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Multichannel quantum defect theory (MQDT) has been widely applied to resonant and nonresonant scattering
in a variety of atomic collision processes. In recent years, the method has been applied to cold collisions with
considerable success, and it has proven to be a computationally viable alternative to full close-coupling (CC)
calculations when spin, hyperfine, and external field effects are included. In this paper, we describe a hybrid
approach for molecule-molecule scattering that includes the simplicity of MQDT while treating the short-range
interaction explicitly using CC calculations. This hybrid approach, demonstrated for H2-H2 collisions in full
dimensionality, is shown to adequately reproduce cross sections for quasiresonant rotational and vibrational
transitions in the ultracold (1 μK) and ∼1−10 K regime spanning seven orders of magnitude. It is further shown
that an energy-independent short-range K matrix evaluated in the ultracold regime (1 μK) can adequately
characterize cross sections in the mK-K regime when no shape resonances are present. The hybrid CC-MQDT
formalism provides an alternative approach to full CC calculations at considerably less computational expense
for cold and ultracold molecular scattering.
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I. INTRODUCTION

Molecules in a translationally cold gas present a particular
perspective on collisions and chemistry. One the one hand,
atoms in the colliding molecules exchange energy on the scale
of tens to thousands of Kelvin, driven by deep potential energy
surfaces. On such surfaces occur rotational, vibrational, and
chemical transformations. On the other hand, the ability of
the molecules to initiate this activity is strongly dependent
on behavior at the μK–mK translational energy scales of the
gas. The slowly moving molecules, to get close enough to
react, must first negotiate their way through the long-range
forces acting between them. These forces, negligible at room
temperature, loom large in the ultracold. The dominance of
long-rage forces had led to control over chemical reactions,
by, for example, the simple expedient of applying a modest
electric field to alter the dipole moments of molecules [1].
For this reason cold molecules are seen as novel tools
for probing and controlling chemistry with unprecedented
resolution [2].

This dichotomy of energy scales presents a unique point
of view for theories of molecules interacting at ultracold
temperatures, which must now account for dynamics
occurring over many orders of magnitude in energy. Luckily,
the energy dichotomy relates in a direct way to motion on
disparate spatial scales. Specifically, the full, energy-sharing
dynamics of atoms in the collision complex occurs where all
participating atoms are close together, whereas the long-range
dynamics occurs between well-delineated collision partners
that are far apart. The business of cold collision theory
is to accurately account for the relatively straightforward
long-range dynamics, while incorporating, to the extent
desirable or reasonable, the short-range dynamics.

The separation into short- and long-range physics finds its
natural expression in the multichannel quantum defect theory
(MQDT), whose origins go back to understanding spectra of

Rydberg atoms [3–5], but which has been successfully ex-
tended to more general contexts [6,7], including cold collisions
of atoms [8–14], atoms and ions [15,16], atoms and molecules
[17,18], and molecule-molecule reactive scattering [19–22]. In
all cases, long-range wave functions are carefully constructed
and then matched to a wave function that is a suitable
representation of the short-range physics. Depending on the
context, the short-range physics can be successfully treated in
a schematic way by (for example) positing absorbing boundary
conditions to represent chemical reactions [19,20,22] or, in the
case of alkali-metal-atom cold collisions, by means of simple
spin-dependent phase shifts [8,23].

In this article we tackle head on the complete short-
range dynamics of molecule-molecule scattering for the
comparatively straightforward case of H2 + H2 collisions at
collision energies �10 K, where comparison with numerically
accurate scattering calculations can be made. A main finding
is that the MQDT approach can be accurate and considerably
more efficient numerically, provided sufficient care is taken
in constructing the long-range wave functions. Thus short-
range and long-range dynamics can be successfully welded
together in this important prototype case where energy can
be exchanged between rotational and vibrational degrees of
freedom of two molecules. The calculations presented here
represent a first, necessary step toward adapting MQDT
methods to the broader problem of cold chemistry, which
should ultimately lead to understanding how to manipulate
reaction dynamics in realistic ultracold gases.

The paper is organized as follows. In Sec. II we present the
close-coupling (CC) and MQDT formalisms for nonreactive
scattering in collisions between two 1� molecules. In Sec. III
we provide numerical illustration of the method for quasireso-
nant rotational and vibrational transitions in H2-H2 collisions,
including both ortho- and para-symmetries. Conclusions and
future directions are presented in Sec. IV.
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II. THEORY

A. Quantum close-coupling approach for
molecule-molecule collisions

The molecule-molecule scattering theory for collisions of
two 1� diatomic molecules has been well established and
described in detail in many prior works [24–28]. Only a
brief description to introduce the key terminologies and set
the stage for the MQDT formalism is given here. The full
close-coupling (CC) [29] methodology based on the solution of
the time-independent Schrödinger equation is used to solve the
molecule-molecule scattering problem in Jacobi coordinates.
After elimination of center-of-mass motion, the Hamiltonian
for the relative motion of two H2 molecules in space-fixed
coordinates may be written as

Ĥ = − �
2

2μ

∂2

∂R2
+ �̂2

2μR2
+

2∑
i=1

ĥi(ri) + U (r1,r2,R), (1)

where R is the vector joining the center of mass of the two H2

molecules, μ and �̂ are the reduced mass and orbital angular
momentum of the two colliding H2 molecules, and U (r1,r2,R)
is the interaction potential. The terms, ĥi(ri),i = 1,2 are the
Hamiltonians of the two isolated H2 molecules:

ĥi(ri) = − �
2

2μi

∂2

∂r2
i

+ ĵ 2
i

2μir
2
i

+ V (ri), (2)

where ri , μi , and ĵi are the internuclear separation, reduced
mass, and the rotational angular momenta of the two separated
H2 molecules. The H2-H2 interaction potential is expanded in
terms of coupled spherical harmonics [25]

U (r1,r2,R) =
∑

λ

Aλ(r1,r2,R)Yλ(r̂1,r̂2,R̂) (3)

with

Yλ(r̂1,r̂2,R̂) =
∑
mλ

〈
λ1mλ1λ2mλ2

∣∣λ12mλ12

〉
Yλ1mλ1

(r̂1)

×Yλ2mλ2
(r̂2)Y ∗

λ12mλ12
(R̂), (4)

where λ ≡ {λ1,λ2,λ12} and mλ ≡ {mλ1 ,mλ2 ,mλ12}. The indices
λ1, λ2, and λ12 are non-negative integers and the sum of these
three quantities must be an even integer. The homonuclear
symmetry of H2 requires that λ1 and λ2 must be even.
The quantity in angular brackets of the above equation is a
Clebsch-Gordan coefficient, and Yλmλ

are spherical harmonics.
The Schrödinger equation is conveniently formulated by
introducing the total angular momentum representation [29].

The total angular momentum
−→
J = −→

j12 + −→
� is the vector sum

of total rotational angular momentum
−→
j12 = −→

j1 + −→
j2 of the

two molecules and orbital angular momentum
−→
� . Note that

all molecules remain in singlet electronic spin states, so we
suppress this notation in the following. For collisions between
two indistinguishable molecules, the total wave function �

may be expanded in terms of rotational and vibrational wave
functions of the two H2 molecules, �JMεI εP

vj� , in the total angular
momentum representation [29]:

�(r1,r2,R) = 1

R

∑
v,j,�,J,M

F
JMεI εP

vj� (R)�JMεI εP

vj� (r1,r2,R), (5)

where F
JMεI εP

vj� (R) are the radial expansion coefficients, v ≡
v1,v2 represents the vibrational quantum numbers and j ≡
j1,j2 specifies the rotational quantum numbers of the two di-
atomic fragments. The quantity εI = (−1)j1+j2+� is the eigen-
value of the spatial inversion operator, and εP is the eigenvalue
of the exchange permutation symmetry operator for two H2

molecules (for the indistinguishable case, e.g., para-para or
ortho-ortho). The explicit expression for �

JMεI εP

vj� is given in
Eqs. (6), (8), and (15) of Ref. [28]. The radial expansion
coefficients F

JMεI εP

vj� are evaluated by solving the close-
coupled radial equations in R,

(
− �

2

2μ

d2

dR2
+ �

2�(� + 1)

2μR2
+ εvj − E

)
F

JMεI εP

vj� (R)

+
∑

v′,j ′,�′
UJMεI εP

vj�,v′j ′�′(R)FJMεI εP

v′j ′�′ (R) = 0 (6)

resulting from substitution of Eqs. (1) and (5) in the time-
independent Schrödinger equation H� = E�. Here E is the
total energy of the system, and we define the collision energy
to be Ec = E − εv1j1 − εv2j2 = E − εvj . The symbol εviji

(i =
1,2) denotes the asymptotic rovibrational energies of the two
H2 molecules. Under molecule permutation the interaction
potential, UJMεI εP

vj�,v′j ′�′(R), is given by

UJMεI εP

vj�,v′j ′�′(R) = 	vj1j2	v′j ′
1j

′
2

[
UJMεI

vj�,v′j ′�′(R)

+ εP (−1)j
′
1+j ′

2+j ′
12+�′UJMεI

vj�,v̄′ j̄ ′�′(R)
]
, (7)

where v̄ = v2v1 and j̄ = j2j1j12, εP = ±1, and 	vj1j2 =
[2(1 + δv1v2δj1j2 )]−1/2. The matrix elements of the interaction
potential, UJMεI

vj�,v′j ′�′(R), are defined as

UJMεI

vj�,v′j ′�′(R) =
∑

λ

B
λεI

vj1j2,v′j ′
1j

′
2
(R)f J ;λ

jl,j ′l′ , (8)

where the radial elements B
λεI

vj1j2,v′j ′
1j

′
2
(R) are given by

B
λεI

vj1j2,v′j ′
1j

′
2
(R) =

∫ ∞

0

∫ ∞

0
χvj1j2 (r1,r2)AεI

λ (r1,r2,R)

×χv′j ′
1j

′
2
(r1,r2)dr1dr2, (9)

and the function χvj1j2 (r1,r2) = χv1j1 (r1)χv2j2 (r2) is the
product of the vibrational wave functions of two diatomic
fragments that defines the vibrational part of the basis
functions �

JMεI εP

vj� in Eq. (5). See Eqs. (6) and (15) of

Ref. [28] for more details. The other function f
J ;λ
jl,j ′l′ is given

in terms of 3j , 6j , and 9j symbols:

f
J ;λ
jl,j l = (4π )−3/2(−1)j1+j2+j ′

12+J [λ,j,l,j ′,l′,λ12]1/2

×
(

j1 j ′
1 λ1

0 0 0

) (
j2 j ′

2 λ2

0 0 0

)(
l l′ λ12

0 0 0

)

×
{

l l′ λ12

j ′
12 j12 J

} ⎧⎨
⎩

j ′
12 j ′

2 j ′
1

j12 j2 j1

λ12 λ2 λ1

⎫⎬
⎭ , (10)

with the notation

[x1,x2, . . . ,xn] = (2x1 + 1),(2x2 + 1), . . . ,(2xn + 1). (11)
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In the coupled-channel formalism, either the wave function
F(R) and its derivative F′(R) or the log-derivative matrix
Y = F′F−1 is propagated from a point in the classically for-
bidden region near the origin, R ∼ 0, to where the interaction
potential becomes negligible, R∞. In the present case, the CC
equation for each value of R is solved by propagating the
log-derivative matrix Y by following the methods of Johnson
and Manolopoulos [30,31]. The scattering matrix S for specific
values of J , εI , and εP is evaluated by matching the Y matrix
to known asymptotic solutions of the CC equations at R∞. The
result of matching the log-derivative matrix Y to the asymptotic
wave functions relates Y to the K matrix via [30]

(YJ − J′) = (YN − N′)K. (12)

The matrices J (not to be confused with the total angular
momentum) and N are diagonal matrices of asymptotic func-
tions. For convenience, the total number of coupled channels
N is partitioned into No open channels (with E > 0) and Nc

closed channels (with E � 0) such that N = No + Nc. For the
open channels No these functions are known as Riccati-Bessel
functions, and for the closed channels Nc they are modified
spherical Bessel functions of the first and third kinds [32]. J′
and N′ are the derivative matrices of J and N, respectively.
For an N channel problem the scattering S matrix is easily
calculated by considering only the open-open sub-block of K
matrix by the following expression

S = (1 + iKoo)−1(1 − iKoo). (13)

Finally, the state-to-state cross section is obtained from the
S matrix. For indistinguishable molecule collisions one must
symmetrize the cross section with the statistically weighted
sum of the exchange-permutation symmetry components.
Explicit expressions for state-to-state cross section with
and without exchange symmetry have been given in prior
publications [28,33]. For completeness, and for the ease of
comparisons with MQDT results, the expressions for the
symmetrized cross sections are reproduced below:

σv1j1v2j2→v′
1j

′
1v

′
2j

′
2
(Ec) = W+σ εP =+1 + W−σ εP =−1 (14)

with

σ εP = π
(
1 + δv1v2δj1j2

)(
1 + δv′

1v
′
2
δj ′

1j
′
2

)
(2j1 + 1)(2j2 + 1)k2

×
∑

j12j
′
12��

′JεI

(2J + 1)
∣∣δvj�,v′j ′�′ − S

JεI εP

vj�,v′j ′�′(Ec)
∣∣2

, (15)

where k2 = 2μEc/�
2. In the case of collisions of two ortho-H2

molecules having nuclear spin I = 1 and weight factors
W+ = 2/3 and W− = 1/3, one must consider both exchange
permutation symmetries εP = ±1 for the calculation of state-
to-state cross sections. For collisions between two para-H2

molecules with nuclear spin I = 0 and weight factors W+ = 1
and W− = 0, only one exchange-permutation symmetry εP =
+1 is required for evaluating the cross section. To describe
the state-to-state cross section between two H2 molecules,
we use the term combined molecular state, CMS, which
denotes the combined rovibrational quantum numbers of the
two molecules. In this notation, the collision of the first
H2 molecule having the rovibrational state (v1,j1) with the
second H2 molecule in state (v2,j2) is denoted by a unique

term (v1,j1,v2,j2). This CMS is the quantum state, which
characterizes the molecule-molecule system before or after
the collision.

It should be emphasized that the CC method described
here is a numerically exact calculation that incorporates the
complete physics of the molecule-molecule collision problem,
provided that sufficiently many channels are included in the
calculation (which is certainly possible for light molecules
such as H2). This method does, however, require the complete
calculation to be performed separately for each collision
energy of interest. The number of such calculations may be
large, say in the case where cross sections vary with energy due
to resonances or (at ultracold temperature) due to the Wigner
threshold laws. Restricting this requirement of calculations
at many energies is a main accomplishment of the MQDT
method, to which we now turn.

B. MQDT formalism

The MQDT formalism modifies the scattering calculations
in several ways. First, it acknowledges that, beyond a certain
interparticle spacing Rm, the scattering channels become
independent from one another, and their wave functions can
be constructed in each channel individually. This leads to a
reduction in computational time since the number of arithmetic
operations is proportional to N3 for the CC calculation.
Whereas, this number is only proportional to N for the MQDT
calculation. Second, it notes that this distance Rm can often
be chosen small enough that all channels are locally open,
meaning that the kinetic energy at Rm is positive in each
channel. In this circumstance, boundary conditions in closed
channels need not yet be applied, and the wave function at Rm

will not have the sensitive energy dependence required near
resonances.

Third, the asymptotic wave functions to which one matches
the short-range wave function are themselves chosen to exhibit
weak energy dependence, so that the resulting short-range K

matrix, Ksr, is only weakly dependent on energy and magnetic
field. This allows for efficient calculations over a wide range
of energy and field. Features such as resonances and Wigner
threshold laws are then recovered at a later stage via relatively
simple algebraic procedures. This method has proven useful
and economical in molecular scattering [6] and in ultracold
collisions [8]. Here we describe its application to the H2-H2

cold collision problem.
Ksr is defined by writing the matrix wave function, M, in

terms of MQDT reference functions, f̂ and ĝ,

Mij = f̂ iδij − ĝiK
sr
ij for R � Rm, (16)

where M is an N × N matrix that contains N wave functions
with physical boundary conditions at the origin. Ksr is obtained
by matching the log derivative of M to the log-derivative matrix
Y at Rm

M
′
M−1 = Y (17)

Ksr = (Yĝ − ĝ′)−1(Yf̂ − f̂ ′). (18)

To achieve a weakly energy- and field-dependent Ksr, we
let f̂ and ĝ have WKB-like boundary conditions well within
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the classically allowed region at R = Rx � Rm [6,7],

f̂ i(R) = 1√
ki(R)

sin

(∫ R

Rx

ki(R
′)dR′ + φi

)
at R = Rx

(19)

ĝi(R) = − 1√
ki(R)

cos

(∫ R

Rx

ki(R
′)dR′ +φi

)
at R = Rx,

(20)

where φi denotes an energy-independent phase described

by Ruzic et al. [34]. Here, ki(R) =
√

2μ

�2 (E − εvj − V lr
i (R))

where V lr(R) is the long-range potential, and the derivatives
of f̂ and ĝ at Rx are defined by the full, radial derivatives of
Eqs. (19) and (20).

One obtains f̂ and ĝ at all R by solving a one-dimensional
(1D) Schrödinger equation(

− �
2

2μ

d2

dR2
+ �

2�i(�i + 1)

2μR2
+ V lr

i + εvj − E

) (
f̂i

ĝi

)
= 0

(21)

subject to the boundary conditions (19) and (20). For H2-H2

scattering, beyond the strong interaction region, one only needs
to deal with the weak, attractive van der Waals forces. Hence,
the MQDT reference functions can be obtained by choosing a
long-range expansion for the reference potential, V lr = −C6

R6 −
C8
R8 − C10

R10 .
The matrix Ksr and the linearly independent solutions, f̂

and ĝ, carry all the information required to obtain the scattering
observables. To obtain the physical scattering matrix, Sphys,
four MQDT parameters A, G, η, and γ are required in
each channel [34]. These four quantities correctly describe
the asymptotic behavior of the reference wave functions f̂

and ĝ. Explicit expressions for these parameters are given in
Eqs. (12a)–(12d) in Ref. [34].

By partitioning Ksr into energetically open (o) and closed
(c) channels, we eliminate the unphysical growth inherent in
M by the following transformation

K̃ = Ksr
oo − Ksr

oc

(
cotγ + Ksr

cc

)−1
Ksr

co, (22)

where cotγ is a diagonal matrix of dimension Nc × Nc. Hence
K̃ represents the No wave functions with physical boundary
conditions both at the origin and asymptotically. Roots of
det(Ksr

cc + cot γ ) approximate the locations of resonances in
the cross section.

In order to relate K̃ to Sphys, another set of energy-
normalized, linearly independent solutions is required. For
each energetically open channel, the reference functions f

and g are defined as

fi(R)
R→∞−−−→ k

−1/2
i sin(kiR − �iπ/2 + ηi) (23)

gi(R)
R→∞−−−→ −k

−1/2
i cos(kiR − �iπ/2 + ηi). (24)

These functions are related to f̂ and ĝ through the following
expressions,

fi(R) = Ai
1/2f̂ i(R) (25)

gi(R) = Ai
−1/2Gi f̂ i(R) + Ai

−1/2ĝi(R). (26)

Hence, Sphys is obtained by the following series of simple
transformations

K = A1/2K̃(I + GK̃)−1A1/2 (27)

Sphys = eiη (I + iK) (I − iK)−1 eiη, (28)

where A and G and η are diagonal matrices of order No × No

and I is the identity matrix.

III. RESULTS

Our main goal in this article is to demonstrate the power of
the MQDT method for ultracold, nonresonant, and quasires-
onant molecular scattering. To this end we wish to establish
two criteria for H2. First, that the separation between long-
and short-range physics is reasonable; and second, that the
energy-dependent scattering may be easily described via an
essentially energy-independent short-range wave function. We
will also examine the sensitivity of results to the choice of the
reference potential. To address these criteria, we will focus
on H2 collisions in which energy is nontrivially transferred
among vibrational and rotational degrees of freedom between
the two molecules.

A. Quasiresonant scattering: convergence with respect
to matching distance Rm

To establish the use of MQDT as a reasonable separation
between short- and long-range behavior, we choose a problem
where nontrivial energy exchange occurs in the short-range
physics. The specific example is one of quasiresonant energy
transfer in para-para H2 scattering, whereby two units of
rotational angular momentum are transferred from a vi-
brationless molecule to a vibrating molecule [33,35]. To
illustrate this process, diabatic potential energy curves for
two interacting para-H2 molecules versus the intermolecular
separation R are shown in Fig. 1. These are effective potentials,
defined as

Veff(R) = εvj + UJMεI εP

vj�,vj� (R) + �
2�(� + 1)

2μR2
. (29)

The particular quasiresonant process of interest takes the
initial channel (v1,j1,v2,j2) = (1,0,0,2) to (1,2,0,0). The
name quasiresonant pertains to the fact that the thresholds
of these channels are nearly degenerate, as seen in Fig. 1.
Specifically, their energy separation, 25.45 K, is comparable
to the well depth of the isotropic part of the H2-H2 interaction
∼31.7 K. The slightly different centrifugal distortion of the
vibrational levels v = 0 and v = 1 is responsible for this small
energy gap between the two CMSs. In this process the total
rotational angular momentum is conserved by the collision.
These kinds of transitions, which have a small internal energy
and internal rotational angular momentum gaps, are found
to be very efficient and highly state selective and have been
referred to as quasiresonant rotation-rotation (QRRR) transfer
[35]. Note that alternative final states are also possible, but
the one we have selected is known to be the dominant one.
Indeed, as illustrated in Refs. [36,37], to accurately describe
such quasiresonant energy transfer, one does not need to couple
any other v,j levels in the basis set. One can restrict the basis
set in the CC calculations to just those involved in the
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FIG. 1. (Color online) Effective potential energy curves for para-H2 scattering as defined in Eq. (29). The labels for nearly degenerate
curves are separated by a colon, where the highest lying threshold is on the right. The panel on the right shows the CMSs included in the basis
set.

quasiresonant transition yet still get results comparable to those
from a larger basis set that includes many other CMSs. Thus,
for the purpose of simplicity, we have resorted to a small basis
(1,0,0,0), (1,0,0,2), (1,2,0,0), and (1,2,0,2) (as shown in the
right panel of Fig. 1) that primarily includes the quasiresonant
channels in the CC calculations.

Using the restricted basis set described above, we have
computed scattering cross sections for this process using the
full CC calculation and the MQDT formalism. In the full
CC calculation asymptotic matching to free-particle wave
functions is carried out at R∞ = 100 a0. In the MQDT
approach, reference functions are determined from both the
isotropic parts of the diagonal elements of the long-range
diabatic potential coupling matrix, UJMεI εP

vj�,vj� (R), and also the
long-range approximation for the reference potential, V lr =
−C6

R6 − C8
R8 − C10

R10 . As discussed in the next subsection, we find
that more accurate results are obtained when the long-range
part of the diabatic potential curves are employed.

First, we establish convergence of elastic and inelastic cross
sections as a function of the short-range matching distance Rm.
Results of these studies are shown in Fig. 2, for elastic (left
panel) and inelastic QRRR (right panel) scattering. The QRRR
transition is the dominant inelastic channel that corresponds
to total angular momentum J = 2 and s-wave scattering in
the incident channel. The thick solid black curves refer to
results from the full close-coupling calculation, while the other
curves correspond to the MQDT results for various values of

the matching radius Rm. The convergence with respect to Rm

is excellent and occurs as soon as Rm exceeds the region of the
van der Waals well. The MQDT calculations are converged
and nearly quantitatively reproduce the results from the full
CC calculation for a matching distance of Rm = 9.2 a.u. Note
that the van der Waals length, rvdw = ( 2μC6

�2 )1/4 for H2-H2 is
14.5 a0. The agreement is also nearly quantitative for elastic
scattering cross sections shown in the left panel. Although, for
elastic scattering, the results are less sensitive to the matching
distance. It should be emphasized that these convergence tests
involve a single short-range Ksr matrix computed at an initial
collision energy of 1 μK, which is able to capture the dynamics
at other collision energies in 1 μK–1 K range. This is an
important aspect of MQDT calculations as discussed in more
detail below.

B. Choice of reference potential and
energy-independent parameters

A key aspect of MQDT is to simplify the calculation and
description of scattering, especially at ultracold temperatures.
We have already demonstrated this for the para-para case
where an energy-independent short-range Ksr is able to
reproduce cross sections over a wide range of energies when
resonances are absent. An equally important issue is the choice
of reference potential for the evaluation of MQDT refer-
ence functions. While for atom-atom scattering the obvious

10-6 10-5 10-4 10-3 10-2 10-1 100

Energy (K)

2.00

2.50

3.00

3.50

4.00

El
as

tic
 C

ro
ss

 S
ec

tio
n 

(1
0-1

4 cm
2  )

J = 2
Full CC
6.3 a.u.
7.0 a.u.
8.5 a.u.
9.2 a.u.

10-6 10-5 10-4 10-3 10-2 10-1 100

Energy (K)
10-17

10-16

10-15

10-14

10-13

10-12

10-11

In
el

as
tic

 C
ro

ss
 S

ec
tio

n 
(c

m
2 ) J = 2

Full CC

7.0 a.u.
6.3 a.u.

8.5 a.u.
9.2 a.u.

FIG. 2. (Color online) Elastic (left) and inelastic (right) cross sections for (1,0,0,2)–(1,2,0,0) quasiresonant scattering in para-H2. The thick
solid black curves correspond to the full CC calculation, while the other curves correspond to the MQDT result with different matching
radii, Rm.
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choice is the long-range expansion, for complex systems such
as the present case, a more accurate choice given by the
effective potential of Eq. (29) may be adopted. To explore
these issues we consider similar quasiresonant energy transfer
in ortho-ortho and ortho-para collisions. Further, we extend
the energy range of these calculations to 10 K to capture a
d-wave shape resonance reported in an earlier work [36].

Similar to the case of para-H2, here we consider a QRRR
process in which an ortho-H2 (v = 1,j = 1) molecule hits
another vibrationless ortho-H2 (v = 0,j = 3) molecule and
takes away two units of rotational angular momentum. The
process is described as (v1,j1,v2,j2) = (1,1,0,3) → (1,3,0,1).
In this case the energy difference between the two threshold
channels is 45.5 K. Full CC calculations have been reported
for this process previously [36,37], but we show results for the
positive exchange symmetry to compare with MQDT in Fig. 3.
The elastic cross section is calculated according to Eq. (15).
Only cross sections for total angular momentum J = 2 that
include s-wave scattering in the incident channel are shown.
The solid black curves denote the full CC result for both elastic
(left panel) and inelastic (right panel) collisions obtained by
matching to free particle wave functions at R∞ = 100 a0.

MQDT results are obtained using a short-range matching
distance of 9.5 a0. The different curves for MQDT refer
to different choices for the reference potential. The dotted
red curves correspond to using a simplified potential V lr =
−C6/R

6, while the dashed-dotted black curves correspond to
the diagonal elements of the isotropic part of diabatic coupling
matrix discussed above. Both results correspond to a single
Ksr matrix evaluated at 1 μK for the entire energy regime.
They are able to identify the d-wave resonance near 1 K,
but do not find its energy position particularly accurately.
This is because the energy dependence of the short-range
K matrix is neglected in these calculations. The simplest
reference potential performs poorly in the resonant region
because it does not deliver an accurate phase shift in the
region Rm < R < R∞. However, both calculations reproduce
the cross sections in the threshold regime fairly accurately.
The dashed blue curves in Fig. 3 are also obtained using the
diabatic potential coupling matrix for the reference potential,
but here Ksr matrix has been evaluated at various energy values
in the 1 μK–10 K range followed by interpolation in a fine
energy grid. This grid consists of three different regions: (i) in
the ultralow energy range, Ec = 1 μK–100 mK, Ksr matrix is

evaluated at 1 μK, 1 mK, and 100 mK; (ii) at low energies in the
range Ec = 200 mK–1 K, Ksr is evaluated at nine points with
100 mK separation; (iii) from 1–10 K, an energy spacing of
1 K was employed. In this case the MQDT reproduces the full
CC result quite well. MQDT identifies the resonance position
and line shape and matches the background cross sections at
the percent level.

The ability to interpolate the short-range K matrix and
still get quantitative results stems from the smoothness of
this quantity in energy, as shown in Fig. 4. Only elements
corresponding to the quasiresonant channels (1,1,0,3 and
1,3,0,1) are shown. Although the partial waves, � = 2 and 4
are present in both the initial and final channels, the dominant
contribution comes from � = 0 for Ec = 1 μK–1 K. It is clear
from Fig. 4 that up to 1 K the short-range K matrix is
independent of energy, but it becomes a smooth function of
energy beyond 1 K. Thus, an energy-independent short-range
K matrix evaluated at 1 μK cannot be expected to adequately
reproduce a shape resonance near 1 K.

Also, we note that the well depth of the isotropic part of the
diabatic potential is only ∼31.7 K. When the collision energy
becomes a significant fraction of the potential well depth the
Ksr matrix becomes a strong function of energy, and its energy
dependence needs to be taken into account. Thus, for systems
such as H2 + H2 characterized by a relatively shallow van der
Waals well, the energy dependence of the short-range K matrix
becomes important in describing the resonances supported by
the van der Waals well. For other systems with deeper potential
wells, one may be able to use an energy-independent Ksr matrix
over a wider range of scattering energies. It is also possible
that the MQDT treatment will need modification to handle
resonances already present in Ksr [18].

Next, we demonstrate the ability of the MQDT method
to describe physics driven by vibrational, rather than
rotational, dynamics. Specifically, we consider a second
type of H2 scattering, wherein a vibrationless ortho-H2 hits
a para-H2 molecule that carries one quantum of vibration,
transferring this vibration to the ortho molecule [37]. In
our notation, para-H2(v = 1,j = 0) + ortho-H2(v = 0,j =
1) → para-H2(v = 0,j = 0) + ortho-H2 (v = 1,j = 1), i.e.,
(1,0,0,1) → (0,0,1,1). Despite a small energy gap (8.5 K)
between the initial and final states, one observes a surprisingly
small inelastic cross section. This is because, due to the
homonuclear symmetry of the H2 molecule, the transfer of
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FIG. 3. (Color online) This figure shows the elastic cross section for H2(v = 1,j = 1) + H2(v = 0,j = 3) collisions (left) and the inelastic
cross section for H2(v = 1,j = 1) + H2(v = 0,j = 3) → H2(v = 1,j = 3) + H2(v = 0,j = 1) quasiresonant process (right).
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FIG. 4. Diagonal elements of the short-range K matrix corre-
sponding to the quasiresonant transition [(1,3,0,1) → (1,1,0,3)] as
a function of the collision energy. The isotropic part of the diabatic
potential matrix elements is used for the reference potential and the
matching radius Rm = 9.5a0.

rotational energy between j = 0 and j = 1 states is symmetry
forbidden. Hence the entire process is driven by vibrational
energy transfer, which is generally less efficient than rotational
energy transfer [35].

The resulting cross sections, computed according to the
same three degrees of approximation as in Fig. 3, are presented
in Fig. 5, along with that from full CC calculations. The left
panel depicts the elastic cross sections, and the right panel
shows the inelastic counterparts. These cross sections were
computed for total angular momentum J = 1 to account for the
dominant s-wave scattering in the incident channel at ultralow
energies. A matching radius of Rm = 9.5 a0 is used for the
MQDT calculations.

The solid black curves in Fig. 5 denote the full close-
coupling results computed on an energy grid of 10 μK. The
dashed blue curves correspond to MQDT calculations in which
an interpolation scheme similar to that of the ortho-ortho
case is adopted for the short-range Ksr matrix. The dashed
dotted black curves represent the same calculation, assuming
an energy-independent Ksr (computed at Ec = 1 μK) is valid
at all energies. Like the ortho-ortho case the MQDT results

(interpolated and noninterpolated) almost exactly follow the
full CC results in the Wigner-threshold region, but the one
derived from the energy-independent Ksr begins to deviate
above 100 mK as the resonance region is approached.

It is abundantly clear from the above discussion that while
a single Ksr matrix is not capable of reproducing the dynamics
over the entire energy range, including the resonance region,
it is able to accurately describe the dynamics in the Wigner
threshold regime. The accuracy of both the elastic and inelastic
cross sections in the three cases considered validates the
key idea of MQDT: the energy dependence of scattering
observables is entirely tractable within the simple behavior
of the long-range physics. We also emphasize that the method
remains numerically tractable all the way down to 1 μK, about
seven orders of magnitude lower in energy than the height of
the centrifugal barriers. At 1 μK (and throughout the Wigner
threshold regime) the elastic cross sections from the MQDT
and full CC calculations agree to within 0.2–4 % for all three
initial states considered here. The corresponding inelastic cross
sections agree to within 3–10 %. Finally, we note that the
MQDT calculations are also accurate for partial waves � = 1
and 2 arising from other values of J (e.g., J = 0, 1 for ortho-
ortho and J = 0, 2 for ortho-para) although they do not con-
tribute significantly to the cross sections and hence not shown.

IV. CONCLUSIONS

We have presented a hybrid approach that combines full
close-coupling calculations at short-range with the MQDT
formalism at long-range to evaluate cross sections for elastic
and quasiresonant inelastic scattering in collisions of H2

molecules. It is found that the full CC calculation can be
restricted to a relatively short range, ∼9.0 a0, which is just
outside the region of the van der Waals potential well. Beyond
this region, the scattering process is described within the
MQDT formalism. Further, it is found that one may use a single
short-range K matrix, computed at say 1 μK, to evaluate cross
sections at energies all the way into the mK range, leading
to significant savings in computational time. This works as
long as scattering resonances are absent. When resonances are
present, the short-range K matrix becomes sensitive to energy
and an interpolation of its elements computed on a relatively
sparse grid in energy may be employed to yield reliable
results.
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FIG. 5. (Color online) Elastic (left) and inelastic (right) cross sections for the scattering of ortho- and para-H2. The solid black curves
represent the full CC calculation, while the other curves denote different MQDT results as described in the text.
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The choice of H2-H2 for the present work is in part moti-
vated by the possibility of full-dimensional CC calculations
with no approximations (other than basis set truncation).
However, due to its shallow van der Waals potential well,
it is probably not the system for which MQDT provides
the most accurate values. This is because, at the short-range
matching distance, for collision energies in the Kelvin range,
the interaction potential becomes comparable to the scattering
energy and determination of an energy-independent short-
range K matrix is no longer possible. Furthermore, extending
the calculations to energies beyond 1 K becomes difficult
as the effective potential for � > 2 becomes positive for all
values of R and computation of MQDT reference functions
becomes difficult. Nevertheless, the hybrid approach seems
to be very promising, and the savings in computations will be
more dramatic when considering open shell systems with spin,
hyperfine levels, and magnetic field effects.

While the results demonstrate the relevance of the MQDT
approach in ultracold molecule-molecule scattering, there is
still much to be developed. The treatment of resonances has
become mundane in atom-atom scattering, but remains to
be adequately developed for cold molecules [18]. Also, the

long-range PES for H2-H2 remains reasonably isotropic, so
that complete isotropy could be assumed when constructing
the reference functions. Potentials with stronger anisotropies
may necessitate a different long-range treatment, owing
to strong interchannel couplings. Finally, for truly reactive
systems, such as F + H2, the short-range calculation is more
conveniently carried out in hyperspherical, rather than Jacobi
coordinates, in which case the application of MQDT needs to
be modified to accommodate the transition between short- and
long-range coordinate systems, as well as between short- and
long-range wave functions. Such calculations are a subject
for future research.
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[35] G. Quéméner, N. Balakrishnan, and R. V. Krems, Phys. Rev. A
77, 030704(R) (2008).

[36] S. Fonseca dos Santos, N. Balakrishnan, S. Lepp, Quéméner,
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