturbation by a factor of order k2/2ε(k), the magnitude
of which depends strongly on the modes that compose the
lattice.

To study the response of quasiparticle energies to the
perturbation, we now apply a simple perturbation theory to

the Bogoliubov–de Gennes equations. We expand Ej , uj , and
vj in perturbation series, and then substitute into Eq. (7) to
find the perturbation equation:(

ω(k) + 1
2∇2 − X(0) −X(0)

−X(0) −ω(k) + 1
2∇2 − X(0)

)(
u

(1)
k

v
(1)
k

)

=
(

U (1)
c + X(1) X(1)

X(1) U (1)
c + X(1)

)(
u

(0)
k

v
(0)
k

)
− E

(1)
k

(
u

(0)
k

−v
(0)
k

)
,

(13)

where X(0)[χ ](ρ) = N
∫

d2ρ ′χ (ρ ′)ψ (0)2V (ρ − ρ ′) describes
exchange interactions with the unperturbed conden-
sate, U (1)

c (ρ) is the first-order combined potential given
by Eq. (12), and X(1)[χ ](ρ) = N

∫
d2ρ ′χ (ρ ′)ψ (0)V (ρ −

ρ ′)[ψ (1)(ρ ′) + ψ (1)(ρ)] describes exchange interactions with
the condensate perturbation. Our present interest lies only in
the energy shift E

(1)
k , which we can isolate by acting on both

sides of Eq. (13) by the operator
∫

d2ρ(u(0)
k′ ,v

(0)
k′ ) for any k′

satisfying the degeneracy condition ω(k′) = ω(k). First-order
energy shifts are then determined by the Hermitian matrix on
the right-hand side of Eq. (13), which we denote compactly as

A ≡
(

U (1)
c + X(1) X(1)

X(1) U (1)
c + X(1)

)
. (14)

Our analysis will focus primarily on the softening of roton
modes, which generally are closely connected to system
instability.

IV. STABILITY SPECTRA

A. One-dimensional lattice

We now consider the stability spectrum of a rotonized q2D
dipolar condensate that is perturbed by a one-dimensional
lattice of tunable depth and lattice spacing. Without loss of
generality, we focus on the special case in which the lattice is
directed along the x axis:

U (ρ) = s cos(kLx). (15)

Such a potential may be generated by a pair of crossed
off-resonant beams of wavelength λLas and angle θ , with
the lattice spacing determined by the relation λL = 2π/kL =
λLas/2 sin(θ/2). The depth parameter is proportional to the
single-beam intensity I0 via s = −Re {α(ω)} I0/4ε0ch̄ωt ,
where Re {α(ω)} is the atomic polarizability. The depth and
spacing of the lattice may be tuned by respectively varying the
intensity I0 and angle θ [28]. For each spacing λL, the dBEC
destabilizes at depths above a certain critical value scrit(λL).

Our numerical method maps the stability of a system by
exploiting two intrinsic symmetries of the 1D lattice (15). First
of all, the system remains invariant with respect to translations
in y. The order parameter of a stable perturbed ground
state should thus be independent of this variable, although
a collapsed state will generally exhibit a spontaneous breaking
of this symmetry due to local collapse [32]. With this in mind,
we numerically solve the Gross-Pitaevskii equation (6) using
the conjugate gradients method [41] under the assumption of
translational invariance along y. We then use the computed
ground state to numerically solve the Bogoliubov–de Gennes
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FIG. 1. (Color online) Stability spectra for q2D dBECs in a weak lattice with varied polarization tilts and scattering lengths, chosen in such
a way that ω(kx,0) is similar in each case. The shaded regions correspond to stable, condensed ground states. The experimental parameters are
for 164Dy trapped at ωt = 2π × 10 kHz with a density n3D ≈ 1015 cm−3 and dipole moment d = 10μB . Cases I–IV correspond respectively to
polarization tilt α (towards ŷ) and scattering length as values of {α,as}I = {0◦,−82a0}, {α,as}II = {7◦,−79.7a0}, {α,as}III = {10◦,−77.35a0},
and {α,as}IV = {15◦,−71.6a0}. The right-hand panels depict the dispersion relations for these cases, with the blue (solid) lines corresponding
to ω(kx,0) and the red (dashed) lines corresponding to ω(0,ky). For each case, the roton wavelength (for modes parallel to x̂) is approximately
λrot ≈ 575 nm. The vertical dashed lines on the stability spectrum denote λrot/2, λrot, and 2λrot, which approximately identify the spectral
features.

equations (7), which themselves are block-diagonal due to both
parity in x and translational invariance in y. The signature
of a collapsed state is the existence of imaginary-valued
Bogoliubov excitation energies for an assumed y-independent
order parameter, or alternatively local collapse. Our numerical
grid consists of 29 points along each of x,y ∈ [−24λrot,24λrot].

Figure 1 shows the numerically computed stability spectra
for several different rotonized dBECs. The different stability
boundaries correspond to different polarization tilts towards
the y axis [η = 90◦, in Eq. (5)], whose dispersions ω(kx,0)
and ω(0,ky) are depicted in the subplots. For each case, we
have chosen the tilt α and scattering length as in such a way
that the dispersions along x̂, most particularly the depth of
the roton mode, are comparable in each case as shown by the
solid blue lines. This allows us to isolate the consequences of
polarization tilt from those related to roton depth. As described
earlier, polarization tilt causes the modes directed along the tilt
projection (ŷ in this case) to have higher energy than modes
that are orthogonal to the tilt projection (along x̂).

In Fig. 1, we observe that the central stability feature at
λL ≈ λrot appears to exist independent of polarization tilt.
It originates in the strong amplification of the mean-field
potential, as occurs in q1D systems [27]. This may be seen
by evaluating the combined potential (12) given the 1D lattice
(15):

Uc(ρ) = s

(
k2

L

2ε(kLx̂)

)
cos(kLx) + O(s2). (16)

In each case considered, the Hartree-Fock-like energy ε(k) has
a shallow local minimum at kLx̂ ≈ krotx̂ due to rotonization.
Equation (16) thus indicates that the mean-field strongly
amplifies the perturbation by a factor of k2

rot/2ε(krotx̂) � 1 for
λL ≈ λrot. This mean-field enhancement of the lattice probe is
responsible for the central stability dip in each case. A similar

effect was recently observed in simulations of nonrotonized
dBEC superflow in a weak lattice [42]. In that context,
mean-field enhancement originates from the polarization tilt
(towards ŷ) effectively lowering the trapped-gas analog of
ε(kLx̂) for fixed scattering length and lattice spacing.

The appearance of stability dips at λL = λrot/2 and λL ≈
2λrot depends strongly on the polarization tilt angle α. This can
be understood in terms of the mode-matching of Bogoliubov
roton modes by the Hermitian matrix A defined in Eq. (14).
Both 〈ϕk′ |U (1)

c |ϕk〉 and 〈ϕk′ |X(1)|ϕk〉 are proportional to
δk′

y ,ky
δ|k′

x−kx |,kL , which defines the mode-matching conditions of
the perturbation. Degenerate modes satisfying these conditions
experience a first-order energy shift. Given the reflection
symmetry of the perturbation (15), a mode-matched pair will
separate into even and odd solutions in x. For s > 0, the odd
solution will lower in energy because it accumulates atoms
in the minima of the combined potential (16), as illustrated
in Ref. [27]; conversely, the even solution will increase in
energy. This mixing and splitting of degenerate, matched
modes is similar to that of “staggered modes” which appear
at the Brillouin-zone edge in single-particle band theory [43],
although we are considering the dispersion of quasiparticles.

Because roton modes are local minima of the system
dispersion, we expect hastened destabilization for all lattice
periodicities in which low-energy roton modes soften to first
order. Figure 2 depicts the k-space ring of degenerate rotons
for the α = 0 case. For kL ∈ (0,2krot), there are always two
pairs of rotons,

( ± kL/2,

√
k2

rot − (kL/2)2
)

and

( ± kL/2,−
√

k2
rot − (kL/2)2

)
,
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FIG. 2. (Color online) Depiction of roton modes for the case of
zero polarization tilt (α = 0). Degenerate modes satisfying ky = k′

y

and |kx − k′
x | = kL (indicated by pairs of green dots) experience first-

order energy shifts.

which mode match. For kL = 2krot, these two pairs coalesce
into a single pair at k = (±krot,0). The fact that there is always
a low-energy roton pair to soften for λL � λrot/2 implies that
the BEC is fairly unstable to collapse at small s for all applied
lattice wavelengths in this range. The stability boundary I in
Fig. 1 is therefore low and relatively featureless except for
the central dip already accounted for. By contrast, tilting the
polarization towards ŷ raises the relative energies of rotons
with a nonzero ky component. With increasing tilt α [and
fixed ω(krot,0)], we then expect an emergent stability dip
when the lowest-energy rotons (along ±x̂) mode match. This
occurs when kL = 2krot (λL = λrot/2), explaining the other
prominent feature in Fig. 1 case IV. This is in direct analogy
with the corresponding stability dip in the q1D scenario [27],
in which case excitations with a ŷ component have higher
relative energies due to tight trapping, rather than polarization
tilt. We note that we have observed the emergence of the λrot/2
stability feature in fully 3D simulations of flat pancake dBECs,
where λrot is less well defined. Thus, the emergent stability
dip is observable in the experimentally realistic scenario of a
rotonized trapped gas.

The smaller feature at λL ≈ 2λrot in Fig. 1 derives from the
interplay of second-order effects, such as (modest) mean-field
amplification and the mode matching of degenerate rotons and
phonons along x̂. The shift to a slightly shorter wavelength is
a consequence of the ε(k) minimum occurring at a somewhat
larger momentum than krot. Moreover, the first mode mixture to
destabilize in this case may not even include the precise roton
minimum, since the (degenerate) second-order energy shifts
responsible for destabilization depend on the dispersion as a
whole. This complicates the precise analytical determination
of this feature’s location beyond the approximation λL ≈ 2λrot;
however, this approximation improves as the unperturbed
roton mode softens in energy.

The stability structures discussed in this section tend to
disappear when the polarization is tilted towards the lattice
vector (along x̂). Such a tilt increases the Hartree-Fock-like
energy ε (kLx̂), thereby reducing the effect of mean-field
amplification in Eq. (16). Moreover, the lowest-energy rotons

FIG. 3. (Color online) Schematic for the alignment of lasers (in
the xy plane) used to produce the triangular lattice that we consider.

(now along ±ŷ) only mode match to each other when kL is
vanishingly small. As a result, the stability boundary of such
cases tends to be relatively structureless and is not depicted
here.

B. Triangular lattice

For the case of a 1D lattice imposed on a rotonized q2D
dBEC, a polarization tilt is required for the appearance of
multiple stability dips. We now demonstrate that a triangular
lattice perturbation causes multiple stability structures to
emerge even in the α = 0 case. One may produce a triangular
lattice using three crossed, off-resonant beams as depicted in
Fig. 3. Without loss of generality, we assume a stationary
beam directed along x̂, with symmetrically placed beams
making an incidence angle γ with the x axis as shown [44].
Assuming equal polarization and intensity among the beams,
the corresponding potential is [45]

U (ρ) = s{2 cos[kLas(1 + cos γ )x] cos[kLas(sin γ )y]

+ cos[2kLas(sin γ )y]}, (17)

where kLas = 2π/λLas is the laser wave number and s is the ac
Stark shift factor defined below Eq. (15) [46]. As the notion
of lattice spacing is ambiguous for this potential, we instead
vary the crossing angle γ ∈ (0,180)◦ and identify the stability
boundary scrit(γ ).

Due to the lack of continuous translational invariance of the
triangular lattice (17), the block diagonals of the Bogoliubov–
de Gennes eigenvalue problem (7) are large compared to
those of the 1D lattice scenario in Sec. IV A. This makes
repeated diagonalization more computationally expensive. We
instead assess stability directly from the Gross-Pitaevskii
energy functional (3). Implementing a conjugate gradients
algorithm [41], we compute the energy minimum (converged
to a relative error of 10−12, if a minimum exists) and use
local collapse as the signature of instability. Our simulations
use a grid of 28 points along x ∈ [−16λrot,16λrot] and 27

points along y ∈ [−8λrot,8λrot]. We choose a fixed, horizontal
laser mode kLas from our k-space grid, and compute stability
only for angles γ associated with k-grid modes satisfying
||k| − kLas| < dkx/2, where dkx = π/16λrot is the numerical
grid spacing of kx modes. This enforces in an approximate
way our assumption that the three lasers forming the lattice
have equivalent wavelengths, while guaranteeing that the
lattice satisfies the assumed periodic boundary conditions
of our grid. We further employ shape-preserving piecewise
cubic interpolation to the smoothly varying stability boundary
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3×10-3

FIG. 4. (Color online) Stability spectrum for a (zero-polarization-
tilt) q2D dBEC subjected to a triangular lattice perturbation. The
shaded region corresponds to a stable, condensed ground state. The
experimental parameters are identical to those of case I in Fig. 1.
The assumed laser wavelength is λLas = 595 nm. The vertical dotted
lines denote the predicted locations of stability dips, based on first-
order perturbation theory applied to the Gross-Pitaevskii equation. We
have employed piecewise cubic interpolation to smooth the stability
boundary.

for angles that cannot be produced on our finite, periodic
spatial grid. We find that these numerical approximations
are sufficient to resolve the important spectral features of the
stability diagram.

Figure 4 shows the triangle-lattice stability spectrum of the
same α = 0 dBEC as was used in Fig. 1. We observe three main
features, each of which originates entirely from mean-field
amplification. We compute the first-order combined potential
by substituting Eq. (17) into Eq. (12):

Uc(ρ) = s{2AkLas,γ cos[kLas(1 + cos γ )x] cos[kLas(sin γ )y]

+BkLas,γ cos[2kLas(sin γ )y]} + O(s2), (18)

where

AkLas,γ ≡
[
2kLas cos

(
γ

2

)]2

2ε
(
2kLas cos

(
γ

2

)) ,

(19)

BkLas,γ ≡ (2kLas sin γ )2

2ε(2kLas sin γ )
.

Given that ε(k) has a shallow local minimum at k ≈ krot, a
component of the perturbation (17) is strongly amplified when
either sin γ ≈ krot/2kLas or cos( γ

2 ) ≈ krot/2kLas is satisfied.
Figure 5 plots the three solutions to these equations on the
domain γ ∈ (0,180)◦ as functions of λLas/λrot = krot/kLas,
which exist only for λLas � 2λrot (or, equivalently, kLas �
krot/2). For the particular laser wavelength relevant to Fig. 4
(λLas/λrot = 1.03), three solutions are identified (green dots)
which determine the values of γ where stability minima
should occur. These predicted minima are depicted in Fig. 4
with vertical lines. As we can see, the observed locations of
the stability dips agree quite well with the prediction. The
stability boundary near γ ≈ 120◦ is somewhat lower because

FIG. 5. (Color online) Predicted locations of stability structures
as a function of laser wavelength λLas. The symmetric blue lines are
solutions to sin γ = λLas/2λrot, and the red line is the solution to
cos γ

2 = λLas/2λrot. Angles corresponding to the laser wavelength
used for Fig. 4 are indicated by green dots, and they define the
locations of the vertical lines overlain on the triangle-lattice stability
spectrum in Fig. 4.

it originates from the mean-field enhancement of the first term
in Eq. (18), which has an additional factor of 2.

It is interesting that these locations can be tuned by varying
the laser wavelength, with the constraint that the wavelength
remain detuned from internal atomic transitions. We note that
the two structures which are symmetric with respect to the
angle 90◦ (located at γs � 90◦ and 180◦ − γs � 90◦) would
appear even in the absence of the horizontal beam, in which
case the perturbation reduces to a 1D lattice with a periodicity
that is symmetric over γ = 90◦. The asymmetric structure
(whose location we denote by γa) would appear in the absence
of either of the oblique laser beams for similar reasons. The
simultaneous appearance of all three structures requires the 2D
character of the lattice. Once the locations of these stability
dips are measured, one can infer the roton wavelength via
either λrot ≈ λLas/ (2 sin γs) or λrot ≈ λLas/(2 cos γa

2 ).
Similar to the 1D-lattice scenario in Sec. IV A, mode

matching plays a minimal role when a zero-tilt rotonized dBEC
is perturbed by a triangular lattice. This may be understood
by considering matrix elements of the A matrix [defined
below Eq. (13)] between modes k′ and k. In this case, both
〈ϕk′ |U (1)

c |ϕk〉 and 〈ϕk′ |X(1)|ϕk〉 are proportional to a sum of the
Kronecker δ functions,

δ|k′
x−kx |,kLas(1+cos γ )δ|k′

y−ky |,kLas sin γ (20)

and

δkx,k′
x
δ|k′

y−ky |,2kLas sin γ , (21)

where mode matching can occur essentially via either term
in Eq. (18). This is in direct analogy with Fig. 2 except
that matched modes connect either vertically by the vec-
tor ±2kLas sin γ ŷ or diagonally by the vector ±kLas(1 +
cos γ )x̂ ± kLas sin γ ŷ, the norm of which is 2kLas cos γ

2 . Rotons
cannot mode match if both of these vectors are too large
in magnitude to form chords in a circle of diameter 2krot.
Such is the case for angles in the vicinity of γ = 60◦ when
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kLas > 2krot/
√

3 (equivalently, λLas <
√

3λrot/2), as follows
from geometric principles. This raises the stability boundary
somewhat for such angles, since the destabilization of rotons
is then a second-order effect; nevertheless, no new stability
features emerge.

The question naturally arises as to how polarization tilt
might affect the stability spectrum of a rotonized gas in a
triangular lattice. We have found that certain features in Fig. 4
wash out with increasing tilt, depending both on λL/λrot and
the direction of polarization tilt. For the case of tilted dipoles,
the amplification factors in Eq. (19) are written more generally
as

AkLas,γ =
[
2kLas cos

(
γ

2

)]2

2ε(±kLas(1 + cos γ )x̂ ± kLas sin γ ŷ)
,

(22)

BkLas,γ = (2kLas sin γ )2

2ε(±2kLas sin γ ŷ)
.

Since the polarization tilt raises the relative Hartree-Fock-
like energies of roton modes along the tilt projection, this
results in AkLas,γ and/or BkLas,γ being less strongly peaked
functions of γ . For example, tilting the polarization towards
ŷ raises the relative value of ε(±krotŷ), which diminishes the
enhancement due to BkLas,γ . This would cause a washing out
of the symmetrically located features in Fig. 4. Similarly, a
polarization tilt towards x̂ would diminish the enhancement
due to AkLas,γ and wash out the central stability feature.

We note that the stability structures originating from mean-
field enhancement, both in the 1D and 2D lattices, can be
observed in systems whose dispersions are not quite rotonized
[i.e., possess no roton minimum in ω(k)]. This is because the
energy ε(k), whose inverse appears in the combined potentials
(16) and (18), may have a local minimum even when the
dispersion ω(k) does not exhibit a roton. In such cases, the
inverse energy 1/ε(k) is less strongly peaked, resulting in
respective stability dips that are generally observable, albeit
less pronounced. The locations of these dips are set by the local
minimum of ε(k), and this is strictly true even for rotonized
systems, in which case krot only approximates the location
of the ε(k) minimum. These particular structures thus do not
measure the onset of rotonization in the dispersion, but rather

the closely related phenomenon of a Hartree-Fock-like local
minimum at nonzero momentum. Such can occur at lower
densities than are generally necessary for rotonization, making
our results directly relevant to current dBEC experiments that
do not appear to have fully rotonized dispersions.

V. CONCLUSION

Stability spectroscopy is a promising new avenue for
measuring the experimentally elusive roton. When a rotonized
dipolar condensate is perturbed by a weak optical lattice,
the resulting stability plot contains spectroscopic information
from which the roton wavelength may be inferred. In this
paper, we have examined the stability spectra of rotonized
q2D dipolar BECs in the presence of tunable 1D and 2D
lattices. The tilt of the dipole polarization axis plays an
important role in determining which structures are present in
the 1D-lattice stability diagram. The central stability feature
at periodicity λL ≈ λrot exists independently of polarization
tilt, whereas the features at λrot/2 and 2λrot emerge only
when the rotonized gas has the polarization axis tilted into the
plane, remaining orthogonal to the lattice vector. The emergent
structures originate in the mode matching of directional rotons,
the relative energies of which depend on polarization tilt. In
the case of a triangular lattice perturbing a zero-tilt dBEC,
we find structure in the stability spectrum resulting from the
2D character of the perturbation. The locations of stability dips
can be tuned by varying the off-resonant laser wavelength used
to produce the lattice. Recent advances in the condensation
of magnetically dipolar atoms suggest that measurements of
stability spectra should be feasible, and that rotons in dBECs
may be consequently observed.
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M. H. G. de Miranda, J. L. Bohn, J. Ye, and D. S. Jin, Nature
(London) 464, 1324 (2010).

[7] S. Ospelkaus, K.-K. Ni, G. Quèmener, B. Neyenhuis, D. Wang,
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