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Field enhancement in apertureless near-field
scanning optical microscopy
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The near field of an apertureless near-field scanning optical microscopy probe is investigated with a multiple-
multipole technique to obtain optical fields in the vicinity of a silicon probe tip and a glass substrate. The
results demonstrate that electric field enhancements of .15 relative to the incident fields can be achieved near
a silicon tip, implying intensity enhancements of several orders of magnitude. This enhancement arises both
from the antenna effect of the elongated probe and from a proximity effect when the probe is near the substrate
surface and its image dipoles play a role. © 2001 Optical Society of America
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1. INTRODUCTION
Near-field scanning optical microscopy (NSOM) opens
new scientific frontiers with its promise of spectroscopi-
cally probing individual molecules. Not only will it be
possible to determine where the molecule is, as in conven-
tional atomic force microscopy, but also to understand
what molecule it is and how it responds to its physical
and chemical environment. One option for observing the
spectrum of a single molecule is to disperse the molecules
so sparsely on the surface that the microscope focus con-
tains at most one molecule.1,2 Studies of this type have
yielded valuable and somewhat unexpected information
on the fluorescence of single molecules as opposed to the
average fluorescence of larger ensembles.3 What is miss-
ing from this approach is the ability to probe a single mol-
ecule, or a portion of a large molecule, in situ, where it
may be crowded in with many other molecules within the
diffraction limit of visible probing light.

Conventional NSOM responds to this challenge by
bringing a small-diameter aperture over the sample, usu-
ally a metal-clad optical fiber, through which either the il-
luminating or probe light must pass.4 Theoretical resolu-
tion is limited to 30–50 nm in this case, however,, by the
skin depth of the material cladding the probe tip,5 while
in practice the resolution is generally poorer than this.
More recently a set of apertureless techniques, dubbed
apertureless near-field scanning optical microscopy
(ANSOM), overcomes this difficulty by replacing the opti-
cal fiber light pipe by a solid metal or semiconductor
atomic force microscope probe tip.6–9 The probe draws the
electric field to its sharp tip like a lightning rod, providing
a resolution of the order of nanometers, comparable to the
tip’s width.6 In a further refinement, the sample may be
illuminated by evanescent light generated by total inter-
nal reflection inside the glass substrate on which the
sample sits. In this case virtually all the light scattered
into the far field above the glass originates near the probe
tip, thus significantly boosting sensitivity.10

To extract chemical information from ANSOM requires
a spectroscopic technique that can probe a single mol-
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ecule’s internal states. The leading proposals for extract-
ing this information are fluorescence and Raman
spectroscopies.11–15 To make this spectroscopy work re-
quires not only a localized source of light but a bright
source of light, owing to the relative weakness of the os-
cillator strengths involved. Fortunately, several decades
of research on surface-enhanced Raman scattering has in-
dicated that nanometer-sized surface irregularities in-
deed produce enormous localized electric fields,16 suffi-
cient in fact to make single-molecule Raman spectroscopy
feasible.17,18

In the context of apertureless metal tips illuminated
from above the surface, large field enhancements were
predicted as early as 1991 from electrostatic models19 and
verified again later in more realistic calculations.20 The
role of the frequency dependence of plasma resonances
has also been investigated theoretically.16,21 On the ex-
perimental side it has been found that the field enhance-
ment possesses a strong dependence on the light’s polar-
ization relative to the probe’s axis.22 In addition, a
scanning tunneling microscope measurement extracted a
field enhancement of ;1000 for PtIr probes and graphite
or gold samples.23 In this work the enhancements were
understood by using simple dipolar models of the tip.
Large enhancements have also been inferred from experi-
ments that use silicon tips.11

Recently another type of ANSOM experiment was re-
ported that also measured a large field enhancement.14 In
this experiment the probe tip and sample were illumi-
nated by an evanescent field generated by total internal
reflection in a glass prism. Thus the entire probe tip was
not bathed in incident illumination, as had been the case
in previous studies. The probe (which was made of sili-
con) was scanned over various polystyrene spheres doped
with dye molecules. The resulting fluorescence signal
versus the tip-to-sample distance fit a simple model that
replaced the probe with an effective point dipole at the
center of a hemispherical tip. The only fitting parameter
was the strength of this dipole, expressed as the enhance-
ment of the electric field immediately beneath the tip
relative to the evanescent electric field immediately above
2001 Optical Society of America
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the prism’s surface, k [ Etip /Eevan . The results showed
strikingly that the enhancement can be as large as k'28,
implying an intensity enhancement of nearly one thou-
sand.

In contrast to metal probes and samples with small fi-
nite skin depth, the silicon tip is essentially transparent
to light, as is the glass substrate in the experiment of Ref.
14. The purposes of this paper are to explore the field en-
hancement in this novel situation and to verify that large
enhancements are possible in this case as well. We do
this quantitatively using numerical calculations on a
model system, as well as qualitatively using a simple elec-
trostatic model that exploits the fact that the tip is small
compared with the wavelength of light. The simpler
qualitative model allows us to explicitly identify the ori-
gin of the field enhancement as contributions arising from
an antenna effect and a field dressing that occurs when
the tip is within its own radius of curvature of the surface.

A number of problems in electromagnetic scattering
theory relevant to ANSOM have been treated in the the-
oretical literature, yet none have quite approached the ge-
ometry of the experiment of Ref. 14. For example, pro-
late spheroids representing long, sharp objects have long
been studied either numerically24 or as formal extensions
of Mie theory.25 Similar solutions have had a great impact
on our understanding of surface-enhanced Raman
scattering.16 Another set of solutions emphasizes scatter-
ing of light from spheres or other objects near a surface
but illuminated by plane waves.26–28 These solutions are
performed by several techniques, including multiple ex-
pansions and image scatterers. These studies tend to fo-
cus on properties of the far-field scattered radiation. In
addition, discrete-dipole calculations of oblate metal sphe-
roids on surfaces have verified large near-field
enhancements.29 Specific experiments have also been
modeled by assuming spherical tips, for example, Ref. 30,
which models the optical contrast of the experiment.

Scattering by evanescent waves has also been consid-
ered in the case of isolated spheres31 or small clusters of
spheres representing an ANSOM tip.32 These results
have shed much light on the role of distance-dependent
plasmon resonances as well as on practical issues of reso-
lution and scattered light intensity. They have not, how-
ever, sought to address the near-field enhancement of the
electric field. Nor is it completely clear how accurately
results from a collection of spheres converge to a solid
probe tip.

A few numerical studies have also approached specific
ANSOM geometries. In one, a new technique is proposed
that employs illumination by a Hermite–Gaussian laser
beam intended to facilitate two-photon fluorescence
spectroscopy.9 In another, a wedge-shaped tungsten probe
tip was found in calculations to give intensity enhance-
ments of several hundred when illuminated by plane
waves.20 While this result is encouraging, it is not clear
how applicable it is to the transparent tip in the experi-
ment in Ref. 14. In addition, the enhancement generated
by plane waves was found to grow linearly with the vol-
ume of the probe, whereas in an evanescent wave most of
the tip is not directly illuminated. Additionally, this
purely numerical solution was not able to separate out
contributions from the antenna and proximity effects.
It is therefore worthwhile to consider a model more
closely approximating the conditions of Ref. 14. That is,
we incorporate a surface, an incident evanescent wave,
and an elongated probe. We model the probe by a prolate
spheroid with a length that we are free to vary. In Sec-
tion 2 we detail this model and its numerical solution us-
ing the multiple-multipole (MMP) method.33 We also
briefly treat this model in an electrostatic approximation
that underscores the basic physics issues involved in en-
hancement. In Section 3 we illustrate the numerical
model with useful examples that show the size of the field
enhancement and its origin. These results also illustrate
that resolution is predominantly limited by the size (i.e.,
the radius of curvature) of the probe tip.

2. THEORY
A. Computational Model
Calculating the near field is fundamentally an exercise in
classical electromagnetic scattering theory. Thus the
probe and the glass prism are simply represented as lin-
ear, isotropic, homogeneous dielectrics with dielectric con-
stants e and eg , respectively. We ignore the frequency
dependence of these constants, since the incident light is
assumed to be monochromatic. For the calculations re-
ported below we take e 5 19 and eg 5 2.25 representing
visible radiation with a silicon tip and a glass prism, re-
spectively. We have disregarded the imaginary part of e,
since it is small (0.63) and leads to a skin depth in the sili-
con of ;1100 nm, far larger than any tip modeled numeri-
cally in this paper.

The geometry of our model is illustrated in Fig. 1. The
prism is represented as a semi-infinite dielectric slab oc-
cupying the space z , 0. We model the probe tip as a
prolate spheroid with semimajor axis a and semiminor
axis b , a. Using a smooth, regular shape such as a
spheroid greatly simplifies numerical calculations. No-
tice that the detailed shape of the upper part of the probe
is not extremely important, since we are interested in the
near field, i.e., within several tens of nanometers near the
tip, while the actual atomic force microscope probe tip in
the experiment is approximately a narrowly tapered cone
of several micrometers in length. We will examine the a
dependence of the near field below; for the comparison be-
tween different values of a to be meaningful, the sphe-
roids are normalized by fixing the radius of curvature,
Rc 5 b2/a, at the tip. Below we show results for two
sizes of tip, Rc 5 10 nm and Rc 5 5 nm, which are typi-
cal of ANSOM experiments. In either case Rc remains
small compared with the wavelength of the incident light.
Finally, we let d denote the distance from the probe tip to
the surface.

The illuminating light, with vacuum wavelength l, is
incident from within the glass prism at an angle of inci-
dence u inc greater than the critical angle for total internal
reflection. The wave vector of the incident light (indi-
cated in Fig. 1) and that of the internally reflected light
determine the scattering plane, which is taken to be the
x –y plane in the model. The light is polarized with its
electric field in this plane, so that it will lie along rather
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than across the probe; this enhances the antenna effect.20

In the calculations below we choose l 5 543 nm and
u inc 5 60°; the evanescent wave’s intensity then falls off
exponentially in the vacuum with a 1/e length of l0 5 52
nm. In the absence of the probe tip the electric field can
be conceptually broken into three components,

E0 5 Einc 1 Eref 1 Eevan , (1)

denoting, respectively, incident and totally internal re-
flected plane wave in the glass and the evanescent wave
in the vacuum above. These fields are, of course, analyti-
cally represented by elementary means.34

To compute the influence of the probe on the near field,
we must solve Maxwell’s equations and the vector Helm-
holtz equations for the electric and magnetic fields, sub-
ject to the usual boundary conditions on the surfaces of
the prism and the probe. In principle the fields can be
expanded into a suitable set of electromagnetic
multipoles35 centered at a convenient location (e.g., the
center of our spheroid), with coefficients determined to
satisfy the boundary conditions on both the spheroid and
the planar surface. However, this is numerically diffi-
cult, since the boundaries are far from having the spheri-
cal symmetry to which the multipoles are adapted, and
the number of coefficients required would be enormous.

A stable numerical alternative is to place small sets of
multipole expansions at a carefully chosen set of different
expansion centers. This technique is therefore known as
the MMP method.33 The expansion of the electric field
takes the generic form

Fig. 1. Geometry of the model. The probe tip is modeled by a
prolate spheroid with semimajor and semiminor axes a and b
whose lower tip is displaced a distance d above the glass surface.
The tip and glass have dielectric constants e and eg , respectively.
The wave vector k of the incident light lies in the x –z plane at an
angle of incidence greater than the critical angle for total inter-
nal reflection.
E~r! 5 E0~r! 1 (
k

ckfk~r 2 rk!, (2)

with a similar expansion for the magnetic field. Here the
functions fk represent analytical solutions to the Maxwell/
Helmholtz equations, in our case represented by multi-
poles centered at the various locations rk . The radial de-
pendence of each multipole function is given by an
appropriate spherical Bessel function bl(kr), where k de-
notes the wave number. Boundary conditions for the
multipole are specified by the type of Bessel function cho-
sen. If bl is a regular spherical Bessel function jl , then
the corresponding multipole does not diverge at its origin.
This kind of multipole is placed at the center of the spher-
oid to describe the fields inside the spheroid. An alterna-
tive boundary condition is to set bl 5 hl

1 , an outbound
spherical Hankel function. This kind of function is ap-
propriate to describe, e.g., the scattered waves outside of
the spheroid, but must then be placed inside the spheroid
to avoid the singularity that it possesses at r 5 0. With
the sole exception of the regular multipole describing the
field inside the spheroid, all fields in any of the dielectric
media are generally represented by multipole expansions
centered outside that dielectric.

The coefficients ck are determined by applying bound-
ary conditions in a least-squares sense on a discrete set of
matching points $sa% on the boundaries between dielec-
trics. This procedure yields a system of linear equations
for the ck’s. Typically the number of matching points
chosen is much larger than the number of unknown coef-
ficients, so that these equations are overdetermined.
The choice of matching points and multipole expansions
must be made carefully, bearing in mind several issues.
The multipole orders must be large enough to represent
variations in the field, but not large enough that the mul-
tipoles oscillate between one matching point and the next.
Moreover, the overdetermination of the system of linear
equations must be kept in check to avoid numerical prob-
lems of ill conditioning. More details can be found in Ref.
33.

A recipe that we have found useful is the following:
Matching points at the prism–vacuum interface are
spaced at Rc/10 intervals on a square grid of dimension
Rc on a side. Experience shows that beyond this distance
the field rapidly reduces to the simpler solution [Eq. (1)],
which we know analytically. On the probe–vacuum in-
terface, we use matching points regularly spaced in the
spherical coordinates f and u, referred to the center of the
spheroid. The number of matching points in each coordi-
nate varies between 20 and 80 depending on the eccen-
tricity of the spheroid. Typical matching points are illus-
trated in Fig. 2(a) for the Rc 5 10 nm, a 5 40 nm
spheroid.

Multiple centers are placed along the z axis at various
values of z, as indicated in Fig. 2(b). To represent the
fields inside the spheroidal probe tip we use three centers,
at z 5 d 2 Rc , d 1 a, and d 1 2a 1 Rc [left side of
Fig. 2(b)]. Multipoles placed at the center are of regular
type, as described above. The multipoles centered above
and below the spheroid instead have outgoing boundary
conditions, determined by the outgoing spherical Hankel
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functions hl
1 . These poles help to follow variations in

the field near the comparatively sharp ends of the spher-
oid.

The scattered field above the plane is represented by a
string of outgoing multipoles with centers inside the
probe [right side of Fig. 2(b)]. Two multipole centers are
placed at the centers of curvature of the spheroid’s ends,
at z 5 d 1 Rc and d 1 2a 2 Rc. In addition, several
centers lie at equal intervals Dz (typically 2Rc) between
these centers. Another multipole center is also placed
below the surface of the prism, at z 5 2Rc . This is a
kind of ‘‘image’’ multipole, although experience shows
that it is more useful if its position is fixed even when the
probe tip moves up and down. Finally, the field inside
the glass prism is empirically well represented by a single
outgoing multipole expansion placed at the center of cur-
vature of the probe tip, z 5 d 1 Rc .

With these multipoles in place the MMP method is rea-
sonably stable for multipole orders less than Nmax 5 6–7.
Figure 3 illustrates the convergence versus multiple order
of the intensity enhancement under the probe tip when
the probe is just touching the prism. Under these cir-

Fig. 2. Setup of the MMP calculation. Boundary conditions for
Maxwell’s equations ar enforced at a discrete set of points on the
surface of the probe and the glass substrate. A subset of these
points is shown in (a) for the case of a 5 40 nm, b 5 20 nm, and
d 5 5 nm. In addition the MMP calculation employs multipole
expansions placed at various points along the symmetry axis of
the probe and at various heights z, as indicated in (b). The text
details the locations of these expansions.
cumstances the field takes its largest value and experi-
ences its strongest dependence on tip position. Thus this
quantity provides the most stringent test of numerical
convergence. For each of the a values in Fig. 3, two sets
of enhancement versus Nmax are shown, for different den-
sities of matching points. Under these circumstances the
field intensities in the vicinity of the probe tip are con-
verged to within several percent. In addition, the differ-
ence between the fields on either side of each interface be-
tween dielectrics is monitored, and the appropriate
boundary conditions are maintained at the several-
percent level. This level of convergence is adequate for
the semiquantitative estimates we are aiming at here.

Another issue must be kept in mind when this model is
used. To realistically model the tip as a macroscopic ob-
ject in the z direction requires extending our model to the
a → ` limit. However, as a becomes large, this calcula-
tion becomes problematic, since the spheroid is bounded
and ultimately exhibits scattering resonances, which al-
ter the field distributions. Typically a resonance places
field nodes at the surface of the spheroid, thus effectively
reducing the apparent field near the probe tip. We can
estimate the value of a for which these resonances appear
in the spheroidal model. Regarding the electromagnetic
field inside the spheroid as analogous to a quantum me-
chanical particle in a box, we expect the spheroid to reso-
nate when its smallest dimension 2b 5 2ARca becomes
comparable to 1/2 the wavelength of the light in the ma-
terial of which the probe is constructed, lprobe 5 l/Ae.
Equating the two dimensions suggests that the lowest
resonance appears for silicon tips when b becomes larger
than '30 nm.

In the case of a real probe tip these resonances are not
expected to be a significant issue, for two reasons: (i)
When the tip is very large compared with lprobe, the reso-
nances should blend together into a quasicontinuum,
whereby only an averaged, nonresonant field is observed;
(ii) in any real material there are dispersive losses, mean-

Fig. 3. Convergence of the MMP calculation. The intensity en-
hancement factor k2 at d 5 0 is plotted versus Nmax , the maxi-
mum order of multipoles used in the expansions. Results for
three different values of the probe’s semimajor axis a are shown.
In each case the difference between open and solid symbols rep-
resents an increase in the number of matching points on the
probe tip by ;20%.
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ing that the standing waves in the tip responsible for
resonances may not even form in the first place. For the
silicon tips of interest here, the skin depth of visible light
is ;1100 nm, far smaller than the size of the tip. Thus
damping of such resonances would be significant in a real
tip, even though we neglect it in the numerical calcula-
tions here.

B. Electrostatic Approximation
As illustrated in the next section, much can be learned
about the electric field distribution underneath the tip
from numerical calculations for finite values of a, specifi-
cally in the nonresonant region a < 100 nm. Neverthe-
less, it is worth a digression here to construct a simpler,
analytic model that can suggest qualitatively how large
the fields can become in the a → ` limit. To do this we
assemble an electrostatic model that is easy to imple-
ment, is analytic, and approximates the correct shape of
the field. These results are presented alongside those of
the numerical calculations in Section 3.

The approximate model replaces the probe tip by a
point dipole located at the tip’s radius of curvature, z
5 d 1 Rc .14,23,30 The fields due to this dipole and its im-
age dipole in the glass prism, located at z 5 2d 2 Rc ,
then approximate the near field. We determine the size
of this dipole using a self-consistent electrostatic approxi-
mation. We represent the evanescent field by a uniform
field of magnitude Ee pointing in the z direction to mimic
the vertical component of the incident light. In this field
the tip acquires an induced dipole moment of magnitude

p ind 5 a~Ee 1 E im!, (3)

where

E im 5
2p im

~2d 1 2Rc!
3 (4)

is the field at the sphere due to the image dipole of mag-
nitude p im . In the case of a small spherical tip of radius
Rc , a is the familiar polarizability given by

asphere 5 Rc
3S e 2 1

e 1 2 D . (5)

More generally, for an extremely elongated ellipsoid, we
must replace this value by the effective field enhancement
near the ellipsoid’s tip.

a 5
~e 2 1 !

2
Rc

3, (6)

as described in Appendix A.
The electrostatic potentials above (z . 0) and below

(z , 0) the prism are given in cylindrical coordinates by

Fabove 5 2Eez 1
p ind~z 2 Rc 2 d !

@r2 1 ~z 2 Rc 2 d !2#3/2

1
p im~z 1 Rc 1 d !

@r2 1 ~z 1 Rc 1 d !2#3/2 , (7)

and
Fbelow 5 2
Ee

eg
z 1

pprism~z 2 Rc 2 d !

@r2 1 ~z 2 Rc 2 d !2#3/2 (8)

where eg stands for the dielectric constant of the glass
from which the prism is made, and pprism is an effective
dipole moment to be determined. By applying the appro-
priate boundary conditions to the electric field E 5 2¹F
at the prism–vacuum interface, we arrive at the values of
the remaining dipoles:

p im 5 S eg 2 1

eg 1 1 D p ind [ bp ind , (9)

pprism 5
2

eg 1 1
p ind . (10)

Inserting Eq. (4) and (9) to substitute for E im in Eq. (3)
yields a self-consistent equation for the induced dipole
moment

p ind 5 aEeF1 2
ab

4~d 1 Rc!
3G21

. (11)

With these dipole moments determined, the gradients of
Eqs. (7) and (8) yield the electric fields in our model.

Thus the magnitude of the near field can be obtained in
our electrostatic picture, and in particular the value of k.
Recalling that k is the ratio of the field’s magnitude to
that of the evanescent wave, we must divide the resulting
field by Ee . The resulting expression for the
d-dependent tip enhancement for a spherical probe is

k 5 1 1
2a@1/Rc

3 1 b/~2d 1 Rc!
3#

1 2 @ab/4~d 1 Rc!
3#

. (12)

The first term in this expression is just the applied field
itself. The second term is proportional to the polarizabil-
ity of the tip and contains terms in its numerator arising
from the tip’s induced dipole as well as terms due to the
image dipole. In addition, this term contains a resonance
denominator that arises from the self-consistency of the
total electric field. This denominator is largely respon-
sible for additional enhancement that is the proximity of
the tip to the surface.

The dependence of the enhancement on a highlights
the role of the antenna effect. For example, for a spheri-
cal silicon tip (e 5 19), we find in this approximation
k 5 2.95, which is not particularly large. However, for
an elongated tip where Eq. (6) is the appropriate polariz-
ability, we find k 5 187, far larger than the computed
MMP value obtained below. The reason for this overes-
timate is clear: We are assuming an arbitrarily long
probe tip uniformly illuminated by an electric field whose
strength is constant in z, in contrast to the actual illumi-
nation provided by the evanescent field. In addition, the
dipole moments excited in the real tip by a time-
dependent field only add their contributions to the field
coherently within a portion of the tip of order l/4.

3. NEAR FIELD: SIZE, SHAPE, AND
STRENGTH
In this section we explore the ANSOM near field using
both the detailed MMP calculation and the electrostatic
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approximation described above. We consider tips of two
different representative radii of curvature Rc 5 10 nm
and Rc 5 5 nm, to help illustrate the importance of Rc in
determining the properties of the near field.

A. Dependence on Probe Position: Lateral Resolution
An important requirement for successful ANSOM imag-
ing is that the resolution be determined by the size of the
probe tip, and not the macroscopic length of the probe.
This has been explicitly verified in various calculations of
the scattered light32 and in field enhancement under
plane-wave illumination.20 Here we also verify sharp
resolution for the near fields in the evanescently excited
silicon tip, showing also the dependence of resolution on
the tip’s height above the surface.

Figure 4 plots the intensity of the field in the x –y plane
immediately above the surface of the glass prism, where
the molecules being probed would sit, for a probe tip of ra-
dius Rc 5 10 nm hovering d 5 2 nm above the surface.
In Fig. 4(a) is shown the result of a full MMP calculation
for a spheroid of semimajor axis a 5 100 nm, while in
Fig. 4(b) is shown the corresponding field distribution for
the electrostatic approximation in the a → ` limit. In
both cases the intensity is normalized to the same maxi-
mum value in order to emphasize the overall shape of the
intensity profile. This normalization accounts for the ap-
parently different background intensity levels in the two
cases, since the electrostatic model yields a far higher
peak intensity, as discussed above.

The shapes of the two peaks are qualitatively similar,
speaking to the general success of the electrostatic model
in describing the field shape. Note in particular that the
electrostatic results is by construction cylindrically sym-
metric about the probe’s axis and that the full MMP solu-

Fig. 4. Distribution of electric field intensity at the glass surface
for a probe with radius of curvature Rc 5 10 nm and a probe tip–
surface distance d 5 2 nm. (a) shows the result of the full MMP
calculation for an a 5 100 nm probe, while (b) shows the ap-
proximate result obtained in the electrostatic approximation
with a → `. The two calculations are normalized to the same
peak intensity.
tion is nearly so. Closer examination reveals a small
asymmetry in the MMP result, leading to a slightly
higher intensity on the downstream (i.e., positive-x) side
of the probe. One essential feature apparent in the in-
tensity profiles in Fig. 3 is that their FWHM is of order
;10 nm, nearly the same as the radius of curvature of the
tip.

To emphasize the relation between resolution and the
radius of curvature Rc , we plot in Fig. 5 the FWHM of the
intensity peaks at the surface versus the probe tip–
surface distance d, with both quantities normalized by
Rc . Figure 5(a) shows the result for the Rc 5 10 nm tip,
while 5(b) shows the result for the Rc 5 5 nm tip. In
both cases the data are calculated for various values of
semimajor axis a to illustrate the rapid convergence as a
grows. Moreover, the converged curves are very nearly
the same for the two tip radii, especially when the tip is
close to the surface.

This good agreement underscores the importance of Rc
in determining the resolution width. Thus when the
probe is in contact with the surface (d 5 0), the FWHM
is roughly 0.6Rc . It then grows with increasing d,
nearly doubling in width by the time d/Rc ' 1. The
heavy solid curves in Fig. 5 show the same result calcu-
lated within the electrostatic model. This model repro-
duces the width quite well in the small-d limit yet under-
estimates the growth in width as the probe tip is lifted
from the surface. Still, this simple qualitative model also
confirms that Rc is the scale of lateral resolution.

B. Vertical Resolution: The Proximity Effect
A second crucial characteristic of the optical near field is
its extremely rapid falloff as the tip is removed from the
surface. Figure 6 illustrates this effect, plotting field in-
tensity at the surface versus d/Rc . Here all fields are

Fig. 5. ANSOM resolution: The FWHM of the near field inten-
sity in the x direction is plotted versus the probe tip–surface dis-
tance d. Both quantities are normalized by Rc , the tip’s radius
of curvature. (a) and (b) show the results for the Rc 5 10 nm
and Rc 5 5 nm probe tips, respectively. The values of the semi-
major axis a are indicated in the legend. In both panels the re-
sult of the electrostatic approximation is shown as a heavy line.
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normalized by the intensity of the evanescent field just
above the prism’s surface. For comparison, the dashed
curve plots exp(2d/l0), i.e., the rate at which the evanes-
cent field itself would fall off if the probe had no effect.
Recall that for our calculations the 1/e length l0 of the
evanescent intensity is 52 nm. For comparison, the cal-
culation for the Rc 5 5 nm, a 5 100 nm tip is also shown.

In all cases, two features are immediately apparent:
The intensity is far higher, by two orders of magnitude,
than the ambient evanescent intensity, and it falls off far
more rapidly. Indeed, the intensity falls to roughly half
its d 5 0 value by d/Rc ; 0.1 (note the logarithmic axis
in the figure). The vertical resolution is thus even
sharper than the lateral resolution and in fact is basically
independent of the probe length a. This sharp vertical
resolution originates in the proximity effect and falls off
rapidly as a result of the 1/d3 falloff of the induced and
images dipole, as suggested by the electrostatic approxi-
mation.

C. Dependence on Probe Length: The Antenna Effect
Finally, we address explicitly the dependence of the field
intensity itself on the probe length, i.e., the antenna ef-
fect. To demonstrate this effect we show in Fig. 7 the in-
tensity enhancement k2 at the surface as a function of the
semimajor axis a, again scaled by Rc . When a/Rc 5 1
the probe is spherical, and when a/Rc . 1 the probe is
prolate with radius of curvature maintained at Rc nm at
the tip. The case shown is for the tip just touching the
surface, d 5 0.

As was the case for the resolution width, here the
agreement between the Rc 5 10 nm and Rc 5 5 nm tips
is quite good, especially for small values of a. For a
spherical tip we understand that the strength of the in-
duced dipole is ; Rc

3, while the near field a distance Rc

Fig. 6. Proximity effect: The intensity on the glass surface im-
mediately beneath the probe tip is plotted as a function of the
tip–surface distance, d, in units of Rc , the tip’s radius of curva-
ture. For comparison the dashed curve shows the rate at which
the evanescent field falls off with distance in the absence of a
probe tip. MMP calculations are shown for three different probe
lengths a for the Rc 5 10 nm tip. Also shown is the result for
the Rc 5 5 nm, a 5 100 nm tip.
from the dipole is proportional to 1/Rc
3. The two factors

cancel, leaving the absolute intensities nearly equal in
the limit where the sphere is far smaller than the wave-
length of light. As a/Rc grows, this trend changes some-
what, and the results for the two tips begin to diverge.
Moreover, at larger values of a/Rc , both curves begin to
show saturation behavior as less of the tip is directly illu-
minated by the evanescent wave. For the Rc 5 10 nm
tip, the intensity in fact drops abruptly when a/Rc ; 12,
i.e., when b ; 30 nm, signaling the onset of internal reso-
nances as anticipated in subsection 2 A. When the
spheroid becomes large enough to support resonances, the
fields inside the probe (and hence in the near field outside
the probe) begin to change qualitatively in character, de-
stroying the growing trend in k2. By contrast, the Rc
5 5 nm tip does not experience this falloff in the range
shown, since even for the largest a calculated, the
semiminor axis only gets as large as b ' 22 nm, too nar-
row to support these resonant states.

Figure 7 illustrates that the intensity enhancement is
>250, implying a field enhancement k > 15, already half
the observed value. How much larger it would go in the
limit of large a remains uncertain, owing to the funda-
mental resonance limit of the ellipsoidal model. How-
ever, we can attempt an estimate based on the Padé ap-
proximant technique.36 Specifically, we fit the rising part
of k2 versus a/Rc to the approximant

k2 5
A~a/Rc!

1 1 B~a/Rc!
. (13)

This particular rational function correctly expresses both
the observed linear behavior of k2 at small a/Rc and the
fact that the intensity must saturate at large a/Rc .

The approximants are shown in Fig. 7; the dashed
curve is for the Rc 5 10 nm tip, and the solid curve is for
the Rc 5 5 nm tip. The fits are easily extrapolated to
tips of infinite length, yielding k 5 30 6 5 for the Rc
5 10 nm tip and k 5 22 6 2 for the Rc 5 5 nm tip, with
uncertainties arising from the scatter in the computed

Fig. 7. Antenna effect: The intensity enhancement factor k2 is
plotted versus normalized probe length a/Rc . The solid and
dashed curves represent Padé approximants to the numerical
data.
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points. Without taking these values too seriously, we
nevertheless note that they are of approximately the
same magnitude as the experimentally inferred value
k 5 28. Moreover, the smaller tip yields a somewhat
smaller enhancement, since it presents a smaller volume
to the evanescent field.

4. CONCLUSIONS
To reiterate, we have theoretically verified several aspects
of the near field generated by apertureless NSOM: (i)
The resolution in both the horizontal and vertical direc-
tions is determined primarily by the sharpness of the
probe tip; (ii) The intensity delivered to the sample arises
both from the macroscopic length of the probe and from a
significant proximity effect as the tip nears the surface;
(iii) based on numerical simulations for e 5 19, the mag-
nitude of the field enhancement at the probe tip is
k > 15. Additionally, the electrostatic approximation
notes that k grows linearly with e, suggesting that further
enhancement can be obtained by crafting the probe from a
suitable material. This large enhancement occurs even
in the absence of a plasmon resonance, which is of course
expected to enhance the field even further.

APPENDIX A: ELECTROSTATIC FIELD
ENHANCEMENT
In this appendix we determine the field enhancement at
the tip of a prolate spheroidal dielectric in a uniform
static field directed along its long axis. For this purpose
we adapt the general result derived in Section 5.3 of Ref.
37 but with the long axis of the spheroid along the z,
rather than the x, axis. Reference 37 casts the problem
in the prolate spheroidal coordinates (j, h, z).

An applied potential Fe 5 2Eez induces a potential
outside the spheroid that is a function of j only:

F ind 5

Fe~1 2 e!S ab2

2 D E
j

` dq

D~q !

1 1 ~e 2 1 !L3
, (A1)

where L3 is given by the integral

L3 5
ab2

2
E

0

` dq

D~q !
(A2)

and the denominator in the integrand is

D~q ! 5 ~q 1 a2!3/2~q 1 b2!. (A3)

We are interested in the limit where a @ b, in which
case L3 → 0 (Ref. 37) and the potential reduces to

F ind 5 2Eez(12e)
ab2

2
E

j

` dq

D~q !
. (A4)

To evaluate the induced electric field right at the tip, we
need to compute 2]F ind /]z at the Cartesian coordinates
(x,y,z) 5 (0,0,a). Setting z 5 a1d in the vicinity of the
tip, we find that j ' 2ad, and that

F ind 5 2Ee~1 2 e!
ab2

2
@~a 1 d!g~d!#, (A5)
where the integral now takes the form

g~d! 5 E
2ad

` dq

D~q !
. (A6)

The gradient of F ind with respect to z is now equivalent
to its gradient with respect to d. A simple derivative
yields

]

]d
@~a1d!g~d!# ——→

d → 0

]g

]d
~d 5 0 ! 1 g~0 ! 5

22

ab2 1 0.

(A7)

In this last step we have used the fact that in the limit of
small d, g(d) approaches L3, which vanishes for large a.
The magnitude of the induced field becomes, after substi-
tution of the appropriate coefficients from Eq. (A5),

E ind 5 Ee~e 2 1 !. (A8)

This enhancement factor, (e 2 1), replaces the factor
2(e 2 1)/(e 1 2) that arises from a dielectric sphere in a
field.
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