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Differential scattering and rethermalization in ultracold dipolar gases
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Analytic expressions for the differential cross sections of ultracold atoms and molecules that scatter primarily
due to dipolar interactions are derived within the first-order Born approximation and are shown to agree with the
partial wave expansion. These cross sections are applied to the problem of cross-dimensional rethermalization.
Strikingly, the rate of rethermalization can vary by as much as a factor of 2, depending on the orientation of the
dipoles. Thus the anisotropic dipole-dipole interaction can have a significant effect even on the behavior of a
nondegenerate ultracold gas.

DOI: 10.1103/PhysRevA.89.022702 PACS number(s): 34.50.Cx, 67.85.−d

I. INTRODUCTION

It is commonly appreciated that the ultracold regime
of collisions occurs when only a small number of partial
waves contributes to scattering. This is a sensible criterion
for atoms interacting via van der Waals forces, where the
Wigner threshold laws dictate that scattering amplitudes are
independent of wave number k for s-wave collisions (and
represented by a scattering length) but that they diminish as
higher powers of k for higher partial waves [1]. For atoms or
molecules scattering via dipolar forces, however, this criterion
fails, since the threshold scattering amplitude for all nonzero
partial waves is independent of k [2]. Thus, in principle, a
large number of partial waves may be necessary to describe
scattering of polar species even in the zero-temperature limit.

It is therefore worthwhile to describe the scattering of
polar species directly in coordinate space, rather than in
terms of angular momentum quantum numbers. The effective
range expansion for scattering in the appropriate potential has
been known for some time [3,4]. In the threshold limit, it
presents a leading-order scattering amplitude that depends on
the direction of both incident and outgoing momenta and that
is independent of the magnitude k. In this paper we focus on
this leading-order term, rederiving it in the first-order Born
approximation and expressing it in a coordinate-independent
way, for both identical bosons and identical fermions. Further,
we make explicit the relation between the coordinate-space
version and the partial-wave-expansion version of the cross
section. Significantly, we identify a formal discontinuity in the
scattering amplitude for forward scattering, which may render
the partial-wave expansion slow to converge numerically.

We illustrate the influence of the anisotropy of scattering
by using it to calculate the rate of rethermalization in a
classical gas that has been brought out of thermal equilibrium.
While dipole interactions are now well known to influence
the behavior of quantum degenerate Bose gases [5], we
illustrate here a significant effect of the anisotropy of collision
in a thermal (but still ultracold) gas. These results have
implications for collisions and, especially, for evaporative
cooling of polar molecules or highly magnetic atoms such
as dysprosium [6,7] and erbium [8,9].
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II. CROSS SECTIONS

For the sake of concreteness, we speak of polar molecules
polarized in an electric field E , although the results apply
equally to magnetic atoms polarized in a magnetic field. These
molecules interact via the dipole potential (in CGS units):

Vd (r) = d1 · d2 − 3(r̂ · d1)(r̂ · d2)

r3

= −2d2

r3
C20(θ,φ). (1)

Here d1,2 are the molecular dipole moments, r is the relative
coordinate joining them, and C20 = (3 cos2 θ − 1)/2 is a
reduced spherical harmonic [10]. Writing the interaction in this
way assumes that the electric-field direction coincides with the
laboratory z axis. This orientation simplifies the derivation of
the cross section, but subsequently the cross section will be cast
in a coordinate-independent form. In the final expression on the
right-hand side of (1) we employ a single dipole moment d as if
the molecules were the same. More generally, the replacement
d2 → d1d2 can be made, if the dipoles are different.

The Hamiltonian describing scattering of the molecules, in
their center-of-mass frame, is

H = − �
2

2μ
�∇2 + Vd + Vsr, (2)

where, as usual, μ stands for the reduced mass of the
collision partners. In (2) we allow for an additional short-range
interaction Vsr that can describe an s-wave phase shift not
already accounted for by the dipole potential. It is convenient
to convert the scattering problem into dipole units, where the
natural length and energy scales are, respectively,

ad = μd2

�2
, Ed = �

6

μ3d4
. (3)

Cast in these units, the Schrödinger equation reads

[
−1

2
�∇2 − 2C20

r3
+ Vsr

]
ψ = εψ, (4)

where ε = (�2k2/2μ)/Ed is the collision energy in reduced
units.
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A. Scattering amplitudes

Scattering in three dimensions is characterized by a dif-
ferential cross section that relates the wave vector k of the
molecules’ initial approach to one another to the wave vector
k′ into which they scatter,

dσ

d�k′
(k′,k) = |f (k′,k)|2, (5)

written, as is conventional, in terms of a scattering amplitude
f . The total scattering cross section is then

σ (k) =
∫

d�k′
dσ

d�k′
(k′,k), (6)

which for dipoles can depend on the orientation of the incident
direction k with respect to the polarization axis.

In the case of indistinguishable bosons or fermions,
symmetry places constraints on the scattering amplitudes.
Specifically, the amplitude for scattering from a given incident
direction k must be properly symmetrized with respect to two
opposing scattering directions ±k′:

fB,F (k′,k) = 1√
2

[f (k′,k) ± f (−k′,k)]. (7)

The resulting cross sections are then [11]

σB,F =
∫

d�k′ |fB,F (k′,k)|2. (8)

We stress again that we work in reduced units. To restore the
results to “real” units, one must multiply f by the dipole length
ad , and σ by a2

d .

B. Cross-section formulas

The dipole-dipole interaction in Eq. (4) is mathematically
identical to the leading-order long-range potential between
an electron and a molecule possessing a nonzero quadrupole
moment. In this context, the low-energy scattering in such a
potential has been worked out previously, including several
orders of the effective range expansion [3,4]. For our present
purposes, considering ultracold collisions, we require only the
leading-order term in these expansions. Indeed, the first-order
term can be obtained in perturbation theory, which derivation
we include here for completeness.

The scattering amplitude is given, within the first-order
Born approximation, by

f (k′,k) = −a + f (1)(k′,k), (9)

where a is the s-wave scattering length in units of ad

(recalling that the nondipolar scattering amplitude is f =
−a/(1 + iak) ≈ −a [12], and f (1) denotes the first-order Born
approximation for dipolar scattering [13]):

f (1)(k′,k) = − 1

2π

∫
d3re−ik′ ·rVd (r)eik·r. (10)

As is typical for the first-order Born approximation, the
scattering amplitude depends only on the momentum transfer,

q = k − k′, (11)

and not on the incoming and outgoing amplitudes separately.
To evaluate the integral, (10), we expand eiq·r into spherical
waves, to get

f (1)(k′,k) = − 1

2π

∫
d3r

(
−2C20(r̂)

r3

)
eiq·r

= 1

π

∫
d3r

C20(r̂)

r3
4π

∑
lm

ilY ∗
lm(q̂)jl(qr)Ylm(r̂),

(12)

where Ylm is the usual spherical harmonic, and jl is a spherical
Bessel function. Inside this sum, the angular integral is

∫
dr̂C20(r̂)Ylm(r̂) =

√
4π

5
δ2lδ0m, (13)

which reduces the sum to a single term. The relevant radial
integral is then∫ ∞

0
r2dr

j2(qr)

r3
= lim

b→0

∫ ∞

b

dr
j2(qr)

r

= lim
b→0

[
sin(qb)

(qb)3
− cos(qb)

(qb)2

]
= 1

3
. (14)

Substituting this integral, the Born approximation to the
scattering amplitude becomes [3,4,14]

f (1)(k′,k) = − 2
3 (3 cos2 θq − 1), (15)

where θq is the angle between the momentum transfer q and
the z axis.

The scattering amplitude can also be written in terms of the
incident and scattered wave numbers, as well as the direction
Ê of the electric field (taking this to be the z axis) [3]:

cos2 θq = q2
z

|q|2 = 1

2

(k̂ · Ê − k̂′ · Ê)2

1 − k̂ · k̂′ . (16)

This expression assumes elastic scattering, k′ = k. Doing so
re-expresses the scattering amplitude in the coordinate-free
form:

f (k′,k) = −a − (k̂ · Ê − k̂′ · Ê)2

1 − k̂ · k̂′ + 2

3
. (17)

Using the prescriptions above, this leads immediately to the
scattering amplitudes for antisymmetrized and symmetrized
scattering amplitudes, here denoted by the subscript F

(fermion) and B (boson), respectively:

fF (k′,k) = 1√
2

4(k̂ · Ê)(k̂′ · Ê) − 2[(k̂ · Ê)2 + (k̂′ · Ê)2](k̂ · k̂′)
1 − (k̂ · k̂′)2

,

fB(k′,k) = 1√
2

[
−2a − 2(k̂ · Ê)2 + 2(k̂′ · Ê)2 − 4(k̂ · Ê)(k̂′ · Ê)(k̂ · k̂′)

1 − (k̂ · k̂′)2
+ 4

3

]
. (18)
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These are expressed in units of the dipole length ad and depend
only on the directions of the momenta, not their magnitudes.
The angular dependence of these cross sections will have
significant implications for the redistribution of kinetic energy
in a gas brought out of equilibrium, as we see below.

C. Dependence of scattering on incident direction

Because of the anisotropic nature of dipole-dipole scatter-
ing, and because of the fixed direction in space set by the
electric field E , the total scattering cross sections is also a
function of the incident direction. The cross section remains
cylindrically symmetric around the field axis and is therefore

a function of the angle η = cos−1(k̂ · Ê) between the incident
wave vector and the polarization axis:

σ (η) =
∫

d�k′
dσ

d�k′
. (19)

To evaluate these integrals it is convenient to choose a
coordinate system whose z axis coincides with the incident
direction k̂. The electric-field direction is then rotated into the
x-z plane of this system, with Ê = (− sin η,0, cos η). In this
coordinate system, the spherical coordinates of k̂′ constitute the
scattering angles (θs,φs). Then, for example, the cross section
for the unsymmeterized scattering amplitude is

σ (η) =
∫ 2π

0
dφs

∫ π

0
sin θsdθs

[
−a − [cos η(1 − cos θs) + sin η sin θs cos φs]2

1 − cos θs

+ 2

3

]2

= 2π

9
[18a2 − 3a(2 − 6 cos2 η) + 5 + 6 cos2 η − 3 cos4 η]. (20)

This result is cylindrically symmetric about the electric-field
axis. It is also convenient to define an angular average of the
cross section [4],

σ̄ = 1

2

∫ +1

−1
d(cos η)σ (η) (21)

= 4πa2 + 64π

45
, (22)

where the bar is meant here to denote the average over an
assumed isotropic distribution of incident directions. Here
the first term is the usual, nondipolar, s-wave cross section.
The second term is the pure dipolar result and is implicitly
multiplied by the square of the dipole length ad . Note that this
result, 64π/45 ≈ 1.117 + 3.351, gives the sum of the even
and odd partial-wave contributions, respectively, as calculated
from close-coupling calculations in Ref. [15].

Similarly, the total cross section for indistinguishable
fermions, as a function of η, is

σF = π

3
[3 + 18 cos2(η) − 13 cos4(η)], (23)

FIG. 1. (Color online) (a) Total cross section σ̄ for pure dipolar
scattering, as a function of the angle η between the incident
direction and the polarizing electric field. The solid black line is
for distinguishable particles, while the dashed (blue) and dotted (red)
lines represent indistinguishable fermions and bosons, respectively.
(b) The same data, shown as three-dimensional plots.

with angular average

σ̄F = 32π

15
; (24)

and the total cross section for indistinguishable bosons is

σB = π

9
{[72a2 − 24a[(1 − 3 cos2(η)]

+ 11 − 30 cos2(η) + 27 cos4(η)}, (25)

with angular average

σ̄B = 8πa2 + 32π

45
. (26)

These total cross sections are depicted in Fig. 1, shown to the
same scale. This figure reveals that dipolar fermions scatter
more strongly than dipolar bosons. Whereas bosons scatter
most readily when they meet side by side, fermions tend to
scatter most when meeting at an angle η ≈ 45◦l with respect
to the field axis.

III. CROSS-DIMENSIONAL RETHERMALIZATION

An essential effect of elastic collisions for ultracold gas
experiments is the thermalization of the gas, for example,
during evaporative cooling. Turning this around, measure-
ments of rethermalization rates can be used as an experimental
tool for extracting the elastic collision cross section, which
is a key ingredient to understanding and designing ultracold
gas experiments. Here we point out an important effect
on thermalization via dipolar elastic collisions that follows
from the anisotropy of dipolar interactions. Dipolar collisions
depend not only on the scattering angle (i.e., the angle between
k and k′), but also on the quantization direction set by the
electric-field direction Ê . At the same time, traps for ultracold
gases have principal axes that define a relevant coordinate
system in space (which is often aligned with the Earth’s
gravitational field) and thermalization must include cross-
dimensional thermalization, i.e., keeping the energy in the
different trap directions equilibrated. The axes of equilibration
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FIG. 2. (Color online) Geometry of a cross-dimensional rether-
malization experiment. A cylindrically symmetric cloud, with sym-
metry axis ẑ, is driven out of equilibrium, giving it either more or
less average kinetic energy in the axial direction than in the radial
direction. The rate of rethermalization is, in general, a function of the
angle λ between the symmetry axis and the electric or magnetic field
that polarizes the dipoles.

are shown schematically in Fig. 2. A consequence of this is
that the orientation of the quantization direction with respect
to the trap axes, described by the angle λ, can strongly affect
thermalization rates.

A. Rethermalization rate

The idea of a rethermalization experiment is to prefer-
entially add or remove energy along one direction of the
trapped gas, then observe the energies in the different trap
directions come to equilibrium through elastic collisions [16].
Fitting the energy in a particular trap direction versus time
to an exponential, one finds a rethermalization time τ or,
equivalently, rethermalization rate γ = 1/τ . From this, one
extracts a rethermalization cross section defined by

γ = nvrσretherm, (27)

in terms of the average number density n = (1/N )
∫

d3rn(r)2

and the mean relative speed vr = √
8kBT /πμ, which are

empirically determined quantities. Here N is the total number
of particles, kB is Boltzmann’s constant, μ is the reduced mass,
and T is the temperature of the gas.

The cross section σretherm extracted from rethermalization
data is not, in general, identical to the average total cross
section σ̄ , but the two are proportional:

σ̄ = ασretherm. (28)

The constant of proportionality α, described by theory, allows
one to extract the mean cross section from rethermalization
measurements. It can be interpreted as the ratio of a standard
collision rate nvr σ̄ to the rethermalization rate γ and is
often colloquially referred to as the “number of collisions per

rethermalization,” even though it need not take integer values.
For s-wave collisions α = 2.5, whereas for p-wave collisions
α = 4.17 [17]. The larger value of α for p-wave scattering
arises from the fact the p-wave scattering occurs preferentially
in the forward and backward scattering directions and is
thus less efficient at rethermalization than isotropic s-wave
scattering. For dipoles, α will in general be a function of the
electric-field direction λ.

In the experiment, the trapping potential can be parametri-
cally driven in a certain direction, say the z direction, leading
to an effective temperature Tz that is higher than the effective
temperature Ty in the other two directions (Ty could also be
made the higher one, of course). The temperatures are to be
interpreted as parameters in the quasiequilibrium phase-space
distribution,

d6N

d3rd3v
(r,v; T) = n(r,T)ρ(v,T), (29)

which is given in terms of the space and velocity densities,

n(r,T) = N�i=x,y,z

(
mω2

i

2πkBTi

)1/2

exp

[
−1

2

mω2
i r

2
i

kBTi

]
,

ρ(v,T) = �i=x,y,z

(
m

2πkBTi

)1/2

exp

[
−1

2

mv2
i

kBTi

]
. (30)

Here the notation T = (Tx,Ty,Tz) parametrizes the tempera-
tures in the different directions. This distribution is normalized
so that its integral over all phase space is equal to N , the total
number of molecules.

Bringing the gas out of equilibrium introduces a disparity
between the mean energy per particle in the vertical and that
in the horizontal direction, defined by

〈χ〉 ≡ 1

N

〈(
1

2
mω2z2 + 1

2mv2
z

)
−

(
1

2
mω2y2 + 1

2
mv2

y

)〉
= kB(Tz − Ty), (31)

where the angle brackets indicate averaging over the distribu-
tion in Eq. (30). The value of 〈χ〉 relaxes to 0 via collisions
involving a pair of molecules with velocities v1 and v2. After
a collision that changes the velocities to the values v′

1 and v′
2,

χ changes by the amount [18]

�χ = χ (v′
1) + χ (v′

2) − χ (v1) − χ (v2)

= 1
2m

(
v′2

1z − v′2
1y + v′2

2z − v′2
2y

)
− 1

2m
(
v2

1z − v2
1y + v2

2z − v2
2y

)
. (32)

In this expression the potential energies before and after the
collision cancel, since the collision occurs at a particular
location in the trap. The time evolution of 〈χ〉 is given by
the Enskog equation [18],

d〈χ〉
dt

= C(�χ ), (33)

in terms of the collision integral (also per particle)

C(�χ ) = 1

2N

∫
d3r1

∫
d3v1

∫
d3r2

∫
d3v2

d6N

d3r1d3v1

d6N

d3r2d3v2
δ(r1 − r2)

∫
d�k′

dσ

d�k′
|v1 − v2|�χ. (34)
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The collision integral simplifies by separating the space- and
velocity-dependent parts and by representing velocities in
terms of the center-of-mass velocity V = (v1 + v2)/2 and the
relative velocity vr = v1 − v2. The collision integral becomes

C(�χ ) = n

2

∫
d3vrρr (vr,T)

∫
d�k′

dσ

d�k′
vr�χ, (35)

where �χ now reads

�χ = 1
2μ

(
v′2

r,z − v′2
r,y

) − 1
2μ

(
v2

r,z − v2
r,y

)
(36)

and n = (1/N )
∫

d3rn(r)2. The velocity distribution ρr has the
same functional form as ρ in Eq. (30) except that the molecular
mass m is replaced by the reduced mass μ.

Rethermalization proceeds at a rate characterized by

γ = − 1

〈χ〉
d〈χ〉
dt

. (37)

Substituting in the above expressions and definitions, we
therefore find

α = nvr σ̄

γ
= −2kB(Tz − Ty)vr σ̄

〈vrσ�χ〉 , (38)

using the suggestive notation

〈vrσ�χ〉 =
∫

d3vrρr (vr ,T)vr

∫
d�k′

dσ

d�k′
�χ. (39)

This integral vanishes linearly as Tz − Ty → 0, so that
the ratio in Eq. (38) remains well defined in this limit.
The ratio α is in general a weakly dependent function of
the temperature asymmetry Tz/Ty . It may, however, have a
significant dependence on the polarization direction, owing to
the anisotropy of the dipole-dipole interaction.

B. Anisotropy of rethermalization rate

The integrals in Eq. (39) required to compute α can in
principle be done analytically, even for the dipolar cross
sections. They are, however, somewhat cumbersome, so we
present numerical results here. In this subsection we present
results in the limit of a low initial anisotropy, i.e., the
limit Tz/Ty ≈ 1, and, for the sake of simplicity, assume that
Tx = Ty . As a point of reference, we note that expression (38)
correctly reduces to the results α = 2.5 for s-wave collisions
and α = 25/6 = 4.17 for p-wave collisions.

For collisions of dipolar particles, anisotropy of the scat-
tering cross section implies that the rethermalization constant
α may depend on the direction of polarization. We therefore
model a rethermalization experiment where energy transfers
between the laboratory z and the laboratory y directions, but
the direction Ê of the polarizing electric field is inclined at
an angle λ with respect to the z axis (Fig. 2). We consider
separately the cases of identical fermions, identical bosons,
and distinguishable particles.

For identical fermions, this result is presented in Fig. 3.
The upper panel shows the value of α versus the tilt angle λ,
revealing that the rethermalization rate varies by more than a
factor of 2. For identical fermions, dipolar collisions are most
effective at rethermalizing the gas (smallest α) when Ê is at
45◦ with respect to the trap axis and least effective when Ê is
at 90◦ of 0◦ with respect to the trap axis.

FIG. 3. (Color online) Upper panel: The parameter α, which
characterizes the number of collisions per rethermalization as a
function of the angle λ between the trap axis ẑ and the quantization
axis Ê . The result for dipolar collisions of indistinguishable fermions
is shown in blue, while the cyan and magenta lines indicate
α for s-wave and p-wave collisions, respectively. Lower panel:
Differential cross sections for indistinguishable fermions as a function
of scattering direction k′. Each plot assumes incident direction k along
the vertical, making an angle η with respect to Ê .

To understand the behavior of α, it is necessary to consider
the differential cross section for various values of the angle
η between the incident relative velocity and the quantization
axis Ê . The lower panel in Figure 3 shows three-dimensional
surface plots of the differential cross section as a function of
the direction of the outbound scattering wave vector k′. Each
such figure is drawn for a different value of the angle η between
the incident direction k (set as vertical in these diagrams) and
the electric-field direction Ê .

Cross-dimensional rethermalization averages over many
collisions with different incident angles η. The collisions
that are most efficient at cross-dimensional rethermalization
require two circumstances: first, the scattering cross section
must be large, and second, the scattering must divert the
direction of the incident velocity from either forward or
backward scattering. For fermions, the largest cross section
occurs for collisions incident at η ≈ 45◦ with respect to the
electric field (Fig. 1). Moreover, these collisions are precisely
the ones that tend to preferentially scatter at large angles (center
lower panel in Fig. 3). By contrast, collisions that occur with
incident direction η ≈ 0◦ or 90◦ with respect to the field not
only scatter less (Fig. 1), but also preferentially scatter in the
forward and backward directions (Fig. 3), and are not good at
moving energy between dimensions.

Therefore, for an electric field tilted at an angle λ = 45◦
with respect to the laboratory z axis, collisions should be
relatively efficient at moving energy between radial and axial
trap directions. For an electric field oriented at λ = 0◦ or 90◦
with respect to the z axis, the most likely collisions, those
with η = 45◦, occur in an orientation that is less efficient at
transferring energy between laboratory radial and laboratory
axial directions. This circumstance is reflected in larger values
of α for these tilt angles.

For identical bosons the situation is quite different, as shown
in Fig. 4. Here the tilt angle λ = 90◦ actually produces the
most efficient rethermalization. The lower panel in Fig. 4
presents differential cross sections for various incident angles
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FIG. 4. (Color online) Upper panel: The parameter α, which
characterizes the number of collisions per rethermalization as a
function of the angle λ between the trap axis ẑ and the quantization
axis Ê . The result for dipolar collisions of indistinguishable bosons
is shown in red, while the cyan and magenta lines indicate α for
s-wave and p-wave collisions, respectively. Lower panel: Differential
cross sections for indistinguishable bosons as a function of scattering
direction k′. Each plot assumes incident direction k along the vertical,
making an angle η with respect to Ê .

η. Here the most likely collisions occur when η = 90◦, and
these collisions tend to scatter into the plane perpendicular to
Ê . Thus if Ê is aligned perpendicularly to the z axis (λ = 90◦),
collisions can shunt energy relatively efficiently between the
axial direction and at least one radial direction in the trap.
By contrast, if Ê is aligned along ẑ (λ = 0◦), the relative
velocity that originates in the x-y-plane tends to remain in this
plane, whereas the relative velocity that originates along the
z axis experiences isotropic scattering, but with a small cross
section. In either event, cross-dimensional rethermalization
occurs slowly.

Finally, for completeness we report the angular dependence
of α for distinguishable particles in Fig. 5. Similarly to
fermions, in this case the most efficient rethermalization occurs
when the quantization axis Ê lies at λ = 45◦ with respect to

FIG. 5. (Color online) Upper panel: The parameter α, which
characterizes the number of collisions per rethermalization as a
function of the angle λ between the trap axis ẑ and the quantization
axis Ê . The result for dipolar collisions of distinguishable particles
is shown in black, while the cyan and magenta lines indicate α for
s-wave and p-wave collisions, respectively. Lower panel: Differential
cross sections for distinguishable molecules as a function of scattering
direction k′. Each plot assumes incident direction k along the vertical,
making an angle η with respect to Ê .

FIG. 6. (Color online) Dependence of α for cross-dimensional
rethermalization on the initial temperature anisotropy for dipolar
collisions of (a) identical fermions, (b) distinguishable particles, and
(c) identical bosons. The solid line shows α in the limit of zero
anisotropy, with the dashed line corresponding to Tz = 2Ty and the
dotted line to Tz = 0.4Ty .

the z axis, whereas, for Ê either parallel or perpendicular to
z, the scattering is primarily in the forward or backscattering
direction and does not contribute strongly to rethermalization.

C. Dependence on the initial temperature imbalance

In extracting the elastic collision cross section from
measurements of cross-dimensional rethermalization, it may
be useful for experimenters to know the dependence of
the rethermalization rate on the initial energy (or effective
temperature) imbalance. As defined above, α is inversely
proportional to the initial rethermalization rate and, hence,
is sensitive to the initial value of the imbalance Tz/Ty .
Figure 6 shows α versus the tilt angle λ for three values of
the initial temperature imbalance Tz/Ty = 0.4, 1, and 2. For
comparison, for s- or p-wave collisions, α decreases by 3%
for Tz/Ty = 2 and increases by 4% for Tz/Ty = 0.4 compared
to the limit of no imbalance (Tz/Ty = 1). As shown in Fig. 6,
the effect of the initial temperature imbalance can be a few
times stronger than this for dipolar collisions. This suggests
that to accurately extract the elastic collision cross section
from a measurement of cross-dimensional rethermalization,
one would like to work in the limit of a small initial
energy imbalance. Alternatively, measurements taken for a
similar but opposite energy imbalance, namely, Tz/Ty > 1
and Tz/Ty < 1, could be averaged. In addition, in the case of
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indistinguishable bosons, the shape of the α versus λ curve can
qualitatively change depending on the temperature imbalance.

IV. RELATION TO THE PARTIAL-WAVE EXPANSION

Scattering of ultracold dipoles is commonly expressed in
terms of a partial-wave expansion [15,19–25]. This is a useful
thing to do, particularly for numerical calculations of scattering
of realistic particles that include forces beyond the dipole-
dipole interaction. In this section we examine the convergence
of this expansion, noting that it is formally convergent but that
this convergence may be quite slow owing to a discontinuity
in the scattering amplitude in the forward scattering direction.
We note that these remarks pertain only to the leading-order,
real-valued scattering amplitude, as derived above in the first-
order Born approximation.

A. The partial-wave expansion

The scattering amplitude in the first-order Born approxima-
tion can be expressed as a partial-wave expansion involving
the spherical wave components of both the incoming and the
outgoing waves,

f (1)(k′,k) = −2π

k

∑
l′m′lm

il
′
Y ∗

l′m(k̂′)〈l′m′|T Born|lm〉i−lYlm(k̂),

(40)

where T Born = i(SBorn − I ) is the transition matrix in terms of
the usual scattering matrix S [26]. For dipolar scattering it is
given by the product [4,15,22]

〈l′m′|T Born|lm〉 = −(kad )C(m)
l′l �l′l (41)

in terms of the angular and radial integrals

C
(m)
l′l = (−1)m

√
(2l′ + 1)(2l + 1)

×
(

l′ 2 l

−m 0 m

) (
l′ 2 l

0 0 0

)
, (42)

�l′l =

⎧⎪⎨
⎪⎩

4
l(l+1) , l′ = l,

4
3l(l−1) , l′ = l − 2,

4
3(l+1)(l+2) , l′ = l + 2.

(43)

(The expression for � corrects typographical errors in
Ref. [15]). Within the first-order Born approximation, then,
the scattering amplitude f (1) is appropriately proportional to
ad and independent of the wave number k.

Starting from the Born approximation, (10), the derivation
in Sec. II directly expands the momentum-transfer part eiq·r
into partial waves. Alternatively, expanding both the ingoing
and the outgoing plane waves separately into partial waves,
the scattering amplitude reads

f (1)(k′,k) = − 1

2π

∫
d3r4π

∑
l′m′

i−l′Yl′m′(k̂′)jl′(k
′r)Y ∗

l′m′(r̂)

×
(

− 2

r3
C20(r̂)

)
4π

∑
lm

ilY ∗
lm(k̂)jl(kr)Ylm(r̂).

(44)

Performing the integration over r, one derives from this the
partial wave series, (40). Alternatively one can separate radial
and angular integrals, to get

f (1)(k′,k) = 1

π
(4π )2

∫ ∞

0
r2dr

1

r3

×
[∑

l′lm

i−l′+lY ∗
l′m(k̂′)jl′(k

′r )C(m)
l′l Ylm(k̂)jl(kr)

]
.

(45)

Using a generalized version of the familiar spherical harmonic
addition theorem (Eq. (13) in Ref. [27]), the quantity in
brackets can be rewritten

i2 1

4π

√
4π

2(2) + 1
Y20(q̂)j2(qr), (46)

where q = k − k′ is the familiar momentum transfer. The sum
over partial-wave quantum numbers is therefore convergent for
any given value of qr . Completing the integral as in Sec. II B
yields the scattering amplitude, (17). We conclude that the
partial-wave expansion and the explicit angular form of the
scattering amplitude, (17), are formally equivalent.

B. Discontinuity of the scattering amplitude

In spite of its simple form, the unsymmetrized scattering
amplitude, (17), contains a discontinuity when the scattered
direction k̂′ coincides with the incident direction k̂. This fact
is perhaps best illustrated by a simple example. Denote the
two wave vectors in polar coordinates, k̂ = (θk,φk) and k̂′ =
(θk′ ,φk′), as referred to the field axis. The limit of forward
scattering, k̂′ = k̂, can be reached in many ways, but two will
suffice to show the discontinuity.

In the first limit we imagine that the azimuthal angles are
equal, φk′ = φk , and take the limit θk → θk′ . In this limit the
angle θq that the vector q = k − k′ makes with the field axis is
given by θq = θk + π/2 (for θk′ < θk). The forward scattering
amplitude has the limit

lim
θk′ →θk

= − 2
3 [3 cos2(θk + π/2) − 1] = − 2

3 [3 sin2(θk) − 1],

(47)

a value that depends explicitly on the incident angle θk . Vice
versa, one can take an alternative limit, where the polar angles
are equal, θk′ = θk , and let the azimulthal angles approach one
another. In such a case, q is always perpendicular to the field
axis, whereby θq = π/2, and the scattering amplitude has the
limit

lim
φk′ →φk

= − 2
3 [3 cos2(π/2) − 1] = 2

3 , (48)

independent on the incident direction. We conclude that the
limit k̂′ → k̂ is, in general, ambiguous, depending on how this
limit is taken.

Still, it is possible to assign a value to the forward scattering
amplitude directly, by setting k̂′ = k̂ directly in the partial-
wave expansion, rather than taking a limit. Doing so in Eq. (40)
yields the following. The sum over m, for fixed l′ and l, can be
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y
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y

x
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FIG. 7. Convergence of differential cross sections for various
total numbers of partial waves Lmax included in the sum, (40). The
cross section dσ/d�k′ versus the scattering direction k′, for incident
momentum k = x̂, with dipoles polarized out of the plane of the
diagram. The solid line is the partial-wave sum, while the dashed
circle is the analytic result dσ/d�k′ = 4/9.

evaluated from a spherical harmonic addition theorem [10]:

∑
m

(−1)mY ∗
l′m(k̂)

(
l′ 2 l

−m 0 m

)
Ylm(k̂)

=
√

(2l′ + 1)(2l + 1)

4π

(
l′ 2 l

0 0 0

)
C20(k̂). (49)

This reduces the directional dependence to a single reduced
spherical harmonic of the incident direction. The forward
scattering amplitude then becomes

f (k̂,k̂) = 1

2
C20(k̂)

∑
l′l

il
′−l(2l′+1)(2l+1)

(
l′ 2 l

0 0 0

)2

�l′l

≡ 1

2
C20(k̂)

∑
l′l

Al′l , (50)

which defines the shorthand notation Al′l . All the factors
defining Al′l have simple algebraic expressions [10], which
vanish unless l′ = l, l ± 2. Inserting these expressions and
accounting for A00 = 0, we group the terms as follows:

∑
l′l

Al′l = A00 + A02 + A20 +
∞∑
l=1

(All + Al+2,l + Al,l+2)

= −4

3
+

∞∑
l=1

[
4(2l + 1)

(2l − 1)(2l + 3)
− 4

2l + 3

]
= 4

3
.

(51)

The forward scattering amplitude then becomes

f (k̂,k̂) = 2
3C20(k̂) = 1

3 (3 cos2 θk + 1). (52)

This discontinuity has implications for the convergence of
the partial-wave expansion. We show an example of this con-
vergence in Fig. 7. In this case we choose the unsymmetrized
cross section dσ/d�k′ and focus on scattering in the x-y plane,
perpendicular to the polarization axis. Moreover, we set the
scattering length a = 0. In this case, we see from Eq. (17)

that, for any distinct directions k̂ and k̂′, both perpendicular to
the field, dσ/d�k′ is independent of the direction of scattering
k̂′ in this plane and has the value dσ/d�k′ = 4/9 in natural
units. This cross section is shown as the dashed circle in all
panels in Fig. 7.

The solid curves in each panel are numerical results that
sum the Born series, (40), including partial waves up to some
maximum value Lmax. The series is quite slow to converge. If
only four partial waves are included, the cross section does not
even come close, exhibiting a shape more like a butterfly than
a circle. As more partial waves are included, the cross section
conforms more closely to the correct, circular shape. There
remain, however, large deviations in the forward scattering
direction. These are the result of the discontinuity in this
direction, which leads to a ringing familiar from the Gibbs
phenomenon of Fourier expansion of discontinuous functions.
It should be remarked that the numerical series evaluated in
these figures does indeed yield the value dσ/d�k′ = 1/9, as
follows from Eq. (52) with θk = π/2.

We conclude that, while the partial-wave version of the Born
cross section is formally convergent, caution must be applied
when numerically constructing differential cross sections for
elastic scattering. This is particularly an issue when con-
structing cross sections for molecules with realistic interaction
potentials that also have dipolar long-range behavior.

V. CONCLUSIONS

Reduction of the collision energy to the ultracold regime, as
always, simplifies the theoretical description of scattering. For
dipolar particles, however, this simplification does not reduce
to isotropy of scattering, as it does for nondipolar particles.
Rather, the differential cross section is a somewhat nontrivial
function of both the incident and the scattered wave vectors, of
the direction of polarization of the dipoles, and of the interplay
among all three directions. To describe this scattering, it is
useful to employ the direct expressions (17) and (18), rather
than slowly converging partial-wave expansions.

The anisotropy that persists down to the ultracold regime
has consequences for the rearrangement of energy due to
collisions. We have shown that this anisotropy can have a
profound influence on the rate of rethermalization of a gas
taken out of equilibrium, since scattering at the required
scattering angles can be made more or less favorable by
adjusting the direction of the electric or magnetic field. Thus
even a thermal, non-quantum-degenerate gas, at ultracold
temperatures, may be expected to exhibit strong anisotropy
if its constituent particles are dipolar.
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