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Theory of electron transport through a periodic array of devices with transverse exit leads
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We introduce a periodic array of nanoscale semiconductor devices, whehnedeviceontains a transverse
lead into which conduction electrons can be deflected. These “deflective” arrays exhibit a unique resonance
structure with respect to electrons traveling the length of the array: coefficients for reflection and transmission
through the array can peaimultaneoushat resonance, unlike the analogous case in superlattices. We focus
in particular on an array of T-shaped devices, similar to those grown recently by epitaxial methods, and
characterized by perfection of structure and extremely small size. The T-array’s nohkveararacteristics,
along with its multiple paths for electron flow, may lead to interesting switching applications.
[S0163-182697)00232-4

[. INTRODUCTION here the vertical arm of the T is assumed long enough that
any electron flux entering this arm is effectively lost. The
Semiconductor nanoscale devices afford an endless varéenters of the T's are spaced by a distadces in Fig. 1b),
ety of scattering geometries for ballistically propagating conforming a periodic array with a finite number of members,
duction electrons. Typical geometries of interest for devicéNt. The transverse leads afford the possibilitydeflecting
applications consist of narrow quantum wires that serve agurrent out of the array altogether; we therefore refer to such
leads into and out of a scattering region whose shape is e@n array as deflective. The deflective nature of an array
gineered to yield a desired conductance through the devicétrongly influences its miniband structure, as exemplified by
Such scattering regions include arrays of T-shaped “sttibs” scattering resonances where reflection and transmission co-
or more elaborate rectangular geometﬁewrvilinear efficients through the array can simultaneously peak. These
shapes, such as stadiums, that incorporate “quanturfesonances, and some of their observable consequences,
chaos”? bent quantum wires that localize electron density inform the core of this paper.
their bend<! and pairs of parallel quantum wires connected An array of T's like that pictured in Fig. 1 might be
by a transverse quantum wite. etched using standard lithography techniques. There is, how-
Viewed as a scattering problem, the shape of an indi€ver, a more suitable procedure for accurately forming the
vidual device influences the transmission coefficient from thearray, namely, the cleaved-edge-overgro(@EO) process.
device’s input lead to its output lead, yielding typically a setIn this process the vertical arms are first grown as alternating
of resonances where the transmission abruptly drops at ceGaAs-AlGa, _,As layers by molecular beam epitaxy. The
tain scattering energies. An array of equally spaced identicaesulting crystal is then cleaved along a plane orthogonal to
devices yields instead a “miniband” structure, which influ- the vertical arms, and a new layer of GaAs grown to form the
ences conductance properties by creating band gaps, ranges
of incident electron energy within which the transmission a
probability nearly vanishes. These band gaps are governed AlGaAs
primarily by the spacing between devices, since the propa- a)
gating electrons see essentially a periodically modulated po-
tential, much like the Kronig-Penney model of one-
dimensional band structufeDevice arrays considered so far
comprise a single input lead feeding a single output lead,
meaning that the entire incident electron flux appears as scat-
tered flux in either the input lead or the output legdere we
consider only ballistic transport and ignore dissipation into d
phonon modes of the devigeThe theoretical treatment of b)
these devices concerns then the determination of reflection
and transmission probabilities, handled easily by transfer
matrices or analogous metho@sg., Ref. 1
This paper approaches instead a periodic array, in which
each device in the array incorporates a transverse lead g, 1. The device(a) shows a T-shaped structure formed of
through which electron flux can exit. Figure 1 sketches thezaas embedded in 4Ga_,As. Electrons propagate ballistically
prototype device considered in this paper. Each element Qfjthin the T-shaped regionb) shows an array of such devices,
the array, as pictured in Fig.(d, consists of a T-shaped placed at equal intervath The array as a whole is termed “deflec-
guantum wire, of widthg andb in its vertical and horizontal tive,” because of the possibility of deflecting conduction electrons
arms, respectively. Unlike the stubs considered in Ref. linto each T's vertical lead.
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horizontal arms(The resulting array of T's then has transla- 1

tional symmetry in the direction orthogonal to the plane of f7(E; )= —exp(=iki7) (2.3
Fig. 1; we disregard in this paper motion out of this plane. VeK;

Epitaxial techniques imply both a high degree of perfection enticf
in the structure and an extremely small size, watland b whose wave numbey; satisfies

typically of order 10 nm. For these reasons, CEO-grown T's 52 2

. . . ! nym
have been considered as high-quality quantum wires local- — (_ +ki2}=E' (2.4
ized at the crux of each TRef. 8 and as exciton lasePsin 2m w

addition, by reversing the roles of GaAs and@4; _,As in 1: ki2>0, thenf,” andf;" stand for incoming and outgoing

Fig. 1, transport through precisely defined two—dimensionar veling waves. r tivelv. and chaniné eneraeticall
(2D) superlattices has been studied. In this case the electro‘§?‘ €ling waves, respectively, and cna energetically

tunnel across the T's and are classically allowed only in th(—:{.Openf'I ObtherW|set,hthe channetll ITI close(_;l, anddtrée fun_c-
space between T%.The present work appears to be the first lons T; become the exponentially growing and decaying

to consider transport through the directly connected T'dunctions expt«7) by the substitutiork—1i«, with x>0.
themselves. Scattering of an electron by the array is described at each

The multiplicity of exit leads in the array in Fig. 1 implies IN¢ident energyE by a scattering matris, whose element

that a theoretical treatment in terms of transfer matricesi '€Presents theécompley amplitude for the electron to

proves inadequate. Rather, a full scattering matrix for each £Xit the array in channej, given a unit incident flux in

must be constructed; these can then be strung together inchannei . These scattering wave functions far from the array

convenient way to describe the scattering properties of thinerefore take the forth

entire array. We calculate scattering matrices using an _ N

* R-matrix” formalism that has been enormously successful hj(f)[fi (E,7) 65— fj (E,n)S;i(BE)]. (2.5

in atomic scattering calculations, and which is SUffIC'emlyThe following subsections construct the scattering matrix for
g g

general to handle much more elaborate systems than the T. - : . - )
considered here. In addition, the method reported here f fle array in two steps, by first computing the scattering ma

. X ) A %Yix for a single T, then by stringing these matrices together
connecting the scattering matrices of individual T's should,[0 obtain the full scattering matrix.

find wide application in similar problems.

II. MODEL AND METHOD A. Scattering matrix for a single T

o _ . We determine a single-T's scattering matrix by the
The model in this paper assumes that the array pictured IB_matrix method invented by Wigner in the context of

Fig. 1 is crafted from a GaAs-6a,_xAs heterostructure, pcjear scattering theof§,and extensively developed for
as has been the case in structures previously grown by CEQse i atomic scattering theofgee, for instance, the reviews

Aici)rdingly, it assumes an effective electron mass Of, pag, 13-1% The mathematical underpinning of this
m* =0.06M,, wherem, stands for the bare electron mass. \athod is sketched in Appendix A. Briefly, the method

The model also assumes that the electron is contained withifyes the Schidinger equation separately in two regions: an
the T by infinitely high potential barriers, and that individual « ;o region where the wave function consists of super-
electrons propagate ballistically through the entire array

; . o _ ositions(2.5) of scattering wave functions; and an “inner”
These assumptions pose no serious restrictions, since trF@gion, the T itself, where where the wave function is more

present aim is to assess the impact of the open vertical armsnyjicated and must be determined numerically. Matching

on electron transport. these solutions and their derivatives across the boundary be-

A description of the scattering of a single electron throughyyeen inner and outer regions identifies the scattering matrix
the array in Fig. 1 requires solutions to the Sclinger equa- Eq. (2.5.

tion We first identify the inner region of the T as the rectan-
2 gular “box” |x|<a/2, |y|<b/2 where all the leads overlap
~3 *ﬁz¢= Ey (2.1 (this is the region denotedA” in Appendix A). Within this
m

box we seek, for each value &, solutions i, vanishing

for the range of scattering energiEsof interest, subject to along the liney=—b/2 and having a constant outward nor-
vanishing boundary conditions on the perimeter of the arraymal logarithmic derivative—bg= i, *(dysz/dn) along the

In each lead the wave function is separable and can be ewther three sides. Her@ Jn stands for the outward normal
pressed as linear combinations of functidnés)f“(E; ),  directional derivative through the box's boundary. These
where¢ represents the coordinate transverse to a given lead?garithmic derivatives then provide a convenient set of
and 7 the coordinate along the lead, increasing in the direcboundary conditions for matching the leads’ wave functions
tion away from the array. Thénormalized transverse wave (2.5, requiring a matching only in the longitudinal coordi-

function in moden; reads nate 5. (This two-step approach has proven very useful in
more elaborate settings, such as electron-atom or electron ion
2 N scattering processes, where the atom or ion is treated within

hi(§)= WCOS(Wf) (2.2 aclosed three-dimensional inner region. Typically, the loga-

rithmic derivatives vary much more slowly with energy than
for a lead of widthw (=a or b). The longitudinal wave do the resulting scattering matrices, which exhibit narrow
function takes the form resonances; computational effort is thereby redyced.



4134 JOHN L. BOHN 56

The constant-logarithmic-derivative solutions can gener-
ally be computed usefully with finite element techniqgdfes. Y= hi[f; 8 — ] S;iINF,
In the simple geometry of the present example we use in- .
stead a basis set expansion, as derived in Appendix A. The 9
basis consists primarily of functions{") that vanish on the Wp _ —bgs=> h,

1]

B
: N NP. (2.1
box boundaries,

af;(S afj*s
on i gn i

Here the coefficientsl? serve to connect the normalizations
() _ \P E(”Tf )\F S(mﬂ'f ) of wave functions inside and outside the box. Projection onto
¢’ = \/ =cog —x —C0§ —VY|. (2.6 o : ()
a a b b each of theN nonvanishing basis functiong,™ in turn

yields a system of B? equations for the ®? matrix ele-

These functions form a complete set within the inner regionmentsS;; and NE:

and can thus account for the full two-dimensional shape of

the scattering wave function. To be useful computationally, _

however, they must be complemented by basis functions ZB:; (ﬁgb(knv)hde)[fj i — 7 SHINE,

#{™) nonvanishing on the box’s surface. For example,

(nu>_\F 5{”“ )\F
b= ECO ?x Bsm 212

is nonzero along the upper egde of the lysxb/2; and simi- N Practice, each nonvanishing basis fun_ctiqbﬁ") projects
larly for the other two edges. These additional basis funcOntoonly onescattering wave functioh;, since in the trans-
tions allow for finite values of the logarithmic derivativeg verse direction both sets consist of orthogonal cosines. This

on the box’s surface. Similar overcomplete bases are staifircumstance further simplifies the solutions of £212) in

dard in applications of th&-matrix method to atomic scat- € Present case.
tering problems? but cause no harm, since there is no re- _ _
quirement that the basis set be orthogonal. B. Connection of multiple T's

Denoting basis functiogs generically lai, we expand Once the scattering matrix for a single T is determined by
the solutions ag/z= 2y ¢y Zj . Using this expansion as a trial the method of the previous section, the scattering matrices
wave function in a variational expression for the logarithmicfor a string of T's may then be fused to yield the scattering
derivative (Appendix A) yields a generalized eigenvalue matrix for the entire array. For simplicity we will illustrate

- +

w

2b

ot
Tn O Gn S

—bgzf=2 U¢><knv>hjd|)
(27) ij |

-
T2

problem for the eigenvalues, and eigenvectorg?:*’ this connection for a pair of T’s, but the method is of course
completely general.
I'Z=bAZ, (2.8 First let us denote the leads in each T by the letitgR
U, to distinguish the left, right, and upper leads &T in the
where orientation shown in Fig.(&). One T, identified by the num-

ber 1, is centered at the origin of the coordinate system
" shown, while the second, identified by the number 2, is cen-
2m Iy _ T
D= _zf HK(E—H) o dA- f b—"dl (2.9 tered ax=d. Themost generaform of the wave function in
he Ja [ an any of the six leads is a superposition of incoming and out-
going waves. Let |, for instance, stand generically for the
involves an integral over the aréaof the box as well as a  set of coefficients of thé™ wave functions in lead. of T
line integral over its perimetdr, andH stands for the elec- number 1, and similarly for the rest of the leads. The incom-
tron’s Hamiltonian inside the box. The right-hand matrix ising (¢™) and outgoing ¢~) wave functions for each T are

given by the line integral then characterized by column vectors divided into three
blocks:
Akk/:ﬁ(ﬁk(ﬁk/dl. (21@ sz
(ﬂfz: sz . (2.13
These matrices are easily evaluated in the potential-free re- e
gion inside the box. Typically 10—20 basis functions already 12
suffice for convergence of the eigenvectars. In terms of the single-T scattering mati® the full scatter-

The number of independent solutions to the generalizeihg matrix for all six leads relates incoming and outgoing
eigenvalue probleni2.8) equals the rank of the matrix,}®  waves by
which in turn equals the number of basis functions nonvan-
ishing on the box’s boundary. This number should in general yn S 0\[¢
coincide with the total numbed of channeld in the leads. W “lo s vy
On the surface of the box, each solutig, along with its
normal derivative, can be expressed as a linear combinationhich exhibits a block-diagonal structure, indicating that the
of scattering solution§2.5), T’s remain independent to this point in the derivation.

(2.19
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Once the two T's are placed side by side, the leRdand 1.0
L, become unobservable, that is, they no longer extend to
large distances from the T's. This circumstance cuts the
number of physical leads down to four. The effect of wave
propagation in channels within the unobservgble” ) leads T
on scattering among channels in the observébt®’ ) leads
can be assessed by a formalism originally due to Feshffach.
In Ref. 19, the unobserved channels consisted of bound
states of a scattering complex, which give rise to resonant
states when coupled to a scattering continuum. Similarly,
arrays of T's will exhibit resonant states based on quasi- C
bound states of the array, i.e., whenever the electron’s wave- R
length along the wires becomes comparable to an integral . - )
multiple of d. *%00 200 300 400 500
To implement this formalism, it is convenient to rearrange Scattering Energy (meV)
the vectors (2.13 according to observable channels '
{L1,U;,U;,, Ry} and unobservable channgR;, L}, in par- FIG. 2. Scattering probabilities between the various leads of a
ticular defining single T, witha=b=7 nm, versus scattering energy. The letter
codes stand fof, horizontal straight-through transmissid®y; hori-

Probability
o]

. Ry Ly zontal reflectionV, vertical reflection; andC, probability to scatter
hy = L2+ v Yy = R,/ (2.19 electrons “around the corner.”
The scattering relation in Eq2.14) then takes the form Note that each T is connected only to its nearest neighbors
on either side, so the scattering matrices involved have a
Uy Soo Soul| [ %o sparse structure. This circumstance greatly eases the compu-
o = Swo Suul | g (216 tational load, especially of the matrix inversion in E§.19.

One final detail: the reduced scattering masi%® incor-
(The detailed arrangement of the observable componknts porates all channels in the observable leads, including the
is irrelevant for the present purpo9e®he unobserved leads energetically closed channels that contain exponential diver-
are thus coupledso far only to themselvesdy theS,, por- gences away from the array. However, the choice
tion of the scattering matrix. These leads satisfy an addif,; =exp(x;#) in closed channelsimplies that only the scat-
tional relation arising from the fact that any flux emergingtering wave functions(2.5), with i representing a closed
from R; must appear irh,, and vice versa. This condition is channel, contain such divergences. Put another way, the only
met by matching, in each transverse mduge the wave elementsS; of the scattering matrix relevant to physical
functions scattering are those in whighandj both refer to open chan-
nels.
Ry exd —ikx]—R; exdikx],
_ . 4 . Ill. SCATTERING PROPERTIES
Lyexdik(x—d)]—-L;yexd —ik(x—d)], (2.17
. — In this section we present some fairly typical results on
and thewx der_lvatl_ves,_ ax=d/2. ) . single-T structures and especially on small arrays of T's,
This matching implies a further constraint on the ampli-graying attention to their unique scattering features. For con-
tudes in the unobservable leads: creteness, we consider T's whose horizontal and vertical
+ - - leads are both 7 nm wide, and which are spaced 22 nm apart.
Yy =—exp—ikd) gy, 218 e emphasize that these are realistic dFi)mensions forpthe
embodying the phase gained by an electron traveling th€EO-grown T structures reported in Ref. 7. Most of the re-
distanced between T’s. Note that for energetically closed sults can be understood in terms of the electron’s longitudi-
channels the exponential becomes insteada®pvhich ac-  nal DeBroglie wavelength in modeof the incident channel,
counts for an evanescent wave between T's. Writing out Eq.

(2.16 in components and employing the matching condition 21
(2.18 allows the construction of a “reduced” scattering ma- A= — > (3.9
trix that connects only the channels in the observable leads: 2m E_ (n_ﬂ')

h? b

lﬁ;:SrEdlﬂg ., S*%= Soo~ Sou[exq_ikd)_"suu]_lsuo- . . .
(2.19  Scattering features tend to occur at energies where a multiple

. : . S of \/2 coincides with one of the dimensioagh, or d.
The inverse in this equation implies a resonance when the

matrix exp(-ikd)+S,, becomes nearly singular.

For a larger assembly of T's the reduced scattering matrix
is formed in the same way. First, the amplitudes in all unob- Figure 2 presents the various scattering probabilities
servable leads are collected, then those in adjacent T's afer an electron passing through a single T, in the energy
related through matching conditions analogous to(Bd.7). range betweenE,=#2%m7?/2m*a?=114.54 meV andE,

A. Scattering in a single T
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=442 7?12m* a°=458.16 meV. These energies are the thresh- 1.0
olds for propagation of the first and second modes along the \4 ;
leads; each lead thus possesses only a single open channe i
within the energies presented in Fig. 2. In this figurd, !
and “R” stand for transmission and reflection straight
through in the horizontal direction;V” stands for the prob-
ability for an electron incident in the vertical lead to be re-
flected back into the vertical lead; andC” stands for the
probability of “turning the corner,” i.e., of entering in a
horizontal lead and exiting through the verticar vice
versa.

At energies just above the thresh&g, electrons incident
in either horizontal or vertical leads are reflected with nearly \
unit probability. In this limit the incident electron’s longitu- 00,0 200 300 200 500
dinal wavelength\ greatly exceeds the size of the T, so that Scattering Energy (meV)
the T's only impact on the electron is a sudden boost in
kinetic energy when the electron is no longer confined within  FIG. 3. Reflection R, solid ling) and transmissionT, dashed
the lead. The threshold propagation may then be regarded &ge) probabilities for an electron incident from one end of an array
one-dimensional free propagation with a sudden potentigdf eight T's, spacedd=22 nm apart. For scattering energies
drop at the region of the T. Elementary methfidddemon- E<350 meV,R andT peak simultaneously at resonance energies
strate that the reflection coefficient for this process becomegoverned by the spacind. For E>350 meV,R and T resemble
unity at threshold. more closely the probabilities for a one-dimensional array.

At energies above this threshold region, the reflection
probability for the horizontal arms drops dramatically, asof the horizontal arm with each vertical lead, greatly reduc-
propagation straight through the T becomes increasinglyhg the flux lost to vertical leads. The array then acts like a
likely. Moreover, the coupling between horizontal and verti-one-dimensional array, which exhibits enhanced Bragg re-
cal leads increases, exhibiting a maximum né&ar 220 flection at these Wavelengths_
meV, at which energy./2 nearly matches the width of the Between each pair of these main peaksNig—2 addi-
vertical channel. This circumstance is optimal for sendingtional peaks, generated by wave functions whose wavelength
electron flux around the corner, but the quasi-resonance thys fits an integral number of times into the whole array of
generated appears very broad; flux leaks fairly easily fromength d—1)N+, but which may not vanish at every vertical
horizontal into vertical leads. Notice also that the reflectioniead. Reflection at the corresponding energies is therefore
coefficient for scattering from the vertical lead into itself generally weaker than at the main peaks, although the peaks
remains fairly high throughout, since the incoming wave re-are stronger at low and high energies, where the individual T
ally has a solid wall from which to reflect. reflection coefficients are the largest. At intermediate ener-

The probability for scattering from a horizontal lead into gies these additional peaks are not visible on the scale of Fig.
the vertical lead tends to vanish at energies approaching thg
thresholdE,. At these energies\/2 becomes too short to  Due to the deflective nature of the array, the reflection and
match conveniently the lowest mode in the vertical lead, butransmission probabilities do not satisR+T=1. On the
N\ gets close to matching the second mode. In fact, at agontrary, there are large ranges of energy where Bo#imd
energy ofE~455 meV, just 3 meV below threshold, this T remain small, and most of the incident flux spills out the
second mode is resonantly excited, sending the horizontalertical leads. FOE <350 meV the only way an electron can
lead’s reflection coefficient abruptly to unity. The vertical travel through the entire array is if the flux deflected into the
lead’s reflection coefficient also notes the resonance, but as\grtical leads is shut off, which happens at the resonant en-
phase shift only, which does not appear in the probabilityergies. The T array has thus the property that its reflection
plotted in Fig. 2. and transmission probabilitigeeak simultaneouslat certain
resonances, which could not happen in a superlattice or other
nondeflective array.

At energies above-350 meV, a different phenomenon

Our main interest in arrays of T's lies in the propagationoccurs. Here the vertical lead in each T “decouples itself,”
of electrons through the entire array, horizontally from left toas the probability within each T to scatter around the corner
right. The presence of the uncapped vertical leads, i.e., thérops to zero. In this case the horizontal propagation begins
array’s deflective nature, deeply affects its scattering properto mimic an ordinary one-dimensional array. In particular,
ties. Figure 3 shows the reflectioR) and transmissionT) the conditionR+T=1 is more nearly satisfied. As is typical
probabilities through an array consisting of eight T's spacedor a one-dimensional array, the transmission probability is
at 22 nm intervals, for the same energy range as Fig. 2. Theonnegligible, except at the resonance conditoi2=d,
reflection probability is dominated by a series of peaks suwhich occurs at energ¥e =404 meV ford=22 nm. This
perimposed on the single-T reflection probability. Theseenergy identifies a forbidden band, wider than the scattering
peaks lie at energies where the wavelengtisatisfies the resonances at lower energiéblotice that there is another
condition n\/2=d for some integem. Consequently, the narrow band near thé&, threshold, associated with the
scattering wave function possesses nodes at the intersecti@+ 455 meV scattering resonance discussed abdve ar-

ol

Probability
o

B. Periodic array of T's
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FIG. 4. Probabilities for an electron incident on one end of an  F|G. 5. Inset: schematic of an eight-T array, with four metallic
array of eight T's to scatter into the firét), second(2), or eighth  terminals(shaded boxesattached. The main figure plots the zero-
(8) vertical lead it encounters, under the same conditions as in FiQempera’[ure resistance of the array, versus the Fermi er&rw
3. the terminals. This resistance represents the ratio of the voltage

across terminals 2 and 4, to the current passing between terminals 1
ray thus exhibits a transition from quasi-two-dimensional be-and 3. WhenEg nears a resonance, the measured resistance can
havior below 350 meV, to quasi-one-dimensional behavioPecome negative.
above 350 meV.

As the number of T's increases the contrast between thng straight wiré" or of scattering by a device embedded in
low- and high_energy behavior & and T continues. First, the Wire.22 These results have been further generalized to
the reflection resonances below 350 meV persist, becomingevices with multiple input and output leads, as is relevant
somewhat narrower and higher. Beyddg~ 20 they change here:
very little, indicating that full reflection takes place within ~ We consider a particular wiring arrangement, depicted in
the first 20 T’s or so. The Corresponding transmission resothe-inset to F|g 5. Here four ter.minals are connected to the
nances dwindle to insigniﬁcance at this point’ Owing to theVanOUS leads in the array: terminals 1 and 3 connect to the
increasing difficulty of propagating through the entire array.left- and right-hand leads, while terminals 2 and 4 each con-
Above 350 meV, the band structure persists, with the transd€ct to half the vertical leads on the left- and right-hand sides
mission probability diminishing only slowly as more T's are Of the array. We assume all terminals are composed of the
added. The forbidden band becomes more sharply define§@me material, with a common Fermi enefgy. Each ter-
with T vanishing completely for 390 me¥ E< 410 meV. minali serves as a reservoir of electrons, filled to its chemi-

Finally, Fig. 4 shows, for the same eight-T array, thecal potentialw;, as governed in equilibrium by the currents
probabilities for scattering into the first, second, and eighttfnd voltages at the terminals. Generally speakingemains
vertical lead. Approximately twice as much of the lost flux close toEg so that electrons enter the device with energy
leaves through the first vertical lead as through the second;~Er .
generally the leads farther from the incident lead leak less Reference 23 relates the current flowing into the device
flux, because they receive less in the first place. The effect ghrough lead to the chemical potentials in all other leads by
resonances tends to reverse this general trend. Transmissithe probabilitiesR;; andT;; for scattering a unit current from
to the first vertical lead diminishes at the scattering resoleadi back into lead or into leadj, respectively:
nances, thereby plugging the biggest leak. Transmission to 20
the last lead actually increases, however, for the same reason 1y, o
that transmission out the right-hand lead increases: only on ieas =] (1= Ru) s 2’, Tijk)- @1
resonance does the electron navigate the entire length of t , ,
array. Moreover, transmission throgugh the first and Iagst lead5 €€ stands for the_z .electron § charge, andor Planck’s
become approximately equal on resonance, indicating that afonstant. The quantitie;; and Ty; are the squares of the
vertical leads are approximately equivalent when decouple levant scattering matrix elements evaluateq_at enkygy

or the present purposes, the relevant quantities arethle

from horizontal motion. C ok . : .
currents flowing into each terminal, involving the sum of the
currents in the relevant leads. In terminals 2 and 4 this im-
IV. ELECTRICAL RESISTANCE plies currents

The scattering properties described above influence the
flow of electrons through a deflective array of T’s, thereby = 2 leads 14= 2 leaa. (42
. . . . L i eterminal 2 i eterminal 4
influencing the effective resistance of the array, considered
as a circuit element. In one dimension, electrical conductikewise, the terminals are equipotentials, meaning that the
tance has long been known to follow from the transmissiorchemical potential is the same in any lead connected to a
and reflection properties of random scattering events in given terminal. These circumstances allow the definition of
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effective scattering probabilitieR;; and T;; for the physi- 8
cally relevant current$; and chemical potentialg; in the

four terminalsi. These quantities are then related by equa-
tions of the same form as E.1), which must be solved
subject to boundary conditions describing the potential dif-
ferences and currents in a given experimental setup.

A typical four-terminal experiment consists of external
circuits connected between terminals 1 and 3, and between
terminals 2 and 4, so thay=—15 andl,= —1,4. Then the
pair of currentsl; andl, are related to the voltagdiffer-
ences \(z=e(u;—u3) between terminals 1 and 3 and
Vos=e(u,— ua) between terminals 2 and 4 through the con-
ductance matrixx:

Current I ; (LA)
= >N

[\]

1= anVigm aVos, 1=~ anVigh azVas. (4.3 " Potential Difference V., (rér?V) "

Explicit expressions for ther coefficients in terms of scat-

tering probabilities are given in Ref. 23. To determine the FIG. 6. Zero-temperatureV diagram for an array of eight T's,
effective resistance of the array, one applies a current acro&hibiting negative differential resistance between 30 mV and 50
terminals 1 and 3, and reads the voltage across 2 and AV of applied voltage.

without drawing a current in terminals 2 and 4. Setting 0

in Eq. (4.3 yields the effective resistance values ofV,,, meaning that the resistance is Ohmic. At
_ higherV,,, thel-V curve suddenly bends downward, signal-
Vaall1= appl (@110~ arpazy). (4.4) ing a region of negative differential resistance between 30

i’:\nd 50 millivolts of applied voltage. The resistance then be-
comes positive again gg, rises further, incorporating the
‘large resonance feature of Fig. 5.

Figure 5 plots this resistance as a function of the Ferm
energyEg for the same array of eight T's considered above

for the same energy rande, <E-<E,. Near either thresh- : . : .
old the resistance diverges, since the probability for travers- Negative differential resistance has long been preditted

ing the array vanishes, as in Fig. 3. At intermediate values o?nd was recently obser'v%—f’dm semiconductor supgrlatﬂce
E , structures. In superlattices the phenomenon arises from
g, the scattering resonances are apparent as sudden

: . . llgfagg reflection of conduction electrons with the periodic
creases in resistance. Near these resonances, the resistance

can even takanegativevalues. This result follows from the striicture. The present case of the T array contains the addi-

scattering properties detailed above. Away from resonanc é|onal feature that electrons Bragg reflected from the array do

current incident from terminal 1 has a good chance of flow-mt necessarily disappear back into the incident terminal, but

ing directly into the leads leading into terminal 2, therebyhave a chance of appearing in a different terminal altogether.

accumulating charge there and generating a potential differTr.]e nonlinearl-V characteristics of a deflective T array

ence between 2 and 4. On resonance, however, transport int ight then .be put use_fuIIy to work in device applications

these leads diminishes and charge carriers may have a betterc c @ switch is required to shunt the current one way or
chance of reaching terminal 4, reversing the potential differf’mOther'
ence. Notice also that away from resonance, say near
E-=250 meV, the resistance remains nearly flat and has a

value of ~h/2e?, the quantum unit of resistance. Thus the ACKNOWLEDGMENTS
bend in the T acts like a constriction, quantizing the flow of | \yoyd like to thank G. Bryant, B. Esry, C. Greene, D.

4
electrons’ . _ o Jin, and P. Julienne for useful discussions. This work was
The effective resistance plotted in Fig. 5 refers to thegypnorted by the NRC.

Ohmicresistance, for which the current is a linear function of
the voltage difference. At higher potential differences, the
difference in chemical potentialg,,— w4, covers a range of
Fermi energies. If this range grows to include one of the
resonances in Fig. 5, this resonance will impact the current-
voltage characteristics of the device. The evaluation of cur- The eigenchanndt-matrix method is a familiar and pow-
rent and voltage in this case follows as above, only now therful computational tool in atomic collision theory, but is
contributions to the currents in E¢4.1) at each scattering largely unknown among condensed matter physicists. We
energy must be integrated over the energy rangeherefore sketch in this Appendix the basic elements of the
w1 <E<u,.?? This integration assumes zero temperature, sonethod. More details can be found in Sec. Il A of Ref. 15.
that the chemical potentials, andu, represent sharp limits First it is important to note that a scattering problem, like
of integration. the one presented by the T junctions here, seeks solutions to
Figure 6 shows a resultingV curve for larger potential the Schrdinger equation at a certain fixed total enefgy
difference. The figure begins aV¥,,=0 with w;=u,  with suitable boundary conditions for incoming and outgoing
=Er=360 meV, and raiseg, through the resonance at waves at infinite distances from the scattering region, as ex-
~400 meV in Fig. 5. The current, rises linearly for low pressed by Eq2.5. As an intermediate step, however, we

APPENDIX: THE EIGENCHANNEL
R-MATRIX METHOD
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are free to construct a set of wave functions satisfyang aln( ) 19y

convenient boundary conditionghat is, computationally b(E)=— “on  pon’ (A1)

convenient These solutions, to be denoted, below, can

then be superposed as necessary to satisfy the physical scegmain uniform over the boundary éf. Choosing the loga-

tering boundary conditions. rithmic derivative boundary condition greatly simplifies the
The R-matrix method constructs a useful intermediate sesubsequent matching to the scattering wave functi@rfs.

of wave functions as follows. First we envision a region of We emphasize that these boundary conditions are temporary,

spaceA that contains the scattering regioh.comprises a and serve only to simplify the calculation. The complete

three-dimensional volume in the electron-atom scatteringcattering wave functions will not usually possess congiant

process described in Ref. 15 but will be a two-dimensionaklongA’s boundary.

area in the 2D scattering problem of this paper. The shape of To derive a variational expression for we first write the

A is arbitrary, but it must be sufficiently large that the wavemean energy for an arbitrary real trial wave functigras

functionoutsideof A can be expanded into known functions,

e.g., those described in Ed8.2) and(2.3) in the T example. f w(_ﬁ2/2m*v*2w+ Uy)dA

Inside the regioA we could specify boundary conditions A
for the wave function and its derivative on the boundary of E= : (A2)
A, which would determine a set of energy eigenval&es JA¢2dA

Instead, for the scattering problem we specify the total en-

ergy E in advance, and so can choose only one boundarfere a potential has been inserted, anticipating future ap-
condition. Lettingn represent the outward normal coordinate plications of the method to problems beyond the T. Applying
on A’s surface, theR-matrix boundary condition demands Green'’s theorem in two dimensions reduces the Laplacian in
that the outward normal logarithmic derivative, Eq. (A2) to yield

h%zm.fﬁwﬁwdA—f¢w¢mmd|+f¢uwdA
A | A
E= . (A3)
J JPdA
A
|
This reduction results in a line integral around the boundary
| of the regionA. Substituting the requiremefd1), we find 2 Z v Zyo
an expression for the logarithmic derivative b(E)= kk (A6)
> ZihwZyo
kk’
— | V-V dA+2m* -
fA ¥-V g dA+2m /ﬁfA¢(E U)y dA here
b(E)=
J.¢2d|
' = f E—H)¢ ,dA— f —dl A7
(Ad) Kk ﬁz il ) by Lo (AT)
and

For fixed E, Eq. (A4) is a variational expression fdg,
that is, Eq.(A4) is stationary with respect to small variations
of the wave functiony from a true solution to the Schro Akk,=j¢k¢k,dl. (A8)
dinger equation with boundary conditiofal). We exploit !

this circumstance by expanding the exact solution in a basis
br Determmmgb and ¢ variationally then amounts to setting

all partial derivativesib/9Z, equal to zero, which leads to a
linear system that is conveniently expressed as a generalized
eigenvalue problem,

V=20 $iZi: (A5)
I'Z=bAZ, (A9)
In terms of this basis, the variational expressi@®) be- as described in Sec. Il A.

comes (after “reversing” Green's theorem to recover the Let us remark that, owing to the variational nature of Eq.
Laplacian (AB), any basis set is capable of making an estimate for the
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eigenvalues; and eigenfunctiong; of Eq. (A9). In prac-  ticular, the ¢, do not have to form an orthogonal set. As is
tice, some of thep, must be nonvanishing on the boundary usually the case with variational methods, a sure way of
of A, to allow for finite values of the logarithmic derivative achieving convergence In; andi is to increase the size of

(A1), but the choice of basis is otherwise arbitrary. In par-the basis.

*Electronic address: bohn@fermion.colorado.edu
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