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Collision data in forms currently available from experimental sources are reduced by quadratures
and algebraic transformations to dynamical parameters. The reduction hinges on suitable normali-
zations and utilization of sum rules and removes the influence of experimental geometries. The
dynamical parameters, labeled by angular momenta restricted to a modest range, appear more suit-
ed to comparison with theory than the original experimental data. Our analytical developments are
simplified by certain restrictions, whose removal is discussed in a final section.

I. INTRODUCTION

The problem of extracting dynamical information from
collision experiments has been formulated and discussed
extensively in a series of papers by Lee,! without arriving
at an explicit solution. Formulas of Ref. 1 express col-
lision data as bilinear combinations of scattering matrix
elements STX S with algebraic coefficients that represent
the joint influence of angular momenta and other
geometric factors. No procedure has been developed pre-
viously to disentangle individual elements of such bilinear
expressions from an adequate set of measured data, ex-
cept for a conference report on part of the present work.?

We introduce here three remarks.

(1) The algebraic expressmn of collision data trans-
forms a set of elements of STX S into the set of collision
data; the matrix U of this transformation is unitary, pro-
vided both sets are properly normalized.

(2) Each of the normalized sets of collision data and of
STX S elements may be interpreted as the set of com-
ponents of a unit vector, related to the other by U.

(3) The relevant collision data are constructed as prod-
ucts of polarization parameters of the initial and final
states of the target by the following procedure: each of
these complete sets of parameters is evaluated for targets
prepared in a specific pure initial state; their product is
then averaged over a complete set of alternative initial
states. The total set of measurements will form a “com-
plete experiment.”

Remark (2) is critical for disentangling smgle elements
of the S matrix from their bilinear products StxS. Unit
normalization of the set of elements of S "XS viewed as
components of a vector, implies that the square of the ma-
trix STX S has unit trace. It follows that each set of ma-
trix elements {S,g} or {S 1,5} represents the components
of the eigenvector corresponding to the single nonzero
(unit) elgenvalue of the matrix S'XS. Each element S 4
(or S 1,8) can thus be extracted from the bilinear set
{S 8S aﬁ}

These remarks will be developed in Sec. III. Section II
will instead show how to extract the S matrix elements
from collision data for targets that are initially in a 'S
state without resorting to the full machinery of Sec. III.
Section II stands thus also independent of Ref. 1. Its ap-
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plication to the extensive data’ on the process
e +He(1s2'S)—e'+He(1s2p 'P) (1

is reported separately.* Section ITI will instead relate to
Sec. II of Ref. 1(c) and to general aspects of Ref. 1(a).
The remainder of Ref. 1(c) and other parts of Ref. 1 that
stress symmetries will bear only on applications, which
are not presented here.

Successful unraveling of scattering amplitudes S,g
from collision data will also shift the focus of dependence
on the scattering angle. Reference 1 focused on the ob-
servables’ dependence on this angle and therefore ex-
panded the observables in harmonic series. The harmon-
ic analysis will be performed here on probability ampli-
tudes already unraveled from the observables, thus
bypassing interferences in their angular dependence. In-
terferences in the linkage of projectile and target parame-
ters are also bypassed.

Certain restrictions are implied for simplicity by the
formulations of Secs. II and III, as in Ref. 1: spins of
electrons and nuclei and exchange effects are not con-
sidered. Only pure states of projectile and target are con-
sidered. Reactive collisions are excluded. In addition,
effects of parity and of angular momentum conservation
are not dealt with explicitly, in contrast to Ref. 1. Pros-
pects for lifting these restrictions are presented in the
final Sec. IV.

II. SPECIAL CASE:
INITIALLY SPHERICAL TARGETS

A, Target polarization formulas

Experimental studies of electron collisions with atoms
have dealt extensively with He and alkaline earth targets,
initially in their 'S ground states. Inelastic collisions
have largest cross sections for excitation to 'P levels, but
we find it instructive here to consider excitations to 'L
levels with an unspecified value of L. We disregard, how-
ever, for simplicity, the incident electron’s spin, which is
realistic for low-Z targets.

Following general practice’ we characterize the col-
lision effect at the outset by a set of probability ampli-
tudes {a,,(0)} for target excitation to each of its degen-
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erate states —L <M <L of a specific 'L level. The index
M represents the angular momentum component L, with
the z axis along the incidence (‘“collision frame”). Each
amplitude a,, depends on the scattering angle 8. Symme-
try %nder reflection through the scattering plane requires
that

a_p(0)=(—1)Ma,(6) ; 2)

accordingly we need consider only M 2> 0.

This representation of a collision effect by probability
amplitudes a,,(60) replaces the use of S matrices in Ref. 1.
Recall that rows of a scattering matrix correspond usual-
ly to all final states attainable by a collision with given
energy, whereas we deal here only with a subset of such
states. Parametrizing elements of the subset by the prob-
ability amplitudes a,,(6) affords the appropriate normali-
zation. Specifically, we assume they are normalized to
unity at each scattering angle:

S lay(@)*=1. 3)
M

The collision data describe the polarization of the
target’s final state, in addition to its excitation cross sec-
tion. Following Ref. 5 we represent the polarization by
the set of mean values of multipole operators Tg whose
matrix elements consist of Wigner coefficients

(LM'|T§ILM ) =(— D" "M(LM',L —M|KQ) ,
0<K<2L, —K<Q<K. @

These coefficients pertain to the addition of the angular
momenta of a ket |LM ) and a bra (LM'|. The set of
operators {Tg } is a special case of the complete sets of
orthonormal operators {U;} in Ref. 6, regarded as vec-
tors in a Hilbert space (the “Liouville representation”).
Specifically, there are (2L + 1)? operators Tg, as many as
there are elements of the matrix (LM’'|O|LM) of an
operator O, and the Tg satisfy the orthonormality condi-
tion

TH(TE TE =844 89 - (5)

The mean value of the operator Tg for the target state
with probability amplitudes a,,(6) will be indicated by

(T§ro= 3 app(0)(LM'|T§ILM )ay(6) . (6)
M' M

Applying the normalization (3) and orthonormality of the
Wigner coefficients in (4) normalizes the set of mean
values,

SATEN KT o= [E|aM(6)|2]2=1 ) )
K.Q M

This normalization characterizes {{T§ )y} as the set of
components of a unit vector, which in the Liouville rep-
resentation represents the state of the target.

The operator T deserves special mention because it is
proportional to the identity operator,
(LM'|TJ|LM )=(2L +1)""28,,,,. Consequently its
mean value is a constant independent of the target state,
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(T3Ye=Q2L+1)7'23 lay(0)*=2L+1)""%. (8)
M

This means that vectors representing pure states are
confined to a hyperplane of dimension (2L +1)>—1 in
the Liouville representation. We will return to this point
in Sec. IIT1 B.

The collision data themselves, namely, the expectation
values of the operators Tg, correlated with the detection
of an electron scattered through an angle 6 with cross
section do(0)/d Q for excitation of the 'L level, are then
represented by the set

do(6)

40 9)

The cross section itself is, however, irrelevant to our pur-
pose of extracting dynamical parameters for a specific ex-
citation, being factored out of the normalization (3). Dy-
namics will be extracted here from ratios of measure-
ments. Accordingly, the term “collision data” will indi-
cate hereafter the values of polarization parameters of the
final target state {{T§),}.

[Our use of (2L +1)* target polarization parameters
contrasts with the smaller number of parameters, 4L,
that suffice to identify a “pure state” of the target. The
vector of the Liouville representation with components
(Té‘) o 1s accordingly restricted to a 4L-dimensional
manifold. Its (2L +1)>—1 components with K70
would, however, be linearly independent for a general
(““mixed”) state, to be touched upon in item (e) of Sec.
Iv.]

B. Extracting the probability amplitudes

Measurement of the entire set {{ T§),} provides infor-
mation on the a,,(0) through the relation reciprocal to
(6), namely,

ay(0)ap(0)=3 (T5)(KQILM',L —M)(—DE M.
K,Q

(10)

The squared modulus of each amplitude a,,(8) is found
by setting M’'=M, in which case the Wigner coefficient
vanishes for @0,

lap(0)12= 3 (TE)(KOILM,L —M)(—DF"™ (11
K

Since the coefficients on the right of (11) vanish for odd
values of K, owing to symmetry under sign reversal of M,
we see that L + 1 nonzero values of { T¥ ), determine the
L +1 different values of |a,(8)|>. Noting that even
values of K correspond to electric charge multipoles of
the electron density in the excitation of the 'L level, Eq.
(11) specifies that the axially symmetric components of
these multipoles determine the squared amplitudes
‘aM(G)P-

We are thus led to represent the a,,(8) through their
moduli and phases,

18,,(6)
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The phase differences ¢ (0)— ¢y, ,(0) are determined
by setting Q=1 in (10),

a4 1(0)ap(0)=|ap . (0)]]ay(0)]

o' 100~y 11(0)]

X SATX)YAKILM +1,L —M)
K

X(—1)EM, (13)

We have thus completed our immediate task of determin-
ing the a,,(0) to within a common phase factor to be set
by convention. This task has utilized only the values of
(T§) with Q=0 and 1. Measurements of the values for
Q0> 1 may, however, be required to verify the complete-
ness relation (7). Specifically, a sufficient number of
( Té( ) or of equivalent linearly independent parameters,
need to be measured to exhaust the sum in (7).

C. Dynamical parameters

The Introduction to Ref. 1(a) has stressed the desirabil-
ity of comparing experimental and theoretical data in the
form of dynamical parameters free from geometrical or
incidental aspects of experiments (see also Sec. 7.10.1 and
p- 248 of Ref. 7). These parameters should thus depend
on the magnitudes rather than on the directions of angu-
lar momenta and on the profiles of the functions a,(6)
rather than on the selection of specific scattering angles.
We should accordingly replace the parameters a,(6)
with a new set independent of both the scattering angle 6
and the magnetic quantum number M. The dependence
on 6 will be removed by expansion in spherical harmon-
ics, while the dependence on M indices will be factored
out in the form of Wigner coefficients.

We begin by indicating explicitly the dependence of
a,,(60) on initial and final quantum numbers of the target
and on the initial and final directions of the projectile,

ay(0)=(LM,p,|gl00,p,), cos6=p, D, - (14)
Here (a,b) label the initial and final states of the projec-

|

2l,+1

a

4

2m [ d(cosd)Y, _, (6,0)ay(8)= 3 'l

a
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tile, as in Ref. 1, and g replaces the amplitude a to avoid
confusion. The dependence on the directions is expanded
into spherical harmonics using the relevant elements of
plane-wave expansions [Eq. (4.7) of Ref. 7]

A -[ A
|pa>= 2 laYlama(pa)’

[a'ma
=1
(Ppl= 3 i bYIZmb(ﬁb)-
ly,my

Having set the z axis parallel to P, and setting now the x
axis in the scattering plane, we have

2,+1 "
47

~

Ylama(pa )=

b
m_ 0

. (15)
Y, (Bs) =Y, (6,0).

Equation (14) expands thus into

= 5 |2 l/ZY* (6,0)
am = 1 I, m ’
1,y m, 4m e
X (LM,1,m,|g|00,1,0) . (16)

The desired dynamical parameter G emerges now by
factoring out of g its dependence on magnetic quantum
numbers, setting

(LM,1,m,|g|00,1,0) ={LO|G|l,1,){LMI|1,0,l, —m,)
Ly —my

X(—=1) , (17

which requires m;, +M to vanish. Entering (17) into (16),
we find that G is related to the probability amplitudes by
172

Y _4(6,0)

2l,+1
41

b

ay(0)=3 i

Ia ’Ib

X (LO|G1,1, Y LM|L,0,l,M ) —1)"* ™ .

(18)

The orthonormality of the spherical harmonics allows us
to single out a particular value of /;:

(LOIGIILL Y (LMILO, ;M Y (— 1)t T (19)

Now we appeal once again to the orthogonality of the Wigner coefficients, using the modified relation

2L +1
20, +1

81'l ’

a‘a

> (1;0,l;M|LM ){LM|1,0,[,M )=
M

(20)

which can be derived from the formulas in Chap. 1 of Ref. 9. Using (20), our final result for G, after removing the

primes for simplicity of notation, becomes

20, +1 -

2L +1

G- 20,41

47

Ill

(LO|G|1,1,)=

2
s [21rflld(cose)Y1b 0 (8,00a,,(0) |(— 1) "™ (1,0,1, —m,|LM) .
2 _

(21)
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where m indicates the reduced mass of projectile and tar-
get, as discussed further in Ref. 4.

Equation (21) identifies a very large set of dynamical
parameters G because the magnitudes of the orbital mo-
menta (,,],) range to infinity. The difference |, —1,]| is
restricted to <L by the triangular condition on (/,,l,,L)
but the sum /, +/, is unrestricted. The magnitude of G
converges to zero as [, +1, increases but a very large set
of G values remains nevertheless significant. On the oth-
er hand, the small values of G with large I, +I, need not
be extracted from experiments, being provided depend-
ably by the perturbative Born approximation. A pro-
cedure for systematic application of this approach has
been developed recently® and is applied and evaluated in
Ref. 4.

Note here that the dynamical parameter G is defined
by (21) in terms of the probability amplitude a,, for the
target transition 0— M. This amplitude is proportional
in turn to the corresponding transition amplitude T},
solution of a Lippman-Schwinger equation Ty,

=[V+V(E —H +ie)"'T’], according to

12

2
4t T . 21"

2m

ki do
k; dQ

III. INITIALLY NONSPHERICAL TARGETS

A. Target polarization formulas

Whereas Sec. II labeled a base set of target states by in-
dices (L, M), we consider now initial states |L aM, ) and
final states (L M Bl, in accordance with Ref. 1. We still
consider targets in singlet states and disregard any pro-
jectile spin, for simplicity. Also, we restrict ourselves to
“parity favored” transitions, i.e., those in which
L, +Lg+j, and I, +1, +j, in Eq. (22) are both even.

(Tg?), o=Trlg(0)p ,8(O)Ty’ ]

= 2

’ ’
M M, Mg My
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Characterization of the collision effect on the target by
a set of probability amplitudes a,,(0) no longer suffices
here. Equation (14) associates each a,,(6) to a transition
of the target from an initial state |00) to a final state
(LM|. The more general probability amplitudes
(LgMy,p,lglL (M ,,p,), which bear on the present
case, pertain to the probability that the target undergoes
the transition |[L ;M , ) —(LzMg| when the projectile is
scattered through the angle 8=arccos(p, P, ). Following
again Ref. 1, we characterize this transition by the angu-
lar momentum j,=Ly—L% transferred to the target.
The probability amplitudes transform accordingly into a
new set {a; ,, (6)} defined by

M,

. L —
@Gm(@= 3 (jmIL, =M, LyMg)(—1)*
MA’MB

X{(LgMp,p,lglL ;M ,P,) . (22)

Thea ,‘,,,x(m have a normalization parallel to (3):

[{LsMp,P,|8|L 4M 4,1

J

2 |aj,m,(0)|2= 2

M My
=1, (23)

reflecting the fact that the total probability of the target
making a transition from L , to L is set to unity.

As in Sec. II, the polarization of the target’s final state
is given by a set of mean values of tensorial operators
{(TQ: )¢} with matrices and normalizations analogous

to (4) and (5). Here, however, we must take into account
the nontrivial initial state, indicated by a density operator
P 4> and consider the mean values {(Tg: )5 6} condi-
tional on this initial state. Initial and final target states
are related by the probability amplitudes in the usual
way, analogous to (10) of Ref. 1(c),

(LBMB»ﬁb |8|LAMAaf’a )<LAMA |PA |LAM:1 )

! A A ’ K
x(LAMA,pa|gT|LBMB,ph><LBMBtTQ; [LpMp) . (24)

We now expand the density operator p 4 into a set of tensorial operators®

K K,t
Pa= 3 <TQ:>pATQ; ,
K, Q4

(25)

. . . K ,t . . .
where the Hermitian conjugation of T, : accords with the minus signs of L , in the relation j,=Lgz —L% and of M, in
(22). Using (4), the definitions (22) and (25), and rearranging, Eq. (24) becomes
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K
<TQBB )pAg 2 (TQ > , ’2 aj::’",,(e)ajlml(e)
494 j smy,jam,
X 3 (=0T My Ly =Myl —m (=1
MM Mg My
L,—M, .
X(—1) (L, —M,,LgMgljm,)
Ve K, —
) (=15 ML ML MK —0 ) (—1) 4%
X(—1)" ML M} Ly —My|K305) . 26)
The final sum on the right of (26) transforms according to Eq. (3.21) of Ref. 9 into
m, K,-0Q
2 (_1 <]( r,Jz m:IKtQt><KtQIlKA _QA’KBQB)(— 4 4
LA
K
X (L 4 Lg)jis(L 4Lg)j (L 4L K 4(LyL)Kp) " . @D

This transformation has the eﬁ"ect of reducmg the di-
rect product of operators {TQ‘ X TQ } in the
|L4M,,LgMg) representation to a set of operators
{Tg:} in the |j,m,) representation.’ The coefficient on
the far right of (27), which as an invariant does not de-
pend on Q,, is expressed in terms of a 9-j symbol in Eq.
(3.9) of Ref. 9. It also appears in Eq. (14) of Ref. 1(c),

where a similar reduction takes place. Hereafter, we
shall suppress the indices L , and L in this coefficient,
writing it as (j/j, |K (K5 )5,

I?Jow we write expressions for ‘“mean values” of the
TQI’, which correspond to the state multipole moments
transferred to the target, by analogy with (6),

K Ky
(T )= ’ 2 aj?m,,(e)(j,m,ITQI' lj;m,)
Jpmpjpm,

Xa; (000, 1K 1K)
(28)

The initial and final state polarization data are therefore
related through the multipole moments ¢ TQ Yo by

<TQ5 >PA = 2 2 <TQ1,>9
KypQ, | KO
X(K,Q,‘KA —'QAyKBQB>
X(—D) 7% (Teh),
(29)

B. Extracting probability amplitudes

Whereas Sec. II B extracted amplitudes by direct ana-
lytic inversion of their relationship to the polarization of
the final target state, the relation of the a ,.r,,,l(e) to mea-

sured ( Tg" ), o Tesolves into two steps, namely (28) and
(29). Our ﬁrst step of inversion should therefore disen-
tangle the initial state parameters (TQ‘ ), from the

right of (29), thus recasting the collision data into the
directly invertible form (28).

To this end we denote the quantity in large parentheses
in (29) by F(K 4,0 4;Kp,05 )¢ and note that it is explicit-
ly independent of the initial state p ,. Next we choose a
complete orthonormal basis {p/,} consisting of
(2L ,+1)? density operators. Likewise, we choose an or-

dering of the basis set { Tg : } and denote the resulting set
by {U;}, 1<i<(2L,+1)% by convention, we set
U,=TS$. Then for each fixed pair (Kz,Qp), (29) reads

K . )
(TQ: )pJAGZZF(l;KB’QB)G(Ui)ij (29)

As j varies, Eqgs. (29’) describe a linear system in the un-

knowns F with matrix V;;=(U,) ,,+ But ¥ is the ma-
A

trix of the transformation which carries each orthonor-
mal basis vector U; onto the corresponding orthonormal
basis vector p’,, and is therefore unitary. Equations (29)
and (29’) can thus be inverted analytically:

F(i;Kp,Qp)p= 2<U> <TQ8>M, (30)
S (T Vel K, QK 4 —0,4,KpQp ) (— D)4~
K,.Q,

-2<TQA> <TQ"> (30"

The multipole moments are therefore given by
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Koy _ K, 1 Kg
oo QAZ,QB §<TQ‘ 0, Toy V0

X(—I)K"AQ'%KA _QA,KBQB|K:Q1) ’

(31

requiring a sum over a complete set of initial states

Equation (31) provides the desired set [(TQ o) as a
weighted sum over collision data (TQ ) p 0 A geome-
trical aspect of the inversion of (29') views the set
{((U; ) } as the components of a vector representing the

dens1ty operator p’4. Upon multlpllcatxon of both sides
of (29) by one component { U} ) o, and summation over

all values of j, p/, ranges symmetrically over the hyper-
plane defined by U, =(2L ,+1)"'/2 in the Liouville rep-

resentation. This causes the sums over dyadics
3¢ Ul > ( U, ) with ki to vanish, whereas
3¢ UT) ( U; ) reduces to unity owing to (5).

Having thus seen that the measured values of the final
target parameters (TQ )p ¢ properly averaged over a
complete set of p ,, yield the set of parameters (TQ Yo
we may enter the latter in (28) and extract the ajm 1(6)

a5 m —1(0)]1; y (O)|exp(i[8;  (B)=; , _1(6)])

=2
K, | K .Kp

K LK)
2 <T1[)6<KAKB|]L11>
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values by analytic inversion.
analogous to (10), is

* =
@ (0001 (0= 5,

The inverted equation,

3 (Tg' e

KA’KB

o (K
X (KAKB l]z]z>

X (K;Q;‘jt’mt,’jt —mt)
w(—1y ™. (32)

Proceeding as in Sec. II B we begin extracting ampli-
tudes by selecting the terms of (32) diagonal in (j,,m,),
which determine the amplitude moduli,

K NS
4, OFP=3 | 3 (T8 (K Kpljii) ]
K, | K .Kp
X (K,0lj,m,,j, —m, (=1 "™ (33)

The next step, parallel to (12), introduces the phase of
each amplitude
a; m’(9)=|ajrm!(6)|exp[i¢jlml(9)] R (34)

and uses the terms with j,

2.=1,

=j, but m;=m,—1 and

j, —m

(K |jm,—1,jm Y (—=1)" 7. (35)

The third and final step determines the phase differences between the amplitudes with any pair of different (j,,j,;) but

with m,=m,,

la,:,, (O)l1a;  (O)exp(il8; ()9 ., (O)])

B3

KA’KB

Application of this formula for a single value of m,, say
m, =0, together with recursive application of (35), deter-
mines all the phases to within a single phase to be set by
convention for all a; ,, (6).

We review now the circumstances that have afforded
the determination of the amplitudes ajrm[(O) from col-

3o 66

lision data, particularly the role of the Introduction’s “re-
mark (2).” Let us indicate for this purpose the right-
hand side of (32) as a matrix 7, .. -, which corresponds

to the STXS of Ref. 1. The matrix so defined is readily
seen to satisfy both Tr(7)=1 and Tr(7?)=1, owing to (a)

the orthonormality of all Wigner coefficients, (b) the

K( e\ (
b ( T, >9<KAKB IJ:J: )

"KKOljim,j, —m (=1 T (36)

orthonormality of (K ,Kglj,j, %" and (c) the complete-

ness of the operator sets § Tg A" } and {Tg : } as represent-
ed by (5). The condition Tr(7)=Tr(7?)=1 guarantees
that 7 has a single nonzero eigenvalue equal to 1, just as
the condition Tr(p)=Tr(p?)=1 guarantees that the den-

sity operator p represents a pure state. Also, the set of
amplitudes {a J}'",} represents the eigenvector for 7 that

belongs to its unit eigenvalue.
Two further and essential circumstances, however, un-
derhe the expression (31) of 7 in terms of collision data

{(TQ )5 6} Each element of this complete set must

have been measured, and it must have been measured for
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each initial state of the set {p/, }, whose normalization to C. Dynamical parameters
T 3, (P4 )2]=1 requires each state to be pure. This re-

quirement goes beyond the usual sense of the term “com- . cal
plete experiment,” in which only a single set of collision The extraction of dynamical parameters proceeds now

data are measured. Failure of either condition would 25 it Sec. IIC, except that we must first determine the
cause Tr(72), as determined from collision data on the left correct partial wave expansion of the aizmx(e)' To do
of (32), to fall short of unity, with consequences to be de-  this, ~we expand the probability amplitudes
scribed in item (e) of Sec. IV. (LgMpg,p,lglL 4,M ,,P,) by analogy with (16),

J

2,+1 |7

4

R R =1
(LpMp,BylglL M ,,p,)= 3 i° °

lgrlyomy

Y} m, (6,00(LgMy,l,m,|g|L (M 4,1,0) . (37)

The matrix element on the right of (37) can, in turn, be expanded into products of Wigner coefficients and rotationally
invariant factors depending on the total angular momentum J=L , +1I, =Ly +1, of the target plus projectile complex:

(LpMy,lymylg|L ;M 4, 1,00 =S (LyMy,l,m,|JM){Lyl,|G(DIL 41,){JM|L ;M ,,1,0) . (38)
I M

A recoupling similar to that in Eqgs. (3)-(6) of Ref. 1(c) translates (38) from the total angular momentum representation
to the angular momentum transfer representation,

(LpMp,l,m,|g|L 4M ,1,0)= 3 (=14 ML =M g, LyMyljim ) LyL 4G ()1,

Jpom,

Iy —my

X {j,m,|1,0,I, —m,)(—1) . (39)
The same transformation also serves to define the dynamical parameters G,

L, I, J
Iy Lg j, |-~ (40)

(LyL 41G (j)l,1, )= 3 ALgl,|G(NIL 41,)(2T +1)
J

[Note that the phase factors in (39) and (40) are different from those in Eqgs. (5) and (6) of Ref. 1(c). Our concern here, as
throughout this paper, is to emphasize that writing a ket in bra notation involves a contragredient transformation, e.g.,
“|L M, )" and “(—1 yraMa (L ,—M ,|” both denote ket states.]

Substituting (39) back into (37) and rearranging yields

~ ~ L,—M
(LpMp,pylglL ;M ,,p,)= > (=0 AL —M 4, LyMgljm,)

Jppmy
0o, |20 ) .
X ra 1 47 Y[bmb(9,0)<_],m,“ao,lb —mb>
a’’b’’"h
L, —m
X(—1)* ”(LBLAIG(j,)Il,,la>] . 41)

Comparison of this relation with the inverse of (22) identifies the quantity in square brackets in (41) as a jlml(e); indeed,
this relation motivated the definition of aj!m,(B) in (22). Having made this identification, the inversion which gives the
dynamical parameters G in terms of ajlmr(e), paralleling (18)—(21), is immediate:

Lor 6oLy = |2t |t 2, +1 712
gL 41GUIINLI, »= 2j, +1 47
> l27'rfild(0050)Y,b#mb(e,O)ajtml(B) (— 1) (1,0,1, —m,|j,m,) . (42)

My, m,
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In the event that L , =0, we have Ly=j,=L, and (42)
reduces to (21), as we would expect.

For purposes of comparison with theory, recall that
calculations exploit the rotational invariance of the Ham-
iltonian by dealing with eigenstates of the squared total
angular momentum, |J|2. This paper, however, has treat-
ed the target and projectile as separate entities, and has
therefore presented the dynamical parameters G as func-
tions of the angular momentum transfer j,. The advan-
tage of the latter treatment lies in the limited range of the
quantum number j,, |L,—Lp|<j <L,+Lg, as op-
posed to the unlimited range of J.! Our method, then,
need only extract a few G (j,) from collision data, as op-
posed to many G(J). [Values of G (j,) for large [, and [,
are again to be found using the Born approximation, as
discussed in Sec. IIC.] The G(J) are, nevertheless, ob-
tained from the inverse relation to (40), namely,

(Lgl,|IG(NIL 1,)=3 (LgL (|G (j)l,1,)(2j,+1)
Ji
L, I, J

X .
I, Lg J,

} . (43)

IV. COMMENTS ON EXTENSIONS

We discuss here the several restrictions on the treat-
ments of Secs. Il and III that were listed in Sec. I, as an
introduction to their removal in future works.

(a) Targets with half-integer angular momentum. Re-
placement of the integral angular momentum indices
(L,L ,,Lg) with alternative notations (J,J ,,Jz), whose
values may be integral or half-integral, affects none of the
equations pertaining to the target amplitude parameters
alone. The J indices are understood here to be either all
integral or all half-integral, whereby j, and m, are in-
tegers. Half-integer values of J3 —J, occur only upon
change in the number of target constituents, the subject
of item (h) below.

(b) Projectiles with spin. The indication of incidence
and scattering directions by (P,,p,) is complemented in
this case by spin indices (mg,,mgy ). The harmonic func-
tions Y, (6,4) in (15) and thereafter, are then replaced by
the transformation functions of Euler angles
D}, (¢,0,¢), properly normalized. Laying 2 along the
incidence and X in the scattering plane sets ¢ and ¢ to
zero.

(c) Parity under coordinate inversion. Conservation of
parity in the transition of the projectile plus target system
from its initial to its final state is a feature of atom-
molecular processes. The parity of projectile states is an-
alyzed by harmonic expansion. The parity of the whole
system is then represented by the parity of /, +L , and of
I, +Lp in the present notation. Analysis of collisions in
terms of the angular momentum transfer j, classifies
them as “parity favored (unfavored)” when L , +Lg+j,
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and I, +1, +j, are even (odd) (see, e.g., Sec. 7.10.3 of Ref.
7). Processes involving only single particle transitions
from one to another eigenstate of orbital momentum are
parity favored. (Reference 1 was tacitly restricted to
these cases.) The mechanism of parity unfavored transi-
tions involves a vector product, a spin flip, or analogous
operations, which exclude, e.g., projectile scattering at
0—0° (Ref. 10). Effects of parity unfavoredness may
combine with the permutation symmetries of Wigner
coefficients to restrict the magnitudes of polarization pa-
rameters.

(d) Exchange effects. The identity of electrons or of nu-
cleons requires analysis of each collision process into al-
ternative symmetry classes, except for the cases of closed
shells or analogous features to which this paper has been
restricted. The analysis of projectile-target systems into
such symmetry classes (see, e.g., Sec. 7.2 of Ref. 7) leads
the amplitude parameters a, g, and G of Secs. II and III
to be labeled by additional invariant symmetry indices,
typically by the total spin S label for electron-atom col-
lisions.

(e) “Mixed” states. The treatment of Secs. II and III
hinges on maximum information being provided on the
initial and final states of both projectile and target. This
condition is embodied in the unit normalization of the
target polarization parameters and in the assumption that
any projectile spin remains unaffected by the collision.
Failure of this condition forces on the matrix 7 in Sec.
III B the condition Tr(7?) <1, in which case T no longer

factors as a dyadic product of eigenvectors aj',m.aj m,"
eyt

The matrix 7 can still be represented as an incoherent su-

perposition of eigenvector dyadics 3, p,,(ajf,’";.)‘a}[",,),l,
tt

whose p, are nonzero eigenvalues of 7, but the informa-
tion embodied in 7 fails to determine the phase differences
of the eigenvectors a J!;')':’ thus restricting the knowledge
of dynamical parameters.

(f) General scattering partners. Even though the im-
mediate motivation of this paper stemmed from
electron-atom collisions such as (1), its development ap-
pears readily adaptable to any collision of electrons, ions,
atoms, or molecules which preserves the integrity of pro-
jectile and target.

(g) Nonstationary states. We have dealt here explicitly
with collisions that excite a target from one to another
stationary state. Excitations to states with a fine struc-
ture, or to quasidegenerate levels, often do not afford en-
ergy resolution of individual stationary states; the final
state is then nonstationary and its polarization displays
quantum beats.!! Extension of the treatment of Sec. IIT
to allow for nonstationary excitations is favored by the
flexibility, e.g., of Eq. (27), where pairs of identical L in-
dices could be replaced by unequal pairs (Lg,Lg) to
represent interference effects between alternative final
states. Procedures of Ref. 11 extract from quantum beat
observations the initial values of polarization parameters
(Tg: ) p 46 these are independent of fine structure quan-

tum numbers that become relevant later.
(h) Reactive collisions. Collisions involving transfer of
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constituent particles between projectile and target
proceed through the formation and fragmentation of a
“complex,” a process that exceeds the scope of this pa-
per.
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