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Simple quantum model of ultracold polar molecule collisions
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We present a unified formalism for describing chemical reaction rates of trapped, ultracold molecules. This
formalism reduces the scattering to its essential features, namely, a propagation of the reactant molecules through
a gauntlet of long-range forces before they ultimately encounter one another, followed by a probability for the
reaction to occur once they do. In this way, the electric-field dependence should be readily parametrized in terms
of a pair of fitting parameters (along with a C6 coefficient) for each asymptotic value of partial-wave quantum
numbers |L,ML〉. From this, the electric-field dependence of the collision rates follows automatically. We present
examples for reactive species, such as KRb, and nonreactive species, such as RbCs.
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Ultracold molecules present researchers with unique phys-
ical systems that are a curious mixture of small and large
energies, and of tiny and enormous length scales. Thanks
to recent experimental advances, certain molecules can be
prepared in specific hyperfine states, even though they are
separated in energy only by ∼10−9 eV [1–3]. Yet, upon
colliding, these same molecules explore the ∼1 eV energies
afforded by their electronic potential energy surfaces. Simi-
larly, the translational kinetic energy of these molecules, set
by their temperature T , can be as small as kBT ∼ 10−11 eV.
At these energies the force the molecules exert on one
another can be significant on length scales that are orders
of magnitude larger than the molecules themselves. Because
long-range dipolar forces are experimentally controllable,
there has been much discussion about the prospect of either
limiting or enhancing chemical reaction rates by the simple
artifice of changing an electric field [4]. Indeed, an effect of
this kind has been dramatically demonstrated and explained
recently [5]. Collisions of ultracold molecules are thus, in
principle, remarkably complicated systems to understand in
detail. On the one hand, every degree of freedom is involved,
from the hyperfine states in which the molecules are prepared
to the complete rearrangement of molecules in a chemical
reaction. On the other hand, the actual number of observables
may be rather small, consisting perhaps of a handful of loss
rate coefficients. The long path connecting complex molecular
Hamiltonians to what is actually seen in the laboratory may
indeed prove intractable from ab initio theory.

For this reason, it is worthwhile to find simple formulations
of collision theory at ultralow temperatures, especially formu-
lations that naturally take advantage of the vast differences
in energy and length scales present [6,7]. Recently, two
complementary approaches have accounted fairly well for
experiments that have observed ultracold chemical reactions of
fermionic KRb molecules. In the first, a multichannel quantum
defect theory (MQDT) approach has successfully replaced
the short-range physics by suitably parametrized boundary

conditions that acknowledge both a scattering phase shift
and the probability of chemical reaction [8]. The boundary
conditions were matched to highly accurate solutions of the
long-range scattering, which in fact were carefully character-
ized analytically, allowing for simple analytic formulas for
scattering observables [6]. The second, “quantum threshold”
(QT) approach focused on the fact that the molecules had to
tunnel through a centrifugal barrier with a given probability,
which varied with energy in accord with the Wigner threshold
laws [9]. By floating the value of the tunneling probability
at the barrier’s peak, this method was able to describe in an
analytic way the chemical reaction probability even in the
presence of an electric field that polarized the molecules [5].

In this Rapid Communication we merge the ideas be-
hind these approaches to arrive at a consistent theory of
ultracold polar molecule collisions. We will exploit the
short-range parametrization already afforded by the zero-field
MQDT approach, complemented by a numerical treatment
of long-range wave-function propagation. One main result
is the classification of molecules according to whether their
scattering is either universal, with loss rates that depend
only on purely long-range features of the potential energy
surfaces; or nonuniversal, containing resonances that carry
more detailed information about specifics of the interactions.
These kinds of field-dependent resonances have been reported
previously [10–16]. We find that the locations and contrast
of these features are specified once the MQDT parameters of
the short-range physics are given, thus characterizing a whole
swath of the electric-field-dependent collisional spectrum.

We begin with the Hamiltonian for interaction of two
dipolar molecules in well-defined single internal states, with
reduced mass µ and intermolecular separation R:

H = Tr + Vsr + Vcent + VvdW + Vdd. (1)

Here, Tr is the radial kinetic energy; Vcent = h̄2L(L + 1)/
2µR2 is the centrifugal energy corresponding to partial

1050-2947/2010/82(2)/020703(4) 020703-1 ©2010 The American Physical Society

http://dx.doi.org/10.1103/PhysRevA.82.020703


RAPID COMMUNICATIONS

IDZIASZEK, QUÉMÉNER, BOHN, AND JULIENNE PHYSICAL REVIEW A 82, 020703(R) (2010)

wave L; VvdW = −C6/R
6 is the van der Waals interaction

between two molecules, here assumed isotropic; and Vdd =
C3(L,L′; ML)/R3 is the dipole-dipole interaction between
the molecules, which couples different partial waves, but
which preserves the projection ML of this angular momentum
onto the field axis [9]. These three terms identify the long-
range physics, denoted collectively as Vlr. In addition, Vsr

incorporates all short-range physics, such as elastic and
inelastic scattering, possible resonances to ro-vibrationally
excited molecular states, or even chemical reaction. We will
not deal explicitly with Vsr in what follows.

For the present, we are interested in collisions that may
result in chemical reactions, rather than hyperfine-changing
collisions. We therefore ignore all other hyperfine states
besides the incident ones. (The theory can be adapted to
include these later, however.) In our model, scattering via the
Hamiltonian (1) is then a multichannel problem, where the
channels are defined by the partial-wave quantum numbers
L. Higher values of L generate higher centrifugal barriers
and thus inhibit the passage of the molecules to short range
where they can react. Therefore, only a handful of L’s
are necessary to describe chemical quenching phenomena at
ultralow temperatures. In fact, we consider a single potential
that is constructed by diagonalizing Vlr in the partial-wave
basis at each value of R, in the spirit of the Born-Oppenheimer
approximation, as in Ref. [16].

We therefore reduce the problem to scattering in a single
potential, albeit one from which wave-function flux can leak
at small values of R. Within this model, the scattering consists
of two distinct parts: (1) molecules approach one another and
transmit some fraction of their incident flux through the long-
range potential Vlr, to arrive at an intermediate separation R0;
(2) molecules enter into the near zone, where they may either
react (in which case flux is lost) or scatter back into the channel
from which they came, generating a phase shift. In either event,
scattering is defined via the diagonal scattering matrix element
SL, whose magnitude may be less than unity if a reaction has
occurred. Quite generally, elastic and quenching scattering rate
constants are given for each partial wave L by

Kel
L (E) = g

πh̄

µk
|1 − SL(E)|2,

(2)

K
qu
L (E) = g

πh̄

µk
[1 − |SL(E)|2],

where k is the incident wave number, and g = 1,2 according to
whether the particles are indistinguishable or distinguishable
in their initial channel.

The S matrix is characterized by a complex phase shift
via SL = e2iηL , which defines the complex, energy-dependent
scattering length

ãL(k) = α̃L(k) − iβ̃L(k) = − tan ηL(k)

k
. (3)

The real power of the quantum defect approach is that it
provides analytic expressions for the complex scattering length
for zero-electric-field collisions [17]. This follows from a
careful parametrization of standard wave functions in the
long-range potential, which is assumed to consist solely of
van der Waals plus centrifugal potentials. As was shown in

Ref. [8], the scattering lengths for the lowest partial waves
simplify, in the limit kã � 1, to

ãL=0 = a + āy
1 + (1 − s)2

i + y(1 − s)
,

(4)

ãL=1 = −2ā1(kā)2 y + i(s − 1)

ys + i(s − 2)
.

Here several scale parameters are used, such as
the Gribakin-Flambaum mean scattering length ā =
2π (2µC6/h̄

2)1/4/�(1/4)2, and its p-wave analog ā1 =
ā�(1/4)6/[144π2�(3/4)2] = 1.064ā. The parameters that are
specific to each particular scattering problem are instead the
real part of the zero-energy scattering length a, also given
in its reduced form s = a/ā; and the effective short-range
channel coupling strength y. In the quantum-defect point of
view, y stands for the probability of chemical reaction once the
molecules get close together: when y = 0, chemical reactions
are forbidden, and the scattering is purely elastic; whereas
when y = 1, reactions occur with maximum probability [8].

Thus the parametrization of scattering observables follows
as given above, whereas the actual values of the parameters
s and y will vary from one molecule to the next, and may
be determined by fitting experimental data. Within the theory,
their values follow ultimately from the value and derivative
of the total wave function ψ(Rm) at a matching radius Rm.
In MQDT, Rm represents the boundary between the long and
short range, or equivalently small and large energy scales in
the relative motion of the molecules. Its value is conveniently
chosen to be smaller than the characteristic length ā, yet
larger than the scale of any significant short-range physics
or chemistry.

We come now to the main point of this article. At the
matching point Rm, the interaction potential is sufficiently
deep that the potential and, more importantly, the wave
function ψ(Rm) are unaffected by turning the electric field
on. This reflects the physical fact that laboratory strength
fields, inducing energies on the order of 10−5 eV by polarizing
the molecules, have no effect whatsoever on the eV-scale
chemical reaction processes, or the perhaps 0.1 eV depth of
the interaction potential at Rm. Therefore the parameters s and
y can be defined once, at zero electric field, and then used
at all subsequent, higher fields. It only remains to propagate
the wave function ψ from Rm out to infinity. This part of the
process is necessarily numerical, since the MQDT parameters
for a mixed van der Waals-plus-dipole interaction are not yet
characterized, and in any event are likely to be available only
numerically.

In this way the entire field-dependent scattering behavior
in contemporary experiments can be succinctly summarized.
To set this discussion in context, we first consider the transfer
function, i.e., the probability that the incident flux reaches
Rm at all, in zero electric field. This function is given by
the energy-dependent loss probability Ploss(E) = 1 − |SL|2,
evaluated for unit short-range absorption probability y = 1.
It is shown in Fig. 1 for cold collisions of KRb molecules in
zero field, for both s- and p-wave collisions. In both cases, the
low-energy behavior of Ploss must follow the Wigner threshold
laws. In the higher-energy limit, Ploss asymptotes to unity,
since the molecules can then barrel past the comparatively
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FIG. 1. (Color online) Probability to tunnel to short range, vs
collision energy, for s- and p-wave collisions of KRb molecules,
assuming zero electric field and C6 = 16130 a.u. [15]. The dashed
lines are the analytic, low-energy approximations 1 − exp(−4kβL).
Inset: Dependence of the p-wave transmission probability, evaluated
at the height of the centrifugal barrier, as a function of induced dipole
moment d .

weak long-range forces. The dashed lines show approximate
transfer functions that incorporate the lowest-order complex
scattering length from (4), namely, β0 = ā for s waves and
β1 = ā1(kā)2 for p waves. These approximations are adequate
up to the characteristic energies E0 = h̄2/2µā2 for s waves,
and E1 = [4h̄6/(27µ3C6)]1/2 for p waves (corresponding to
the height of the p-wave centrifugal barrier). For example,
for the KRb molecules considered in Fig. 1, E0 = 98 µK and
E1 = 24.3 µK.

In the very low energy limit for p waves, the quantum
threshold model in Ref. [9] also yields the correct low-
energy behavior of Ploss, and indeed is based on the Wigner
laws. The only remaining ingredient within this model is to
normalize Ploss to its correct value at the height of the p-wave
centrifugal barrier. This value, P b

loss ≡ Ploss(E = E1) = 0.37,
is also indicated in the figure, and it is a universal value that is
independent of the specific C6 or reduced mass of the collision
partners. This is because the Schrödinger equation for the
potential Vcent + VvdW has a unique form in “natural” units
(unit of length = ā, unit of energy = E0). In the QT model,
the transmission function is given as Ploss = P b

loss(E/Vb)3/2,
where Vb is the barrier height of the appropriate adiabatic
curve (for example, Vb reduces to E1 in the limit of vanishing
dipole moment). Based on this single fit parameter P b

loss, the
QT model is therefore a reasonable approximation to collisions
with unit absorption (or finite absorption, by multiplying by an
additional absorption probability). To a good approximation,
the factor P b

loss is only weakly dependent on the electric dipole
moment, as shown in the inset to Fig. 1.

This weak dependence can be seen, at least qualita-
tively, by replacing the actual barrier by an artificial in-
verse Morse potential, constructed so as to have the same
curvature at its barrier maximum as the actual potential
h̄2L(L + 1)/(2µR2) − Cn/R

n. The inverse Morse potential
model can then be solved analytically as a transmission

FIG. 2. (Color online) Dependence of chemical reaction rates K
qu
L

on dipole moment d for identical (a) fermionic (odd L) or (b) bosonic
(even L) KRb molecules. In the case of unit reaction probability, y =
1, this variation takes a universal form independent of details of the
short-range physics. For y < 1, nonuniversal resonances appear that
reveal more details of the short-range interaction. The data from [5]
(points) are well fit by near-universal scattering, y = 0.83.

problem [18], to yield P b
loss = (1 − e−4πf )/2, where f =√

L(L + 1) 2(n − 2)/n. This approximation correctly, albeit
qualitatively, shows that P b

loss is independent of the long-range
coefficient Cn, as well as the reduced mass, but that it does
depend on the partial wave L as well as the character n of
the long-range potential. It also shows that, coincidentally, the
transfer function at the barrier height should be similar for a
van der Waals potential n = 6 and for a dipole potential n = 3,
for p-wave collisions. Thus a weak dependence of P b

loss on
electric field is perhaps not unexpected. For s-wave collisions,
in which the long-range dipole potential scales as C4/R

4 [19],
we would expect a stronger variation of P b

loss with electric field.
Based on these remarks, we turn now to the electric-field

dependence of reactive collisions, making the assumption that
s and y are independent of field. Doing so, a numerical
calculation readily produces the reaction rate constant versus
the dipole moment of the colliding species. Examples are
shown in Fig. 2 for identical fermions [odd partial waves,
Fig. 2(a)] and identical bosons [even partial waves, Fig. 2(b)].
In both cases, the overall tendency is for the rates to rise as
the field is turned on. This rise is, however, more dramatic for
identical fermions, which are suppressed in zero field by the
van der Waals centrifugal barrier.

The most striking feature in these figures is the presence or
absence of resonancelike features as the dipole is increased.
For weak short-range absorption (e.g., y = 0.1), these features
are pronounced and fall into regular patterns according to the
angular momentum L, ML of the dominant partial wave. For
L > 0 these are shape resonances behind field-dependent cen-
trifugal barriers, while for L = 0 these resonances appear as
the effective long-range potential is systematically deepened to
include additional bound states [11,16]. Vice versa, in the limit
of strong short-range absorption (e.g., y = 1), these features
are completely washed out. This occurs because, at complete
unit absorption, the resonant state decays immediately; it does
not survive for even a single period of the resonance.

The presence or absence of these resonances thus contains
information on the scattering, and in particular on the value
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of y. Consider, for example, KRb molecules, which are
chemically reactive at zero temperature [20,21] and should
thus possess large absorption probabilities y. The points in
Fig. 2(a) show the data from the KRb experiment [5]. The best
fit value to these data yields y = 0.83, consistent with large,
if not perfect, absorption (red line). Interestingly, a fit to the
zero-field data alone instead yields a value y = 0.4 [8]. Thus
the electric-field dependence of reaction rates (“electric-field
spectroscopy,” [12]) is a valuable component in accurately
determining the parameters that govern scattering. On the
other hand, another class of molecules, typified by RbCs, are
not chemically reactive at low temperature [20] and will yield
y ≈ 0. Here the resonances should show up clearly in either
elastic scattering or hyperfine-changing collisions or perhaps
in three-body losses. Note that the resonances are likely to be
quite narrow in the nonreactive case [14].

When the resonances do appear, their positions result from
phase shifts at short range. We illustrate this in Fig. 2(b),
where resonances are shown for two alternative values of s.
In this figure, the same value of s is used for all angular

momentum channels (L,ML); but in fitting real-life data,
this is probably not the case, and each family of resonances
specified by (L,ML) will likely contribute its own complex
phase shift. Although the overall positions of the resonances
are not specified, nevertheless their relative spacings follow a
specific pattern [12,14].

In summary, the widely disparate energy scales found in
ultracold collisions can be treated theoretically by exploiting
their widely disparate length scales. By rooting the short-range
parameters s and y in the deep parts of the potential, they
become effectively energy- and electric-field independent. The
detailed energy and field dependence near threshold arises
instead from the long-range physics, which is much easier
to handle in its entirety. The result is a straightforward and
flexible tool with which to interpret ultracold collisions of
polar molecules.
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M. H. G. de Miranda, J. L. Bohn, J. Ye, and D. S. Jin, Nature
464, 1324 (2010).

[6] B. Gao, E. Tiesinga, C. J. Williams, and P. S. Julienne, Phys.
Rev. A 72, 042719 (2005).

[7] J. P. Burke, C. H. Greene, and J. L. Bohn, Phys. Rev. Lett. 81,
3355 (1998).

[8] Z. Idziaszek and P. S. Julienne, Phys. Rev. Lett. 104, 113202
(2010).
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