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Theory of electron transport through a periodic array of devices with transverse exit leads

John L. Bohn*
JILA and Quantum Physics Division, National Institute of Standards and Technology, Boulder, Colorado 80309

~Received 28 October 1996; revised manuscript received 21 February 1997!

We introduce a periodic array of nanoscale semiconductor devices, whereeach devicecontains a transverse
lead into which conduction electrons can be deflected. These ‘‘deflective’’ arrays exhibit a unique resonance
structure with respect to electrons traveling the length of the array: coefficients for reflection and transmission
through the array can peaksimultaneouslyat resonance, unlike the analogous case in superlattices. We focus
in particular on an array of T-shaped devices, similar to those grown recently by epitaxial methods, and
characterized by perfection of structure and extremely small size. The T-array’s nonlinearI -V characteristics,
along with its multiple paths for electron flow, may lead to interesting switching applications.
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I. INTRODUCTION

Semiconductor nanoscale devices afford an endless
ety of scattering geometries for ballistically propagating co
duction electrons. Typical geometries of interest for dev
applications consist of narrow quantum wires that serve
leads into and out of a scattering region whose shape is
gineered to yield a desired conductance through the dev
Such scattering regions include arrays of T-shaped ‘‘stub1

or more elaborate rectangular geometries;2 curvilinear
shapes, such as stadiums, that incorporate ‘‘quan
chaos’’;3 bent quantum wires that localize electron density
their bends;4 and pairs of parallel quantum wires connect
by a transverse quantum wire.5

Viewed as a scattering problem, the shape of an in
vidual device influences the transmission coefficient from
device’s input lead to its output lead, yielding typically a s
of resonances where the transmission abruptly drops at
tain scattering energies. An array of equally spaced ident
devices yields instead a ‘‘miniband’’ structure, which infl
ences conductance properties by creating band gaps, ra
of incident electron energy within which the transmissi
probability nearly vanishes. These band gaps are gove
primarily by the spacing between devices, since the pro
gating electrons see essentially a periodically modulated
tential, much like the Kronig-Penney model of on
dimensional band structure.6 Device arrays considered so fa
comprise a single input lead feeding a single output le
meaning that the entire incident electron flux appears as s
tered flux in either the input lead or the output lead.~Here we
consider only ballistic transport and ignore dissipation in
phonon modes of the device.! The theoretical treatment o
these devices concerns then the determination of reflec
and transmission probabilities, handled easily by trans
matrices or analogous methods~e.g., Ref. 1!.

This paper approaches instead a periodic array, in wh
each device in the array incorporates a transverse l
through which electron flux can exit. Figure 1 sketches
prototype device considered in this paper. Each elemen
the array, as pictured in Fig. 1~a!, consists of a T-shape
quantum wire, of widthsa andb in its vertical and horizonta
arms, respectively. Unlike the stubs considered in Ref
560163-1829/97/56~7!/4132~9!/$10.00
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here the vertical arm of the T is assumed long enough
any electron flux entering this arm is effectively lost. Th
centers of the T’s are spaced by a distanced, as in Fig. 1~b!,
forming a periodic array with a finite number of membe
NT . The transverse leads afford the possibility ofdeflecting
current out of the array altogether; we therefore refer to s
an array as deflective. The deflective nature of an ar
strongly influences its miniband structure, as exemplified
scattering resonances where reflection and transmission
efficients through the array can simultaneously peak. Th
resonances, and some of their observable conseque
form the core of this paper.

An array of T’s like that pictured in Fig. 1 might be
etched using standard lithography techniques. There is, h
ever, a more suitable procedure for accurately forming
array, namely, the cleaved-edge-overgrowth~CEO! process.7

In this process the vertical arms are first grown as alterna
GaAs-AlxGa12xAs layers by molecular beam epitaxy. Th
resulting crystal is then cleaved along a plane orthogona
the vertical arms, and a new layer of GaAs grown to form

FIG. 1. The device.~a! shows a T-shaped structure formed
GaAs embedded in AlxGa12xAs. Electrons propagate ballisticall
within the T-shaped region.~b! shows an array of such device
placed at equal intervalsd. The array as a whole is termed ‘‘deflec
tive,’’ because of the possibility of deflecting conduction electro
into each T’s vertical lead.
4132 © 1997 The American Physical Society
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56 4133THEORY OF ELECTRON TRANSPORT THROUGH A . . .
horizontal arms.~The resulting array of T’s then has transl
tional symmetry in the direction orthogonal to the plane
Fig. 1; we disregard in this paper motion out of this plan!
Epitaxial techniques imply both a high degree of perfect
in the structure and an extremely small size, witha and b
typically of order 10 nm. For these reasons, CEO-grown
have been considered as high-quality quantum wires lo
ized at the crux of each T~Ref. 8! and as exciton lasers.9 In
addition, by reversing the roles of GaAs and AlxGa12xAs in
Fig. 1, transport through precisely defined two-dimensio
~2D! superlattices has been studied. In this case the elect
tunnel across the T’s and are classically allowed only in
space between T’s.10 The present work appears to be the fi
to consider transport through the directly connected
themselves.

The multiplicity of exit leads in the array in Fig. 1 implie
that a theoretical treatment in terms of transfer matri
proves inadequate. Rather, a full scattering matrix for eac
must be constructed; these can then be strung together
convenient way to describe the scattering properties of
entire array. We calculate scattering matrices using
‘‘ R-matrix’’ formalism that has been enormously success
in atomic scattering calculations, and which is sufficien
general to handle much more elaborate systems than the
considered here. In addition, the method reported here
connecting the scattering matrices of individual T’s sho
find wide application in similar problems.

II. MODEL AND METHOD

The model in this paper assumes that the array picture
Fig. 1 is crafted from a GaAs-AlxGa12xAs heterostructure
as has been the case in structures previously grown by C
Accordingly, it assumes an effective electron mass
m* 50.067me , whereme stands for the bare electron mas
The model also assumes that the electron is contained w
the T by infinitely high potential barriers, and that individu
electrons propagate ballistically through the entire arr
These assumptions pose no serious restrictions, since
present aim is to assess the impact of the open vertical a
on electron transport.

A description of the scattering of a single electron throu
the array in Fig. 1 requires solutions to the Schro¨dinger equa-
tion

2
\2

2m*
¹W 2c5Ec ~2.1!

for the range of scattering energiesE of interest, subject to
vanishing boundary conditions on the perimeter of the arr
In each lead the wave function is separable and can be
pressed as linear combinations of functionshi(j) f i

6(E;h),
wherej represents the coordinate transverse to a given l
andh the coordinate along the lead, increasing in the dir
tion away from the array. The~normalized! transverse wave
function in modeni reads

hi~j!5A2

w
cosS nip

w
j D ~2.2!

for a lead of widthw (5a or b). The longitudinal wave
function takes the form
f
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6~E;h!5

1

A2ki

exp~6 ik ih! ~2.3!

whose wave numberki satisfies

\2

2m* F S nip

w D 2

1ki
2G5E. ~2.4!

If ki
2.0, then f i

2 and f i
1 stand for incoming and outgoing

traveling waves, respectively, and channeli is energetically
‘‘open.’’ Otherwise, the channel is ‘‘closed,’’ and the func
tions f i

7 become the exponentially growing and decayi
functions exp(6kh) by the substitutionk→ ik, with k.0.

Scattering of an electron by the array is described at e
incident energyE by a scattering matrixS, whose element
Sji represents the~complex! amplitude for the electron to
exit the array in channelj , given a unit incident flux in
channeli . These scattering wave functions far from the arr
therefore take the form11

hj~j!@ f j
2~E,h!d j i 2 f j

1~E,h!Sji ~E!#. ~2.5!

The following subsections construct the scattering matrix
the array in two steps, by first computing the scattering m
trix for a single T, then by stringing these matrices togeth
to obtain the full scattering matrix.

A. Scattering matrix for a single T

We determine a single-T’s scattering matrix by t
R-matrix method invented by Wigner in the context
nuclear scattering theory,12 and extensively developed fo
use in atomic scattering theory~See, for instance, the review
in Refs. 13–15! The mathematical underpinning of th
method is sketched in Appendix A. Briefly, the metho
solves the Schro¨dinger equation separately in two regions:
‘‘outer’’ region where the wave function consists of supe
positions~2.5! of scattering wave functions; and an ‘‘inner
region, the T itself, where where the wave function is mo
complicated and must be determined numerically. Match
these solutions and their derivatives across the boundary
tween inner and outer regions identifies the scattering ma
in Eq. ~2.5!.

We first identify the inner region of the T as the recta
gular ‘‘box’’ uxu<a/2, uyu<b/2 where all the leads overla
~this is the region denoted ‘‘A’’ in Appendix A!. Within this
box we seek, for each value ofE, solutionscb vanishing
along the liney52b/2 and having a constant outward no
mal logarithmic derivative2bb5cb

21(]cb /]n) along the
other three sides. Here]/]n stands for the outward norma
directional derivative through the box’s boundary. The
logarithmic derivatives then provide a convenient set
boundary conditions for matching the leads’ wave functio
~2.5!, requiring a matching only in the longitudinal coord
nateh. ~This two-step approach has proven very useful
more elaborate settings, such as electron-atom or electron
scattering processes, where the atom or ion is treated w
a closed three-dimensional inner region. Typically, the lo
rithmic derivatives vary much more slowly with energy tha
do the resulting scattering matrices, which exhibit narr
resonances; computational effort is thereby reduced.!
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4134 56JOHN L. BOHN
The constant-logarithmic-derivative solutions can gen
ally be computed usefully with finite element techniques16

In the simple geometry of the present example we use
stead a basis set expansion, as derived in Appendix A.
basis consists primarily of functionsfk

(v) that vanish on the
box boundaries,

fk
~v !5A2

a
cosS np

a
xDA2

b
cosS mp

b
yD . ~2.6!

These functions form a complete set within the inner regi
and can thus account for the full two-dimensional shape
the scattering wave function. To be useful computationa
however, they must be complemented by basis functi
fk

(nv) nonvanishing on the box’s surface. For example,

fk
~nv !5A2

a
cosS np

a
xDA2

b
sinF p

2bS y1
b

2D G ~2.7!

is nonzero along the upper egde of the boxy5b/2; and simi-
larly for the other two edges. These additional basis fu
tions allow for finite values of the logarithmic derivativesbb
on the box’s surface. Similar overcomplete bases are s
dard in applications of theR-matrix method to atomic scat
tering problems,15 but cause no harm, since there is no
quirement that the basis set be orthogonal.

Denoting basis functions generically byfk , we expand
the solutions ascb5(kfkZk

b . Using this expansion as a tria
wave function in a variational expression for the logarithm
derivative ~Appendix A! yields a generalized eigenvalu
problem for the eigenvaluesbb and eigenvectorsZb:17

GZW 5bLZW , ~2.8!

where

Gkk85
2m*

\2 E
A
fk~E2H !fk8dA2E

l
fk

]fk8
]n

dl ~2.9!

involves an integral over the areaA of the box as well as a
line integral over its perimeterl , andH stands for the elec
tron’s Hamiltonian inside the box. The right-hand matrix
given by the line integral

Lkk85E
l
fkfk8dl. ~2.10!

These matrices are easily evaluated in the potential-free
gion inside the box. Typically 10–20 basis functions alrea
suffice for convergence of the eigenvectorscb .

The number of independent solutions to the generali
eigenvalue problem~2.8! equals the rank of the matrixL,18

which in turn equals the number of basis functions nonv
ishing on the box’s boundary. This number should in gene
coincide with the total numberN of channelsi in the leads.
On the surface of the box, each solutioncb , along with its
normal derivative, can be expressed as a linear combina
of scattering solutions~2.5!,
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i j

hj@ f j
2d j i 2 f j

1Sji #Ni
b,

]cb

]n
52bbcb5(

i j
hjF] f j

2

]n
d j i 2

] f j
1

]n
Sji GNi

b . ~2.11!

Here the coefficientsNi
b serve to connect the normalization

of wave functions inside and outside the box. Projection o
each of theN nonvanishing basis functionsfk

(nv) in turn
yields a system of 2N2 equations for the 2N2 matrix ele-
mentsSji andNi

b :

Zk
b5(

i j
S E

l
fk

~nv!hjdl D @ f j
2d j i 2 f j

1Sji #Ni
b ,

2bbZk
b5(

i j
S E

l
fk

~nv!hjdl D F] f j
2

]n
d j i 2

] f j
1

]n
Sji GNi

b .

~2.12!

In practice, each nonvanishing basis functionfk
(nv) projects

ontoonly onescattering wave functionhi , since in the trans-
verse direction both sets consist of orthogonal cosines. T
circumstance further simplifies the solutions of Eq.~2.12! in
the present case.

B. Connection of multiple T’s

Once the scattering matrix for a single T is determined
the method of the previous section, the scattering matr
for a string of T’s may then be fused to yield the scatteri
matrix for the entire array. For simplicity we will illustrate
this connection for a pair of T’s, but the method is of cour
completely general.

First let us denote the leads in each T by the lettersL,R,
U, to distinguish the left, right, and upper leads for a T in the
orientation shown in Fig. 1~a!. One T, identified by the num
ber 1, is centered at the origin of the coordinate syst
shown, while the second, identified by the number 2, is c
tered atx5d. Themost generalform of the wave function in
any of the six leads is a superposition of incoming and o
going waves. LetL1

1 , for instance, stand generically for th
set of coefficients of thef 1 wave functions in leadL of T
number 1, and similarly for the rest of the leads. The inco
ing (c1) and outgoing (c2) wave functions for each T are
then characterized by column vectors divided into th
blocks:

c1,2
6 5S L1,2

6

R1,2
6

U1,2
6
D . ~2.13!

In terms of the single-T scattering matrixS, the full scatter-
ing matrix for all six leads relates incoming and outgoi
waves by

S c1
1

c2
1D 5S S 0

0 SD S c1
2

c2
2D , ~2.14!

which exhibits a block-diagonal structure, indicating that t
T’s remain independent to this point in the derivation.
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56 4135THEORY OF ELECTRON TRANSPORT THROUGH A . . .
Once the two T’s are placed side by side, the leadsR1 and
L2 become unobservable, that is, they no longer extend
large distances from the T’s. This circumstance cuts
number of physical leads down to four. The effect of wa
propagation in channels within the unobservable~‘‘ u’’ ! leads
on scattering among channels in the observable~‘‘ o’’ ! leads
can be assessed by a formalism originally due to Feshba19

In Ref. 19, the unobserved channels consisted of bo
states of a scattering complex, which give rise to reson
states when coupled to a scattering continuum. Simila
arrays of T’s will exhibit resonant states based on qua
bound states of the array, i.e., whenever the electron’s w
length along the wires becomes comparable to an inte
multiple of d.

To implement this formalism, it is convenient to rearran
the vectors ~2.13! according to observable channe
$L1 ,U1 ,U2 ,R2% and unobservable channels$R1 ,L2%, in par-
ticular defining

cu
15S R1

1

L2
1 D , cu

25S L2
2

R1
2D . ~2.15!

The scattering relation in Eq.~2.14! then takes the form

S co
1

cu
1D 5S Soo Sou

Suo Suu
D S co

2

cu
2D . ~2.16!

~The detailed arrangement of the observable componentsco
6

is irrelevant for the present purposes.! The unobserved lead
are thus coupled~so far only to themselves! by theSuu por-
tion of the scattering matrix. These leads satisfy an ad
tional relation arising from the fact that any flux emergi
from R1 must appear inL2, and vice versa. This condition i
met by matching, in each transverse modehi , the wave
functions

R1
2exp@2 ikx#2R1

1exp@ ikx#,

L2
2exp@ ik~x2d!#2L2

1exp@2 ik~x2d!#, ~2.17!

and theirx derivatives, atx5d/2.
This matching implies a further constraint on the amp

tudes in the unobservable leads:

cu
152exp~2 ikd!cu

2 , ~2.18!

embodying the phase gained by an electron traveling
distanced between T’s. Note that for energetically close
channels the exponential becomes instead exp(kd), which ac-
counts for an evanescent wave between T’s. Writing out
~2.16! in components and employing the matching condit
~2.18! allows the construction of a ‘‘reduced’’ scattering m
trix that connects only the channels in the observable lea

co
15Sredco

2 , Sred5Soo2Sou@exp~2 ikd!1Suu#
21Suo .

~2.19!

The inverse in this equation implies a resonance when
matrix exp(2ikd)1Suu becomes nearly singular.

For a larger assembly of T’s the reduced scattering ma
is formed in the same way. First, the amplitudes in all un
servable leads are collected, then those in adjacent T’s
related through matching conditions analogous to Eq.~2.17!.
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Note that each T is connected only to its nearest neighb
on either side, so the scattering matrices involved hav
sparse structure. This circumstance greatly eases the co
tational load, especially of the matrix inversion in Eq.~2.19!.

One final detail: the reduced scattering matrixSred incor-
porates all channels in the observable leads, including
energetically closed channels that contain exponential di
gences away from the array. However, the cho
f i

25exp(kih) in closed channelsi implies that only the scat-
tering wave functions~2.5!, with i representing a closed
channel, contain such divergences. Put another way, the
elementsSi j of the scattering matrix relevant to physic
scattering are those in whichi and j both refer to open chan
nels.

III. SCATTERING PROPERTIES

In this section we present some fairly typical results
single-T structures and especially on small arrays of T
drawing attention to their unique scattering features. For c
creteness, we consider T’s whose horizontal and vert
leads are both 7 nm wide, and which are spaced 22 nm a
We emphasize that these are realistic dimensions for
CEO-grown T structures reported in Ref. 7. Most of the
sults can be understood in terms of the electron’s longitu
nal DeBroglie wavelength in moden of the incident channel,

l5
2p

A2m*

\2 E2S np

b
D 2

. ~3.1!

Scattering features tend to occur at energies where a mul
of l/2 coincides with one of the dimensionsa,b, or d.

A. Scattering in a single T

Figure 2 presents the various scattering probabilit
for an electron passing through a single T, in the ene
range betweenE15\2p2/2m* a25114.54 meV andE2

FIG. 2. Scattering probabilities between the various leads o
single T, with a5b57 nm, versus scattering energy. The lett
codes stand forT, horizontal straight-through transmission;R, hori-
zontal reflection;V, vertical reflection; andC, probability to scatter
electrons ‘‘around the corner.’’
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4136 56JOHN L. BOHN
54\2p2/2m*a25458.16 meV. These energies are the thre
olds for propagation of the first and second modes along
leads; each lead thus possesses only a single open ch
within the energies presented in Fig. 2. In this figure, ‘‘T’’
and ‘‘R’’ stand for transmission and reflection straig
through in the horizontal direction; ‘‘V’’ stands for the prob-
ability for an electron incident in the vertical lead to be r
flected back into the vertical lead; and ‘‘C’’ stands for the
probability of ‘‘turning the corner,’’ i.e., of entering in a
horizontal lead and exiting through the vertical~or vice
versa!.

At energies just above the thresholdE1, electrons incident
in either horizontal or vertical leads are reflected with nea
unit probability. In this limit the incident electron’s longitu
dinal wavelengthl greatly exceeds the size of the T, so th
the T’s only impact on the electron is a sudden boost
kinetic energy when the electron is no longer confined wit
the lead. The threshold propagation may then be regarde
one-dimensional free propagation with a sudden poten
drop at the region of the T. Elementary methods20 demon-
strate that the reflection coefficient for this process beco
unity at threshold.

At energies above this threshold region, the reflect
probability for the horizontal arms drops dramatically,
propagation straight through the T becomes increasin
likely. Moreover, the coupling between horizontal and ve
cal leads increases, exhibiting a maximum nearE;220
meV, at which energyl/2 nearly matches the width of th
vertical channel. This circumstance is optimal for send
electron flux around the corner, but the quasi-resonance
generated appears very broad; flux leaks fairly easily fr
horizontal into vertical leads. Notice also that the reflect
coefficient for scattering from the vertical lead into itse
remains fairly high throughout, since the incoming wave
ally has a solid wall from which to reflect.

The probability for scattering from a horizontal lead in
the vertical lead tends to vanish at energies approaching
thresholdE2. At these energies,l/2 becomes too short to
match conveniently the lowest mode in the vertical lead,
l gets close to matching the second mode. In fact, at
energy ofE;455 meV, just 3 meV below threshold, th
second mode is resonantly excited, sending the horizo
lead’s reflection coefficient abruptly to unity. The vertic
lead’s reflection coefficient also notes the resonance, but
phase shift only, which does not appear in the probabi
plotted in Fig. 2.

B. Periodic array of T’s

Our main interest in arrays of T’s lies in the propagati
of electrons through the entire array, horizontally from left
right. The presence of the uncapped vertical leads, i.e.,
array’s deflective nature, deeply affects its scattering prop
ties. Figure 3 shows the reflection (R) and transmission (T)
probabilities through an array consisting of eight T’s spac
at 22 nm intervals, for the same energy range as Fig. 2.
reflection probability is dominated by a series of peaks
perimposed on the single-T reflection probability. The
peaks lie at energies where the wavelengthl satisfies the
condition nl/25d for some integern. Consequently, the
scattering wave function possesses nodes at the interse
-
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of the horizontal arm with each vertical lead, greatly redu
ing the flux lost to vertical leads. The array then acts like
one-dimensional array, which exhibits enhanced Bragg
flection at these wavelengths.

Between each pair of these main peaks lieNT22 addi-
tional peaks, generated by wave functions whose wavelen
l fits an integral number of times into the whole array
length (d21)NT , but which may not vanish at every vertica
lead. Reflection at the corresponding energies is there
generally weaker than at the main peaks, although the pe
are stronger at low and high energies, where the individua
reflection coefficients are the largest. At intermediate en
gies these additional peaks are not visible on the scale of
3.

Due to the deflective nature of the array, the reflection a
transmission probabilities do not satisfyR1T51. On the
contrary, there are large ranges of energy where bothR and
T remain small, and most of the incident flux spills out t
vertical leads. ForE,350 meV the only way an electron ca
travel through the entire array is if the flux deflected into t
vertical leads is shut off, which happens at the resonant
ergies. The T array has thus the property that its reflec
and transmission probabilitiespeak simultaneouslyat certain
resonances, which could not happen in a superlattice or o
nondeflective array.

At energies above;350 meV, a different phenomeno
occurs. Here the vertical lead in each T ‘‘decouples itsel
as the probability within each T to scatter around the cor
drops to zero. In this case the horizontal propagation beg
to mimic an ordinary one-dimensional array. In particul
the conditionR1T51 is more nearly satisfied. As is typica
for a one-dimensional array, the transmission probability
nonnegligible, except at the resonance conditionnl/25d,
which occurs at energyE5404 meV for d522 nm. This
energy identifies a forbidden band, wider than the scatte
resonances at lower energies.~Notice that there is anothe
narrow band near theE2 threshold, associated with th
E5455 meV scattering resonance discussed above.! The ar-

FIG. 3. Reflection (R, solid line! and transmission (T, dashed
line! probabilities for an electron incident from one end of an arr
of eight T’s, spacedd522 nm apart. For scattering energie
E,350 meV,R and T peak simultaneously at resonance energ
governed by the spacingd. For E.350 meV,R and T resemble
more closely the probabilities for a one-dimensional array.
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56 4137THEORY OF ELECTRON TRANSPORT THROUGH A . . .
ray thus exhibits a transition from quasi-two-dimensional
havior below 350 meV, to quasi-one-dimensional behav
above 350 meV.

As the number of T’s increases the contrast between
low- and high-energy behavior ofR andT continues. First,
the reflection resonances below 350 meV persist, becom
somewhat narrower and higher. BeyondNT;20 they change
very little, indicating that full reflection takes place withi
the first 20 T’s or so. The corresponding transmission re
nances dwindle to insignificance at this point, owing to t
increasing difficulty of propagating through the entire arra
Above 350 meV, the band structure persists, with the tra
mission probability diminishing only slowly as more T’s a
added. The forbidden band becomes more sharply defi
with T vanishing completely for 390 meV,E, 410 meV.

Finally, Fig. 4 shows, for the same eight-T array, t
probabilities for scattering into the first, second, and eig
vertical lead. Approximately twice as much of the lost flu
leaves through the first vertical lead as through the seco
generally the leads farther from the incident lead leak l
flux, because they receive less in the first place. The effec
resonances tends to reverse this general trend. Transmi
to the first vertical lead diminishes at the scattering re
nances, thereby plugging the biggest leak. Transmissio
the last lead actually increases, however, for the same re
that transmission out the right-hand lead increases: only
resonance does the electron navigate the entire length o
array. Moreover, transmission through the first and last le
become approximately equal on resonance, indicating tha
vertical leads are approximately equivalent when decoup
from horizontal motion.

IV. ELECTRICAL RESISTANCE

The scattering properties described above influence
flow of electrons through a deflective array of T’s, there
influencing the effective resistance of the array, conside
as a circuit element. In one dimension, electrical cond
tance has long been known to follow from the transmiss
and reflection properties of random scattering events i

FIG. 4. Probabilities for an electron incident on one end of
array of eight T’s to scatter into the first~1!, second~2!, or eighth
~8! vertical lead it encounters, under the same conditions as in
3.
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long straight wire21 or of scattering by a device embedded
the wire.22 These results have been further generalized
devices with multiple input and output leads, as is relev
here.23

We consider a particular wiring arrangement, depicted
the inset to Fig. 5. Here four terminals are connected to
various leads in the array: terminals 1 and 3 connect to
left- and right-hand leads, while terminals 2 and 4 each c
nect to half the vertical leads on the left- and right-hand si
of the array. We assume all terminals are composed of
same material, with a common Fermi energyEF . Each ter-
minal i serves as a reservoir of electrons, filled to its chem
cal potentialm i , as governed in equilibrium by the curren
and voltages at the terminals. Generally speaking,m i remains
close toEF so that electrons enter the device with ener
E;EF .

Reference 23 relates the current flowing into the dev
through leadi to the chemical potentials in all other leads b
the probabilitiesRii andTi j for scattering a unit current from
lead i back into leadi or into leadj , respectively:

I leadi5
2e

h F ~12Rii !m i2(
iÞ j

Ti j m j G . ~4.1!

Here e stands for the electron’s charge, andh for Planck’s
constant. The quantitiesRii and Ti j are the squares of th
relevant scattering matrix elements evaluated at energyEF .
For the present purposes, the relevant quantities are thetotal
currents flowing into each terminal, involving the sum of t
currents in the relevant leads. In terminals 2 and 4 this
plies currents

I 25 (
i Pterminal 2

I leadi , I 45 (
i Pterminal 4

I leadi . ~4.2!

Likewise, the terminals are equipotentials, meaning that
chemical potential is the same in any lead connected t
given terminal. These circumstances allow the definition

n

g.

FIG. 5. Inset: schematic of an eight-T array, with four metal
terminals~shaded boxes! attached. The main figure plots the zer
temperature resistance of the array, versus the Fermi energyEF of
the terminals. This resistance represents the ratio of the vol
across terminals 2 and 4, to the current passing between termin
and 3. WhenEF nears a resonance, the measured resistance
become negative.
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4138 56JOHN L. BOHN
effective scattering probabilitiesRii and Ti j for the physi-
cally relevant currentsI i and chemical potentialsm i in the
four terminalsi . These quantities are then related by eq
tions of the same form as Eq.~4.1!, which must be solved
subject to boundary conditions describing the potential
ferences and currents in a given experimental setup.

A typical four-terminal experiment consists of extern
circuits connected between terminals 1 and 3, and betw
terminals 2 and 4, so thatI 152I 3 and I 252I 4. Then the
pair of currentsI 1 and I 2 are related to the voltagediffer-
ences V135e(m12m3) between terminals 1 and 3 an
V245e(m22m4) between terminals 2 and 4 through the co
ductance matrixa:

I 15a11V132a12V24, I 252a21V131a22V24. ~4.3!

Explicit expressions for thea coefficients in terms of scat
tering probabilities are given in Ref. 23. To determine t
effective resistance of the array, one applies a current ac
terminals 1 and 3, and reads the voltage across 2 an
without drawing a current in terminals 2 and 4. SettingI 250
in Eq. ~4.3! yields the effective resistance

V24/I 15a12/~a11a222a12a21!. ~4.4!

Figure 5 plots this resistance as a function of the Fe
energyEF for the same array of eight T’s considered abo
for the same energy rangeE1,EF,E2. Near either thresh-
old the resistance diverges, since the probability for trave
ing the array vanishes, as in Fig. 3. At intermediate value
EF , the scattering resonances are apparent as sudde
creases in resistance. Near these resonances, the resi
can even takenegativevalues. This result follows from the
scattering properties detailed above. Away from resona
current incident from terminal 1 has a good chance of flo
ing directly into the leads leading into terminal 2, there
accumulating charge there and generating a potential di
ence between 2 and 4. On resonance, however, transpor
these leads diminishes and charge carriers may have a b
chance of reaching terminal 4, reversing the potential diff
ence. Notice also that away from resonance, say n
EF5250 meV, the resistance remains nearly flat and ha
value of ;h/2e2, the quantum unit of resistance. Thus t
bend in the T acts like a constriction, quantizing the flow
electrons.24

The effective resistance plotted in Fig. 5 refers to t
Ohmicresistance, for which the current is a linear function
the voltage difference. At higher potential differences,
difference in chemical potentials,m22m1, covers a range o
Fermi energies. If this range grows to include one of
resonances in Fig. 5, this resonance will impact the curr
voltage characteristics of the device. The evaluation of c
rent and voltage in this case follows as above, only now
contributions to the currents in Eq.~4.1! at each scattering
energy must be integrated over the energy ra
m1,E,m2.22 This integration assumes zero temperature
that the chemical potentialsm1 andm2 represent sharp limits
of integration.

Figure 6 shows a resultingI -V curve for larger potentia
difference. The figure begins atV2450 with m15m2
5EF5360 meV, and raisesm2 through the resonance a
;400 meV in Fig. 5. The currentI 1 rises linearly for low
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values of V24, meaning that the resistance is Ohmic.
higherV24, theI -V curve suddenly bends downward, signa
ing a region of negative differential resistance between
and 50 millivolts of applied voltage. The resistance then
comes positive again asm2 rises further, incorporating the
large resonance feature of Fig. 5.

Negative differential resistance has long been predicte25

and was recently observed26 in semiconductor superlattic
structures. In superlattices the phenomenon arises f
Bragg reflection of conduction electrons with the period
structure. The present case of the T array contains the a
tional feature that electrons Bragg reflected from the array
not necessarily disappear back into the incident terminal,
have a chance of appearing in a different terminal altoget
The nonlinearI -V characteristics of a deflective T arra
might then be put usefully to work in device applicatio
where a switch is required to shunt the current one way
another.

ACKNOWLEDGMENTS

I would like to thank G. Bryant, B. Esry, C. Greene, D
Jin, and P. Julienne for useful discussions. This work w
supported by the NRC.

APPENDIX: THE EIGENCHANNEL
R-MATRIX METHOD

The eigenchannelR-matrix method is a familiar and pow
erful computational tool in atomic collision theory, but
largely unknown among condensed matter physicists.
therefore sketch in this Appendix the basic elements of
method. More details can be found in Sec. III A of Ref. 1

First it is important to note that a scattering problem, li
the one presented by the T junctions here, seeks solution
the Schro¨dinger equation at a certain fixed total energyE,
with suitable boundary conditions for incoming and outgoi
waves at infinite distances from the scattering region, as
pressed by Eq.~2.5!. As an intermediate step, however, w

FIG. 6. Zero-temperatureI -V diagram for an array of eight T’s
exhibiting negative differential resistance between 30 mV and
mV of applied voltage.
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are free to construct a set of wave functions satisfyingany
convenient boundary conditions~that is, computationally
convenient!. These solutions, to be denotedcb below, can
then be superposed as necessary to satisfy the physical
tering boundary conditions.

The R-matrix method constructs a useful intermediate
of wave functions as follows. First we envision a region
spaceA that contains the scattering region.A comprises a
three-dimensional volume in the electron-atom scatter
process described in Ref. 15 but will be a two-dimensio
area in the 2D scattering problem of this paper. The shap
A is arbitrary, but it must be sufficiently large that the wa
functionoutsideof A can be expanded into known function
e.g., those described in Eqs.~2.2! and~2.3! in the T example.

Inside the regionA we could specify boundary condition
for the wave function and its derivative on the boundary
A, which would determine a set of energy eigenvaluesE.
Instead, for the scattering problem we specify the total
ergy E in advance, and so can choose only one bound
condition. Lettingn represent the outward normal coordina
on A’s surface, theR-matrix boundary condition demand
that the outward normal logarithmic derivative,
ar

s

as

e

cat-

t
f

g
l
of

f

-
ry

b~E!52
] ln~c!

]n
52

1

c

]c

]n
, ~A1!

remain uniform over the boundary ofA. Choosing the loga-
rithmic derivative boundary condition greatly simplifies th
subsequent matching to the scattering wave functions~2.5!.
We emphasize that these boundary conditions are tempo
and serve only to simplify the calculation. The comple
scattering wave functions will not usually possess constanb
alongA’s boundary.

To derive a variational expression forb, we first write the
mean energy for an arbitrary real trial wave functionc as

E5

E
A
c~2\2/2m* ¹W 2c1Uc!dA

E
A
c2dA

. ~A2!

Here a potentialU has been inserted, anticipating future a
plications of the method to problems beyond the T. Applyi
Green’s theorem in two dimensions reduces the Laplacia
Eq. ~A2! to yield
E5

\2/2m* F E
A
¹W c•¹W c dA2E

l
c~]c/]n!dlG1E

A
cUc dA

E
A
c2dA

. ~A3!
g
a
lized

q.
the
This reduction results in a line integral around the bound
l of the regionA. Substituting the requirement~A1!, we find
an expression for the logarithmic derivative

b~E!5

2E
A
¹W c•¹W c dA12m* /\E

A
c~E2U !c dA

E
l
c2dl

.

~A4!

For fixed E, Eq. ~A4! is a variational expression forb,
that is, Eq.~A4! is stationary with respect to small variation
of the wave functionc from a true solution to the Schro¨-
dinger equation with boundary conditions~A1!. We exploit
this circumstance by expanding the exact solution in a b
fk ,

c5(
k

fkZk . ~A5!

In terms of this basis, the variational expression~A4! be-
comes~after ‘‘reversing’’ Green’s theorem to recover th
Laplacian!
y

is

b~E!5

(
kk8

ZkGkk8Zk8

(
kk8

ZkLkk8Zk8

, ~A6!

where

Gkk85
2m*

\2 E
A
fk~E2H !fk8dA2E

l
fk

]fk8
]n

dl ~A7!

and

Lkk85E
l
fkfk8dl. ~A8!

Determiningb and c variationally then amounts to settin
all partial derivatives]b/]Zk equal to zero, which leads to
linear system that is conveniently expressed as a genera
eigenvalue problem,

GZW 5bLZW , ~A9!

as described in Sec. II A.
Let us remark that, owing to the variational nature of E

~A6!, any basis set is capable of making an estimate for
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eigenvaluesbb and eigenfunctionscb of Eq. ~A9!. In prac-
tice, some of thefk must be nonvanishing on the bounda
of A, to allow for finite values of the logarithmic derivativ
~A1!, but the choice of basis is otherwise arbitrary. In pa
 -

ticular, thefk do not have to form an orthogonal set. As
usually the case with variational methods, a sure way
achieving convergence inbb andcb is to increase the size o
the basis.
.
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1324 ~1985!; A. R. Goñi et al., ibid. 61, 1956~1992!.

9W. Wegscheideret al., Phys. Rev. Lett.71, 4071~1993!; Physica
B ~Netherlands! 227, 390 ~1997!; G. W. Bryant, P. S. Julienne,
and Y. B. Band, Superlattices Microstruct.20, 601 ~1996!.
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