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Long-lived complexes and chaos in ultracold molecular collisions
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Estimates for the lifetime of collision complexes formed during ultracold molecular collisions based on
density-of-states arguments are shown to be consistent with similar estimates based on classical trajectory
calculations. In the classical version, these collisions are shown to exhibit chaos and their fractal dimension
is calculated versus collision energy. From these results, a picture emerges that ultracold collisions are likely
classically ergodic, justifying the density-of-states estimates for lifetimes. These results point the way toward
using the techniques of classical and quantum chaos to interpret molecular collisions in the ultracold regime.
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I. INTRODUCTION

Ultracold gases provide a unique environment for
molecules, where translational temperature can be far less
than the interaction energy of molecules with one another.
This is by now a familiar circumstance in ultracold physics
and one that affords, among other things, the creation of novel
quantum states of matter [1,2] and the sensitive control over
chemical kinematics [3,4]. These effects typically rely on the
relatively large strength of long-range interactions between the
molecules, e.g., dipole-dipole forces.

By contrast, recent work has postulated that ultralow tem-
peratures may also influence and probe the detailed interaction
between molecules at short range, in the act of colliding, in
particular by vastly increasing the interaction time between
the molecules. This effect arises from the huge disparity
between the energy scales of the intermolecular potential
energy surface (∼103 K) and the translational temperature of
the free molecules (�10−3 K). Upon colliding, the molecules
accelerate into the potential well, converting this potential
energy into internal rotational and vibrational motions of
the molecules. Time spent in these modes of the molecular
“complex” contribute to long dwell times within the complex
before it fragments into free molecules, thus probing large
portions of the potential energy surface.

At the very simplest level of understanding, this idea
is codified in the Rice-Ramsperger-Kassel-Marcus (RRKM)
approximation [5–7], where the dwell time of the complex is
approximated as

τdos = 2π�ρ

No

. (1)

Here ρ is the density of available rovibrational states (DOS),
while No is the number of open channels, i.e., quantum
states energetically available to the collision fragments. This
formula expresses the simple idea that the atoms comprising
the complex have many ways of distributing their energy
(as counted by ρ) so as not to fragment back into separate
molecules. They thus spend a long time exploring phase space
before finding one of the comparatively small number of
ways No to fragment. At room temperature No may be large,
and consequently the complex’s lifetime may be negligible.
However, in the ultracold environment, the value of No can
plummet all the way to No = 1, meaning that the complex must
restore the molecules exactly to their initial quantum states

before fragmentation can occur. It is this circumstance—small
No—that is novel in the ultracold environment.

Mayle et al. [8,9] used this idea as a point of departure,
from the usual quantum scattering methods used in ultracold
physics, to assess the behavior of the collision complex.
The lifetime of the complex was indeed found to be long,
of order 10–100 ns for alkali-metal-atom–alkali-metal-dimer
collisions, and of order 1–10 ms for collisions of alkali
molecules with one another. Because the latter time scale
is comparable to experimental lifetimes, the existence of
complexes may lead to novel trap-loss mechanisms such
as described in Ref. [9]. In addition, Refs. [8,9] assessed
aspects of spin dynamics in the complex, statistics of resonant
energy-level spacing, and statistical aspects of scattering such
as Ericson fluctuations [10,11].

The key feature that makes RRKM theory work is the
assertion that all states contributing to ρ actually get explored
during the typical collision, so that the estimate of time wasted
is accurate. This is not necessarily the case, as, for example,
when the incident molecules are separated from much of phase
space by barriers in the potential energy surface, or else when
the number of open channels No is so large that a typical
trajectory leaves before seeing all the states available [12,13].
In ultracold collisions of alkali molecules, potential energy
surfaces are likely to be barrierless [14–17], whereby the full
DOS should be accessible.

In this paper we provide theoretical evidence that the
lifetimes based on RRKM estimates agree to within an order of
magnitude with the results of classical trajectory calculations
that yield explicit dwell times. We interpret these results to
mean that collisions in this regime are ergodic, consistent with
the foundations of RRKM theory. Moreover, the lifetimes
of various trajectories are found to be extremely sensitive
functions of initial conditions, illustrating that classically
chaotic dynamics is at work. We quantify the onset of chaos
in terms of a “fractal dimension” for the space of incident
conditions, finding that classical chaos emerges well above
ultracold energies.

II. CLASSICAL TRAJECTORY CALCULATIONS

Viewed as a problem in multichannel quantum mechanics,
the presence of a vast number of rovibrational resonant states
would necessitate an equally vast set of scattering channels,
rendering the problem extremely difficult, if not impossible.
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FIG. 1. Schematic of the initial conditions. The lone atom is given
an initial velocity vcol corresponding to a collision energy Ecol. For
collisions with an impact parameter, the lone atom is displaced a
distance b in the yz plane.

The explicit consideration of nuclear spin would, of course,
make this problem even worse. In addition, for collisions in
an applied field, the total angular momentum J is no longer a
good quantum number, and the large sets of coupled equations
can no longer be factorized neatly into smaller blocks for each
J , as is possible in field-free scattering.

Even if such calculations were easily done, they would
still likely not yield accurate resonance positions, since
these are extremely sensitive to the potential surfaces. These
surfaces are themselves computationally intensive and are thus
often only accurate to a couple of percent. For cold atomic
collisions the potential has to be modified in order to fit
experimental observables [18,19], and for molecular collisions
it is necessary to vary the potential by a factor and to content
oneself with the study of general trends [20].

While quantitative work is in progress to mitigate the
expense of such computations [21,22], quantitative level
assignment of resonance lines seems a distant goal. In this
regime observables become averaged over many resonances,
and taking a statistical approach to cold collisions such as the
lifetime in Eq. (1) is apposite [8,9,23].

Here we take an alternative, time-honored approach and
estimate the overall properties of ultracold alkali molecule
collisions via classical trajectory simulations. By doing so
it is fairly straightforward to extract mean lifetimes from
an ensemble of trajectories using a topologically reasonable,
approximate potential energy surface (PES). In this section we
describe our approach and the PES used.

A. Classical trajectory calculations and initial conditions

The collision calculations are performed in the coordinate
system depicted in Fig. 1. We start by placing the center of
mass of the diatom (atoms A and B) at the origin along the x

axis in the xz plane, with the atoms at the equilibrium bond
length with zero momentum. For calculations with zero impact
parameter the lone atom (labeled C) is then placed on the x

axis at a distance R∞ (where R∞ is sufficiently large that the
lone atom is effectively moving freely) and the dimer set to
an angle θ relative to the lone atom. The lone atom is then

given an initial kinetic energy of Ecol relative to the origin.
For collisions with nonzero impact parameter, the lone atom is
further displaced in the yz plane such that the total of angular
momentum is equal to a given choice l.

All classical trajectory calculations were performed using
ANT, an adiabatic and nonadiabatic trajectories package [24].
The fourth-order Runge-Kutta method with fixed step size was
used to propagate Hamilton’s equations of motion. Trajectories
were considered complete when a lone atom had been ejected
and was again a distance R∞ from the dimer with enough
kinetic energy to escape the potential of the dimer.

All computed trajectories are necessarily done to a finite
precision. However, since chaotic systems display sensitive
dependence on initial conditions, computed trajectories di-
verge exponentially from the true trajectory with the same
initial conditions. In this work we assume shadowing, that
is, that there exists an errorless trajectory with a slightly
different initial condition that shadows the computed one
[25,26]. Properties averaged over a large number of trajectories
thus yield a meaningful result.

Ordinarily one expects classical approximations to be
relevant in the limit of large kinetic energies, quite the opposite
of the ultracold collision regime. However, the RRKM estimate
for the lifetime is the same at any energy where No = 1.
We can thus compare classical trajectory lifetimes with the
RRKM estimate without performing classical trajectories in
the Wigner threshold regime. In addition, in the present
problem we are concerned with the motion of the atoms deep
inside the potentials where their kinetic energy is, in fact, large.
They spend comparatively little time getting into and out of
the collision complex. The classical lifetimes are therefore
expected to represent the appropriate time delay one would
find by propagating wave packets.

B. Potential energy surface

In this work all calculations were performed on the quartet
surface, assuming both the atom and the molecule are spin-
polarized and that spin plays no role in the dynamics of the
complex. For this calculation we use a pairwise-additive three-
atom potential based on Lennard-Jones (LJ) atom-atom pair
potentials:

V (r1,r2,r3) =
∑
i �=j

VLJ (ri − r j ), (2)

where

VLJ (r) = C12

r12
− C6

r6
. (3)

We use a realistic C6 for the atom-atom pair potentials and
choose the C12 such that the LJ potential has the correct
atom-atom depth, De (C12 = C2

6/4De). To span a range
of masses and interactions, we construct surfaces for three
systems of current experimental interest, 7Li, 39K, and 133Cs,
whose values for the C6 and De are shown in Table I. This
simple choice of potential ignores three-body terms; however,
it is sufficient for the exploratory nature of this work.
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TABLE I. Van der Waals coefficients C6 and well depths De for
the triplet states of Li2, K2, and Cs2.

System C6 (a.u.) De (cm−1)

Li + Li 1394 [27] 334 [27]
K + K 3927 [28] 253 [29]
Cs + Cs 6891 [30] 279 [30]

C. Lifetimes

Each classical trajectory leads to a different lifetime,
defined in our calculations as follows. For a given initial
condition the lifetime was computed as the time difference
between the collision complex forming and breaking up.
The collision complex was considered formed when the
hyper-radius

√
R2

AB + R2
BC + R2

AC is first less than
√

3ā,
where RAB is the distance between atoms A and B. ā is
the characteristic length scale of the potential as defined by
Gribakin and Flambaum for a potential varying as −Cn/R

n

[31]. The collision complex was considered to have broken
up when the hyper-radius was again bigger than

√
3ā and the

collision partners have enough kinetic energy to escape to R∞.
In this way the dwell time is associated with the short-range
physics dominated by fast semiclassical motion, and shorn
from the details of long-range motion that are best handled
quantum mechanically at ultralow collision energies.

The time for a lone atom to cover a distance ā in the
absence of a potential is 0.05, 0.94, and 7.96 ns for Li + Li2,
K + K2, and Cs + Cs2 at an energy corresponding to the lowest
rotational threshold of each system. In this work the lifetime
is dominated by complex short-range behavior; as such the
explicit lifetime as computed differs negligibly from the time
delay, defined as the difference between the dwell times of a
classical trajectory computed with and without the interaction
potential [32].

III. RESULTS AND DISCUSSION

A. Density of states and lifetimes

The primary outcome of the statistical model proposed by
Mayle et al. is the long dwell time of the complex. Within that
theory a lifetime estimate is unambiguously assigned a single
number for a given density of states. We compute this lifetime
using Eq. (1) and estimating the DOS ρ as explained in detail
in [8,9]. The single-channel Schrödinger equation was solved
using the Fourier grid Hamiltonian method [33,34] using the
same LJ potential as for the classical trajectories. As with the
PES for the classical trajectories, the potential is assumed to be
pairwise additive, with C6 and De chosen to be double the atom
+ atom value for the atom + dimer potential. The estimated
DOS shown here does not include the factor of 6 reduction due
to identical bosons in order to allow direct comparison with
the classical trajectory estimate for the lifetime.

In the present classical calculations, each trajectory has its
own dwell time, and these vary wildly with initial condition.
Nevertheless, if the RRKM assumption of ergodicity of the
trajectories holds, it follows that the lifetimes are distributed
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FIG. 2. (Color online) The fraction of collision complexes yet to
decay as a function of time at a collision energy of 30 K for Li + Li2,
K + K2, and Cs + Cs2. The solid lines show an exponential decay
fitted to the data points for each system. For each system over 1000
trajectories were run for random initial θ between 0 and π/2 with no
impact parameter.

according to an exponential distribution

f = exp

(
− t

τ̄ct

)
, (4)

where f is the fraction remaining after time t and τ̄ct is the
average lifetime. We obtain the mean lifetime for a given
collision energy by running a large number of trajectories
and computing the number remaining within the complex, as a
function of time. Results for this fraction are shown in Fig. 2 for
all three systems, showing data from more than 1000 trajectory
calculations for each. To a good approximation, the fraction is
an exponential function of time, justifying the approximation
in Eq. (4).

The exponential decay of this fraction can itself be under-
stood using statistical arguments. Any particular trajectory at
low collision energy that remains within the collision complex
can be interpreted as consisting of a large number of individual
minicollisions, each of which essentially randomizes the
energy distribution among the three atoms. A very small
fraction of these minicollisions results in fragmentation. In
an ensemble of trajectories with differing initial conditions,
the number of trajectories able to escape the complex at any
given time is therefore proportional to the number that have
not yet escaped by this time. This proportionality leads to
the exponential dependence. We interpret this dependence
as evidence that the collision complex, viewed classically,
explores large regions of phase space randomly, as asserted
by the statistical theory. This criterion, of exponential lifetime
distribution, is interpreted within the RRKM theory as a
signature of trajectories that fill phase space ergodically [35].
Here we adopt this interpretation as evidence for ergodicity,
although we have not attempted to calculate the filling of phase
space directly. At higher collision energies where there is of
order 1 collision event within the complex, the use of Eq. (4)
is no longer valid. In the systems studied here this corresponds
to collision energies above about 400 K.

Armed with a clear definition of the initial-state-ensemble
averaged lifetime, we now ask what is the energy dependence
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FIG. 3. (Color online) Lifetime as a function of collision energy
for the collisions of Li + Li2, K + K2, and Cs + Cs2. Shown
are lifetimes computed from explicit dwell times from classical
trajectories (dots) and from the RRKM approximation (solid line).
The dotted line shows a power-law fit to the classical trajectory data.

of this lifetime, in particular, in the ultracold limit. To this
end, Fig. 3 shows how the lifetime scales with collision
energy for collisions of all three species. In this figure the
solid line is computed using the RRKM formula (1), with
the DOS computed according to the algorithm of Mayle.
For comparison, the points connected by dotted lines are
the lifetimes as computed from classical trajectories by the
methods just outlined.

The lifetime computed from classical trajectories shows
a power-law dependence with energy over the range shown
(with exponent –1.35, –1.28, and –1.29 for Li + Li2, K + K2,
and Cs + Cs2, respectively) and will extrapolate to infinite
lifetime in the zero-energy limit. This is appropriate for the
classical calculation, since the classical phase space into which
the complex can decay shrinks without limit as Ecol → 0.
In a realistic quantum system, by contrast, the phase space
corresponding to the fragmentation can only meaningfully
diminish until a single channel remains (neglecting Wigner
threshold law effects). For this reason, the most viable
comparison between the calculations is the lowest rotational
threshold for the molecule, in this case at collision energy
0.62, 0.04, and 0.005 K for Li + Li2, K + K2, and Cs + Cs2,
respectively.

The power-law dependence of the lifetime τ̄ct as a function
of collision energy in Fig. 3 affords extrapolation of this
lifetime to low collision energies. This is a useful procedure
when the lifetimes become so large as to be computationally
burdensome. We use this extrapolation to arrive at lifetime
estimates for the larger molecules. This estimate for the
lifetime at the energy of the first excited rovibrational level
compared to the DOS estimate for our three different systems
is shown in Table II. It is seen that the estimates are all
in agreement to better than an order of magnitude. The
agreement is better for heavier systems which have smaller
rotation splitting, leading to much longer lifetimes. This good
agreement strongly indicates that the lifetimes estimated in [9],
for collisions for alkali-molecule + alkali-molecule systems,
are also realistic. We have not, however, performed four-atom

TABLE II. Rovibrational DOS (mK−1) and lifetimes at ultralow
collision energies of collision complexes τ (s) for Li + Li2, K + K2,
and Cs + Cs2, from both the DOS method and classical trajectory
calculations.

System DOS (mK−1) τdos (ns) τ̄ct (ns)

Li + Li2 0.05 2.4 12 ± 1
K + K2 3.04 146 303 ± 36
Cs + Cs2 57.22 2746 2871 ± 328

classical scattering calculations to test this idea. Lifetime
calculations for collisions, including a nonvanishing randomly
chosen impact parameter b, were performed and found to lead
to lifetimes consistent with collisions with b = 0.

The lifetimes obtained are self-consistent; as such we would
expect that the lifetime obtained with a more realistic potential
would not change our predictions much, as the DOS is not
sensitive to details of the potential. This further emphasizes
the utility of the RRKM estimate for the lifetime. Since the
DOS is not sensitive to details of the potential, an estimate
can be made for the lifetime without needing a full accurate
potential for each system of interest. In this work only the depth
De and C6 for the atom-atom potential were needed to obtain
the lifetime estimate for each system. Since these are known or
can be estimated for all the alkali pairs, it is relatively simple
to provide an order-of-magnitude estimate for the lifetime of
a given system of interest.

While the two approaches agree closely at energies where
there are only a couple of open channels, at higher collision
energies the RRKM formula tends to overestimate the lifetime
as compared to the classical calculation. This is because the
RRKM estimate of the lifetime assumes that the collisions
are ergodic, so that the ρ in estimate (1) is the density of all
states that satisfies angular momentum conservation. However,
at higher energies, there are so many exit channels that the
complex decays before exploring all of the available phase
space, reducing the value of the effective DOS ρ. Turning this
around, we can interpret the agreement of the lifetimes at low
energies as evidence that the dynamics is ergodic in this limit.

To better illustrate the complexity of the trajectories, Fig. 4
shows representative trajectories for Li + Li2 over a range
of collision energies. This figure shows the increasing length
of trajectories as the collision energy decreases, with lower
panels showing lower collision energies. While these sample
trajectories do not prove that low-energy scattering is ergodic,
they do certainly show that high-energy scattering is not
ergodic. Rather, at higher collision energies, only a handful of
minicollisions occurs before the collision fragments separate.

Thus at energies well above threshold, the RRKM ex-
pression may be expected to overestimate lifetimes, as seen
in Fig. 3. The trend of lifetime versus collision energy is
also comprehensible. At energies below the first vibrational
threshold of the molecule, the number of open channels
increases according to the rotational spacing ∝ BN (N + 1),
where B is the rotational constant of the molecule, and N is its
rotational quantum number. Thus the number of open channels
should scale as No ∝ E

−1/2
col , leading to τdos ∝ E

−1/2
col , which is

indeed the scaling of the RRKM lifetime in Fig. 3 in this energy
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FIG. 4. (Color online) Representative trajectories for collisions
of Li + Li2 over a range of collision energies, the different colors
labeling different atoms. All calculations were performed without
impact parameter for θ/π = 0.25.

regime. By contrast, in this regime, the increase in classical
phase space into which the complex decays includes both
vibrational and rotational degrees of freedom, since vibration
need not be quantized. This leads to a faster apparent growth in

phase space classically, and a faster decay of classical lifetime
as compared to RRKM.

At collision energies well above the first vibrational
excitation of the molecule, the RRKM and classical lifetimes
diminish at more closely matched rates. In this regime, where
many more exit channels, both rotational and vibrational, are
open, the counting argument for No seems to accord better
with the opening up of phase space as Ecol grows. This is
most clearly seen in the two heavier species. Still, as noted
above, the absolute lifetime is overestimated by the RRKM
expression, since the collisions clearly do not explore the full
phase space implied by ρ.

B. Onset of chaos

Given the complexity of long-time trajectories at low
collision energy, one suspects that classical chaos is at work.
Chaos is of fundamental interest, unifying a wide array of dis-
parate topics from the motion of planets, turbulent fluid flow,
through to the predication of the weather and the economy.
Inherently nonlinear phenomena such as these can appear to
be intractably complicated; however, when viewed through
the lens of chaos they exhibit an orderliness which provides
deep and unifying insight. Classically chaotic systems leave
signatures in the corresponding quantum-mechanical system
via the Gutzwiller trace [36]. Chaos in quantum systems
manifests itself statistically in a number of ways, such as the
Wigner-Dyson distribution of energy level intervals [37–43],
Porter-Thomas statistics of resonance widths [44], and Ericson
fluctuations [10,11].

Classical chaotic scattering is a manifestation of transient
chaos, where particles move freely before and after collision
events; however, during the collision event the particles are
strongly interacting and the motion can be chaotic. Such
collisions have been extensively studied in the context of
chemical reaction dynamics [45–47] and cold collisions [48–
50]. The route to chaos in classical scattering has also been
studied in a variety of different scattering systems, where
chaotic effects are seen to arise suddenly below a critical
energy [49,51,52].

To illustrate the presence of chaos in our classical sim-
ulations, we show in Fig. 5 the single-trajectory lifetime
of the collision complex for Li + Li2 as a function of
the initial angle θ , with impact parameter b = 0. The three
colors label trajectories which finish in different final “basins,”
corresponding to which of the three atoms emerges freely after
fragmentation of the complex. (Recall that in the classical
simulation the atoms are regarded as distinguishable). Some
regions of initial θ lead to collisions with similar short
lifetimes, and to the ejection of a particular atom. These
are regions where there is a single minicollision event, after
which one of the atoms has enough kinetic energy to escape.
Collisions in these regions all follow a similar trajectory,
reflected in the same pair of atoms comprising the dimer at
the end. In other regions the lifetime is longer and varies
rapidly as a function of initial θ . These are regions where
there are multiple minicollision events in which the energy is
redistributed until one of the atoms has attained enough kinetic
energy to escape.
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FIG. 5. (Color online) Lifetime as a function of initial θ for
collisions of Li + Li2 with zero impact parameter at Ecol = 450 K.
Different colors correspond to different final basins for the trajectory.
The lower panel shows a 500× magnified region of the upper panel.

The lower panel of Fig. 5 is a 500× magnified region of
the upper panel. It is qualitatively similar to the upper panel,
despite the vast disparity in scale of angle shown. This scale
invariance is a feature of fractals and is characteristic of chaotic
scattering [51,53]. Qualitatively this scale invariance implies
a set of singularities in Fig. 5, which are well understood
and correspond physically to initial conditions which enter the
scattering region and never leave [48,54].

The set of singularities implied by the scale invariance
exhibited in Fig. 5 can be quantified by a fractal dimension
[55] using a procedure charmingly named the uncertainty
algorithm [56]. In this algorithm, trajectories are classified as
stable under perturbation δ if two trajectories differing in initial
condition by δ finish in the same basin. In this work final basins
correspond to the three possible collision outcomes: AB + C,
AC + B, or BC + A. If this is not the case, then the trajectory
is considered unstable under perturbation δ. By running a large
number of random initial conditions differing by δ, the fraction
of unstable initial conditions for a given δ, denoted f (δ), can
be computed.

Figure 6 shows this fraction as a function of δ at three
different collision energies for collisions with b = 0. The
behavior seen is characterized by the uncertainty algorithm

f (δ,Ecol) ∝ δα(Ecol), (5)

where α is the uncertainty exponent. At high collision energies,
the unstable fraction decreases rapidly as a function of δ,
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Collision energy = 31 K

Collision energy = 316 K

Collision energy = 3162 K

(

FIG. 6. (Color online) f (δ) as a function of δ for collision of
Li + Li2. Shown are three representative collision energies demon-
strating the full range of behavior. The corresponding α values are
0.01 at 31 K, 0.24 at 316 K, and 1.00 at 3162 K.

quantified in Eq. (5) by α = 1. This is because there are many
regions of initial conditions θ where all trajectories within
δ of θ finish in the same basin. As the collision energy is
lowered, however, even small steps in δ can lead to completely
different final basins for many initial values θ , quantified by
α decreasing from 1. At the very lowest energies shown, the
unstable fraction no longer depends of δ at all, at which point
α = 0. At such low collision energies, the outcome of two
collisions whose initial conditions differ by an arbitrarily small
amount are unrelated, like the toss of a (three-sided) coin.
This unpredictability again suggests that during a collision
event the total energy is redistributed randomly between the
degrees of freedom of the system. At lower collision energies
there is less energy to go around and so the probability of a
single atom having enough energy after each collision event
to escape is lower. Thus the fraction of trajectories which
are unstable under perturbation δ is higher at lower collision
energies where neighboring trajectories have longer to diverge.

The exponent α can be given a geometrical interpretation
based on basin boundaries. We can divide up regions of initial
conditions in θ by which final basin they end in. Such regions
can be seen in Fig. 5 as regions of a single color. The fractal
dimension d of the boundary between such regions is related
to the uncertainty exponent α by

α = D − d, (6)

where D is the dimension of initial phase space associated
with perturbation δ, in this case where δ explores the single
degree of freedom θ , D = 1 [56,57]. α can thus take values
between 0 and 1, since the dimension of the boundary basin
can be at most 1 less than the dimension of phase space. Thus
as α decreases the fractal dimension of the boundary between
different final basins increases. As this happens regions leading
to the same final basins shrink and small differences in initial
conditions can put neighboring trajectories in different final
basins, regardless of initial condition. Eventually when α = 0
the basin boundary fills the entire space. When this happens all
initial conditions lie on a basin boundary leading to completely
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FIG. 7. (Color online) Fractal dimension d as a function of
collision energy for collisions of Li + Li2, both with and without
an impact parameter. d − 2 is plotted for the result, including an
impact parameter for comparison. The vertical dotted line is Echaos,
as defined in Eq. (7), and the vertical solid line is the atom-atom well
depth.

different trajectories from their neighbors, on any arbitrary
length scale.

Figure 7 shows the fractal dimension d as a function
of collision energy for Li + Li2, both with (D = 3) and
without (D = 1) an impact parameter. The impact parameter
was uniformly randomly chosen such that the total angular
momentum was between 0 and �/2 (s-wave collisions). The
solid lines in the figure are fits to a switching function of the
form

d = 1

2
tanh

(
Echaos − Ecol

�c

)
+ D − 1

2
, (7)

where Echaos, the point of inflection, gives the energy of the
onset of chaos and �chaos defines a width. For Li with nonzero
or zero impact parameter these are 478 ± 16 K and 512 ± 24 K,
respectively, where the error given is 1 standard deviation. It
is seen that for collisions of Li with Li2, both with and without
an impact parameter, these values are the same to within 1
standard deviation. We thus conclude that the onset of chaos
is independent of the impact parameter for a given collision
system. Therefore, in computing d for heavier species, we are
justified in setting b = 0, which simplifies the calculations.

Figure 8 compares the fractal dimension d as a function
of collision energy for our three systems Li + Li2, K + K2,
and Cs + Cs2 without an impact parameter. It is seen that
collisions become chaotic as the collision energy becomes
lower, and there is a sudden increase in the fractal dimension
when the collision energy becomes less than the atom-atom
well depth (shown as vertical solid lines). Values for Echaos

and De for the three systems are shown in Table III. At
collision energies below the atom-atom well depth, the dimer
is able to absorb enough of the lone atom kinetic energy
into its internal degrees of freedom to prevent it escaping.
Above this energy the lone atom is able to dissociate the
dimer and still has energy left over. We thus conclude that
molecular collisions at sub-microkelvin temperatures achieved
experimentally are chaotic. This justifies the assumption made
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FIG. 8. (Color online) Fractal dimension d as a function of
collision energy for collisions of Li + Li2, K + K2, and Cs + Cs2

for collisions without an impact parameter. The vertical dotted line is
Echaos as defined in Eq. (7), and the vertical solid line is the atom-atom
well depth for each species.

by Mayle et al. that resonances, if resolved, should obey
nearest-neighbor statistics associated with quantum chaos,
such as the Gaussian orthogonal ensemble (GOE). This further
justifies the use of Eq. (4) to compute the mean lifetime as the
time delay statistics for chaotic scattering decay exponentially.
Such an exponential decay is characteristic of hyperbolic
scattering, where all periodic orbits are unstable [53,57]. The
lack of stable periodic orbits in the system is a necessary
condition for a system to be ergodic, as stable orbits only
explore their own region of phase space. With no stable
periodic orbits, the system is ergodic in the limit Ecol → 0
where τ̄ct → ∞, further supporting our conclusion that col-
lisions at sufficiently low energy, achievable experimentally,
are ergodic.

In this work we have used a simple pairwise additive
model for the quartet potential; however, the alkali metal
trimer are highly nonadditive [58]. Despite this, we would
not expect that using a more realistic potential would change
this prediction, as the onset of chaos is primarily determined
by the atom-atom well depth, correct in our model, and not
by details of the potential surface. We would also predict that
for collisions on the doublet surface where the dimer is in a
singlet state the onset of chaos would occur at about the singlet
well depth, which is generally much deeper than the triplet
depth. It should be noted that the predictions for the onset of
chaos made here are all at collision energies many orders

TABLE III. The atom-atom well depth onset of chaos and width
of transition for Li + Li2, K + K2, and Cs + Cs2. The error of the
standard deviation of the parameter estimate is from the least-squares
fitting.

System De (K) Echaos (K) �chaos (K)

Li + Li2 480 478 ± 16 256 ± 13
K + K2 364 371 ± 11 209 ± 11
Cs + Cs2 402 401 ± 17 220 ± 15
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of magnitude higher than the sub-microkelvin temperature
achieved experimentally.

C. Relevance to lifetime calculations

The dominant role of classical chaos at low collision energy
also has implications for the applicability of RRKM ideas. The
RRKM lifetime (1) would overestimate lifetimes if somehow
not all of the phase space ρ were accessed in collisions [35].
However, classical chaos as a function of initial condition
implies that, averaged over initial conditions, the trajectories
access wildly different regions of phase space, so that all of
ρ is likely to contribute. This surmise is consistent with the
lifetime agreement in Fig. 3, where many trajectories with
varied initial conditions are calculated.

IV. CONCLUSIONS

In the present work we have performed classical trajectory
calculations that yield explicit dwell times consistent with the
simple RRKM estimates at low collision energies for three
systems of current experimental interest, 7Li + 7Li2, 39K +
39K2, and 133Cs + 133Cs2. Lifetimes were compared for
collisions on an approximate quartet surface, assuming both
the atom and the molecule are spin polarized and that spin
plays no role in the dynamics of the complex. The agreement
of these results is extremely promising, as it indicates that
lifetime estimates for alkali atom-dimer collisions on the
doublet surface and alkali dimer-dimer collisions are also well
approximated by the simple RRKM estimate for the lifetime.
Such predictions have already been made where the lifetime
of the complex was found to be long, of order 10–100 ns for
alkali-metal-atom–alkali-metal-dimer collisions, and of order
1–10 ms for collisions of alkali molecules with one another.
Such long lifetimes are comparable to experimental lifetimes
and may lead to novel trap-loss mechanisms [8,9]. We interpret

the agreement of the lifetimes at low energies, as well as their
exponential distribution, as evidence that such collisions are
ergodic.

Further, we found that low-energy collisions exhibit chaos
at collision energies lower than the atom-atom binding energy.
We quantified the onset of chaos in terms of a “fractal
dimension” for the space of incident conditions, finding
that classical chaos emerges well above ultracold energies.
This justifies applying chaotic arguments when studying
ultracold collisions [8,9,23]. Classically chaotic systems leave
signatures in the corresponding quantum-mechanical system
via the Gutzwiller trace [36]. Chaos in quantum systems
manifests itself statistically in a number of ways, such as
the Wigner-Dyson distribution of energy-level intervals [37–
43], Porter-Thomas statistics of resonance widths [44], and
Ericson fluctuations [10,11]. Experimental ultracold molecular
samples possess a purity and precision control over all internal
and external degrees of freedom at the level of single quantum
states, which combined with the high DOS, makes them the
perfect system to make such statistical measurements of chaos.

In this work we have seen chaos in the spatial degrees of
freedom among three atoms. However, in ultracold collisions
of sufficiently anisotropic atoms, it is possible that chaotic
scattering may emerge. Indeed, the very recently observed
Fano-Feshbach resonances in erbium have exhibited nearest-
neighbor statistics corresponding to the Gaussian orthogonal
ensemble, regarded as a signature of quantum chaos [59].
Chaos also affords a new theoretical perspective on cold and
ultracold molecular collisions, the prospect of which provides
deep and unifying insight [8,9,23].
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