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We present a time-independent quantum formalism to describe the dynamics of molecules with permanent
electric dipole moments in a two-dimensional confined geometry such as a one-dimensional optical lattice, in the
presence of an electric field. Bose versus Fermi statistics and selection rules play a crucial role in the dynamics.
As examples, we compare the dynamics of confined fermionic and bosonic polar KRb molecules under different
confinements and electric fields. We show how chemical reactions can be suppressed, either by a “statistical
suppression” which applies for fermions at small electric fields and confinements, or by a “potential energy
suppression,” which applies for both fermions and bosons at high electric fields and confinements. We also
explore collisions that transfer molecules from one state of the confining potential to another. Although these
collisions can be significant, we show that they do not play a role in the loss of the total number of molecules in

the gas.

DOLI: 10.1103/PhysRevA.83.012705

I. INTRODUCTION

Experimental evidence for ultracold chemistry of quantum-
state controlled molecules [1] and dipolar collisions in the
quantum regime [2] has been obtained recently for fermionic
KRb molecules in the lowest electronic, vibrational, rotational
quantum state [3], and well-defined hyperfine states [4].
Bosonic species of KRb have also been formed recently [5] as
well as other alkali-metal polar molecules such as RbCs [6]
and LiCs [7]. The exoergic reaction KRb + KRb — K, +
Rb, [8-10] prevents long trap lifetimes of these molecules,
especially in electric fields, where the chemical reactivity
increases as the sixth power of the dipole moment induced
by the electric field [2,11]. Lifetimes are then typically of the
order of 10 ms for experimental electric fields. However, polar
molecules offer long-range and anisotropic dipolar interactions
in electric fields. If the molecules are confined in optical
lattices, they can stabilize against collisions and chemical
reactions [12—17], if the dipoles are polarized in the direction
of a tight confinement. If these molecules are confined into
the ground state of a realistic one-dimensional optical lattice,
electric field suppression of chemical reactions is expected to
occur, yielding lifetimes of KRb molecules of ~~ 1 s and elastic
scattering rates 100 times more efficient than chemical reaction
rates [15,16]. Both of these are needed to achieve molecular
evaporative cooling and to reach the quantum regime where the
phase-space density is high. For fermionic molecules, creation
of degenerate Fermi gases of dipoles will likely be possible.
In case of bosonic molecules, Bose-Einstein condensates can
instead be formed. This will reveal exciting physics with
ultracold controlled molecules in the quantum regime [18-21].

We address in this paper two important points regarding
collisions in a lattice. First, suppression of confined chemical
reactions in electric fields can be obtained by using the
centrifugal repulsion of fermionic molecules in the same
internal state (electronic, vibrational, rotational, and spin) and
in the same confining state of the one-dimensional optical
lattice. The centrifugal repulsion comes from the statistics of
identical fermions in indistinguishable states. This requires
only comparatively small dipoles and weak confinements.
Suppression that relies directly on the confining potential and
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the repulsion due to electric dipoles can also be obtained,
but requires larger dipoles and stronger confinements. It does,
however, suppress both bosons and fermions, in indistinguish-
able states or not, or even different polar molecules.

Secondly, realistic experimental dynamics of polar
molecules in confined geometry is more complicated than the
ideal case used in the recent theoretical works [15,16], where
only molecules in the ground state of the lattice were consid-
ered. Realistically, molecules can also be formed in excited
states of the optical lattice, depending, for example, on the
temperature, the strength of the confinement, and the way the
optical lattice is turned on [22]. It is therefore important to
know (i) how rapidly collisions can populate higher confining
states, which could after all, contribute to re-thermalization;
and (ii) how the molecules in these excited states affect the
loss rate of the total molecules. These questions are important
for ongoing experiments of KRb molecules in an optial
lattice [22].

In this article, we extend the formalism developed in our
former work [15]. We describe in Sec. II the dynamics of
molecules in an arbitrary initial confining state of the lattice,
and consider the possibility for the molecules to leave such
a state for another after a collision. In Sec. III, we show how
chemical reaction can be suppressed for fermionic and bosonic
KRb molecules under different confinements and electric
fields. In Sec. IV, we discuss the importance of inelastic
collisions of molecules in different confining states. Finally,
we conclude in Sec. V.

In the following, quantities are expressed in SI units, unless
explicitly stated otherwise. Atomic units (a.u.) are obtained by
settingh = 4mweg = 1.

II. THEORETICAL FORMALISM

In this section, we explain the theoretical formalism we use.
Former studies have dealt with collisions in two dimensions
[14-17,23,24] but were restricted to small confinements or
assumed no transitions between confining states. In the present
formalism, we have no such restrictions. Our method is based
on a frame transformation between spherical to cylindrical
coordinates, similar to that employed in Refs. [25,26], for
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FIG. 1. (Color online) (a) Position vectors of the molecules.
The electric field is along the z direction. (b) Spherical coordinates
(r,0) and cylindrical coordinates (p,z) of the relative coordinate. We
suppose ¢ = 0 in the picture.

example. The frame transformation has the advantage of
treating in full detail the microscopic physics of the molecule-
molecule interaction, while projecting onto appropriate two-
dimensional scattering states. We consider two ultracold
polar molecules of masses m;,m, and positions 71,7, from
a fixed arbitrary origin O [see Fig. 1(a)]. The molecules are
confined in a harmonic oscillator trap V;i = m, w*z2/2 for
molecule T = 1,2, of angular frequency w = 2w v. An electric
field applied along the confinement direction Z polarizes the
molecules, giving them dipole moments d; = d, 3. We use
Cartesian coordinates (x;,y:,z;) to describe the vector 7r. We
also use the center-of-mass (c.m.) coordinate R = (mr; +
maF)/(my + ms) and the relative coordinate ¥ = r, — | [see
Fig. 1(a)]. We use the Cartesian coordinate (X, Y, Z) to describe
the vector ﬁ, and either cylindrical coordinates (p,z,¢) or
spherical coordinates (r,0,¢) to describe the vector 7 [see
Fig. 1(b)], with p = r sin6 and z = r cos 6. Both the electric
field and the harmonic oscillator potential are applied along
the z axis, which we take as the quantization axis.

A. Hamiltonian

The total Hamiltonian of the system is

Ho=T1+T.+V, (D
with T; = —hZV;Qr /(2m;) representing the kinetic energy
operator of the molecule t. V, the potential energy, is given by

V = Vabs + Vyaw + Vaa + VhIo:1 + Vhroz2
C6 i d] d2 (1 — 30082 9)

— l'Ae_(r_rmin)/rc _
ré ey r3

1
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The first term on the right-hand side represents an appropriate
imaginary potential capturing the overall chemical couplings
at short range. It replaces ab initio calculations of the electronic
structure of trimer and tetramer alkali-metal complexes, which
remain incomplete for KRb [8-10,27]. For the time being,
an absorbing potential has shown very good agreement with
experimental results [1,2,28,29] for KRb molecules. We
use the same absorbing potential here. The second term
represents the van der Waals interaction, here assumed to
be isotropic. The third term represents the dipole-dipole
interaction for two molecules in their lowest electric field
dressed state, where d; represents an electric field induced
dipole moment in the z direction (see Appendix A). This
is restricted to My, = 0 molecules, where My, represents
the quantum number associated with the projection of the
rotational angular momentum onto the quantization axis Z. For
other values of My, one has to use the general form (A2) of
Appendix A. The last two terms represent the one-dimensional
harmonic oscillator trap that confines the molecules in a
plane perpendicular to the z direction. The initial energy of
the molecule 7 in the trap is given by ¢, =hw(n, + 1/2),
where n, represents the associated quantum number of the
harmonic oscillator state into which they are loaded. The
associated function is the usual normalized eigenfunction of
the harmonic oscillator g,, (z¢).

B. Symmetrized internal and external states

We consider here identical molecules with same masses
(my = my) and same dipoles (d; = d, = d). As the molecules
are identical, we have to construct an overall wave function W
of the system for which the molecular permutation operator P
gives

PV =ep, 3)

with €p = +1 for bosonic molecules and €¢p = —1 for
fermionic molecules. This overall wave function W is con-
structed from an internal wave function |« op) representing
the electronic, vibrational, rotational, and spin degrees of
freedom of molecule 1 and 2, respectively; from an exter-
nal wave function |nj n,) representing the one-dimensional
individual confining wave function g,,(z1) g,(z2); and finally
from a two-dimensional collision wave function in the plane
perpendicular to the confinement.

We first build symmetrized states of the internal wave
function,

1

o 0, N) = ———
loey ctz,m) /72(1+5a1,a2)

for which P |oj az,n) = 1oy az,n). 1 is a good quantum
number and is conserved during the collision. If the molecules
are in the same molecular internal state, only the symmetry
n = +1 has to be considered. If they are in a different internal
state, both symmetries n = %1 have to be considered. We omit
explicit reference to the internal wave functions |« o, n) in
the following, but the quantum number 7 still plays a role in
the selection rules, as discussed in Appendix D.

oy o) +nlazar)], (@)

012705-2



DYNAMICS OF ULTRACOLD MOLECULES IN CONFINED ...

We next build symmetrized states of the external confining
wave function,

1
n1ny,y) = ———=[In1 n2) + ylnan1)l,
V2 + 8, 0,)

with P |nyny,y) = y |npna,y). y is a good quantum number
and is conserved during the collision. If the molecules are in
the same external confining state, only the symmetry y = +1
has to be considered. If they are in different external state,
both symmetries y = =1 have to be considered. It is useful at
this point to turn into a relative 4+ c.m. representation of the
confining states. It is easy to show that the Hamiltonian (1)
can also be written in the relative + c.m. representation as

®)

Hiot = Tret + Tean. + Vabs + Vaaw + Vaa + Vi + VE™, (6)

with T = —1*VZ/Q2u) and Tem = —°V3/Qmio), 1=
mymy/(my 4+ my) and my, = my +ma, Vi = p w? z2/2 and
VEM = myo w? Z%/2. The associated energies and functions
will be denoted ¢,,ey and g,(z),gn(Z). These harmonic
oscillator states in the relative and c.m. coordinates are related
to those in independent particle coordinates g,,(z1),8x,(z2) by
(see Appendix B)

& (21) &n,(22)

ny  no min(k,k’") min(n; —k,np—k")

R

% I’ll!l’lz!
k=K —g)q!(ny —k—qg")q'(ny—k' —q’)!
x (=117 29 27 V2 V2N N g, (2) gn(2), (7)

with
n=-2qg'"4+n +n,—k—~k,

(®)
N=-2q+k+k.

We give in Appendix B explicit relations between |n; ny) and
|n, N) states for low values of quantum numbers, 0 < 7,1y <
2, and in Appendix C the relations between the symmetrized
individual representation |n; n,,)y) and the relative and c.m.
representation |n, N) states, using Egs. (7) and (5).

C. Diabatic-by-sector method

To solve the Schrodinger equation for W, we work in the
relative + c.m. representation |n,N) since we know how to
come back to the physical |n;ny,y) representation. In the
relative + c.m. representation, the collisional problem depends
only on the coordinate Z and the relative vector 7, and not
on the coordinates X and Y. In the following, we explicitly
remove these two coordinates from the problem. If we use
the coordinate Z and spherical coordinates to represent 7, the
Hamiltonian is given by

1a[,0 L?
H=———=—\r"— |+ 55+ Vas + Voaw + Vua
2ur

2ur? or or
n* 92
Vrel _ yem. 9
+ ho zmlot 972 + ho ( )
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If we use the coordinate Z and cylindrical coordinates to
represent 7, the Hamiltonian is given by

H— n? 92 N 1 9 1 82 vy v
B 2p | 9p? p ap 2 o 902 abs vdW dd
A v hz ” + Vem (10)

2w 9 T dmyg 9z T

In a diabatic-by-sector method [30-32], using a spherical
coordinate representation of the wave function, the range
over the Schrodinger equation to be solved, ryin < 7 < Faxs
is divided into N, sectors of width Ar = (max — #min)/Ns-
The middle of each sector corresponds to a grid point r),
with p=1,...,N,. At each grid point r =7r,, we use N,
normalized Legendre polynomials PLML(cos 0) for a given
value of M, the quantum number associated with the
azimuthal projection of the orbital angular momentum L
on the z direction, to diagonalize the angular Hamiltonian
HMEN(r,0) = L2 /(2ur?) + Vaps + Vaaw + Vaa + Vie! of the
Hamiltonian in Eq. (9). The resulting eigenfunctions are the
adiabatic functions X]ML‘"(rp;G) with j =1,...,N;. They
are used as a basis set for the representation of the total wave
function,

M N
=N (r0,0,7Z)
Nagiab iMpg

My.n Mp.n,N €
= X"y 0) gn(Z) Fit " (rpir) ——,  (11)

for a given adiabatic state j. The associated eigenenergies of
the angular Hamiltonian are the adiabatic energies € (r,). They
converge to the relative harmonic oscillator energies &, with
n=0,...,N;— 1atlarge r,, so that a one-to-one correspon-
dence can be identified between the adiabatic quantum states
j=1,...,N; and the relative harmonic oscillator quantum
states n =0,...,N; — 1. In practice, we use a truncated
number of adiabatic functions N << N;. If we restrict the
independent oscillator quantum numbers 0 < nj,n; < nJ2,
then the maximum value that the relative quantum number n
can take is 2 n 2" and we choose Nygiab = 2153, In Eq. (11),
we use the fact that there are no terms in (9) that create mixings
between different values of N. Moreover, the potential V does
not depend on the azimuthal angle ¢. As a consequence,
the quantum numbers N and M, are conserved during the
collision.

The total energy E is equal to g, + &,, + E., where &,,,&,
are the energies of the molecules 1,2 in the confining potential,
when they start initially in n,n,, and E. is the initial collision
energy between the two molecules in the two-dimensional
plane. E is conserved during the collision. Solving the
time-independent Schrodinger equation HW = EW provides
the following set of close-coupling differential equations in
spherical coordinates for each of the values of M, n, and N,
from a state j to a state j’,

n? d My N
{_ﬂm_i_gN_E} Fj,jL‘n’ (rp;r)
N\dmb

Y U i) Fit ™ i =0, (12)

j"=1
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where
Mp.n .
Ujj/, (rp;r)

=f XyL’n(rp;Q)HM’“”(r,@)X%L’"(rp;é) sinfdf. (13)
0

The goal is to find all the elements F %L""N. We employ

the standard method of the propagation of the log-derivative
matrix [33],

ZMEN i) = @) FMEN (s ) FME Y )
(14)

with matrix elements Z ?,4;’”’1\/ (rp; 1), and obtain these elements
for all possible states j to all possible states j’. In the
diabatic-by-sector method, one has to perform a transfor-
mation operation from sectors to sectors, since the adiabatic
functions x™-"(r,;6) change from r, to r,4;. Then the log
derivative expressed in the basis of the sector p + 1 at the
distance r = r, + Ar/2 separating the sector p and p + 1 is
given by

ZML"”N(rpH;r =rp,+ Ar/2)
=P Z" " Nryir=r,+ Ar/2) P7, (15)

with the passage matrix,

Pih/=/0 Xy”"(rpﬂ;é’)xf“‘”(rp;@)sinede. (16)

D. Asymptotic matching

Compared to free molecules in three dimensions (3D),
the external confinement Vhrgl in Eq. (9) persists at large
intermolecular separation r, and the spherical representation of
7 is not appropriate anymore. Instead, we use in the asymptotic
region cylindrical coordinates appropriate to the potential Vhrfjl.
For a given state of relative quantum number n, we now expand

the total wave function as follows:

YNy Np 72.0,7)

eiMLy

Var

In the following, we will use the short-hand notation & =
My ,n,y,N. Note that because we use the coordinate Z and
the wave function gy(Z) in both spherical and cylindrical
representation, the external confinement V,>™ is always well
described. When p — o0, Vups + Vigw + Vaa — 0, and the
close-coupling asymptotic Schrodinger equations become

1
= i e @anD G () a7)

K2 d?

(M7 —1/4)
2udp? 2up

e ten — E} G:, () =0.

(18)
§

At large p, the radial function G,,,(p) in Eq. (17) is a linear
combination of two possible solutions Gi,(l’z) (p) of Eq. (18),
and takes the form,

G'0(0) 1= G (0) 80 + G5 (D) K (19)

n'n*
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Kj” represents an element of the reactance matrix. The
functions Gi;(] 2) represent the regular and irregular asympotic

solutions of the radial Schrodinger equation (18),

G"'(0) = p'* i, (ko v p).
G, (p) = p'"* Nuw, (kv ),

where Jy,,Ny, are Bessel functions [34] and &k, y =
V2 u(E — g,y —eyn)/h is the wave number in the channel
n’ of the relative harmonic oscillator. If E — ¢,, — gy < 0, the
modified Bessel functions have to be used instead.

To determine K, we must transform between the spherical
wave function that captures the short-range physics and
the cylindrical wave function that captures the asymptotic
boundary conditions. The regular and irregular spherical radial
functions 2 (r,; r) and their derivatives can be connected
to their cylindrical asymptotic counterpart G*U-2(p) by
equating the wave functions Egs. (11) and (17) and their
derivatives at a constant sphere of radius r = rp,yx,

(20)

(1,2 .
Ff,( (rpen,31)

L ’
= /0 Xj'L’r/(rp=Nx;9)mgn(Z)

T'=Tmax

x G51D(p) sin@ db

’

(21)
D (FEOD0, i) I L P
a7 J'j p=N;> B - 0 XJ/ p=N;>
a ¥ =TFmax (22)
i £.(12) :
X 8r{p1/2 8n(2) G, (p) 1 sin6 do o
with the one-to-one correspondence {n = 0, ..., Nygisp — 1} =
{j=1,...,Nuia} between the quantum numbers n and ;.

rp=n, is the middle of the last sector N,. This is a similar
matching procedure that connects short-range democratic
hyperspherical coordinates to asymptotic Jacobi coordinates
employed in atom-molecule chemical reactive scattering stud-
ies [30-32]. Convergence with respect to Nagisp and rmyax 1S
found when the Wronskian matrix,

d d
FE,(l)a_r(FE,(Z)) _ a_r(FE,(l))Fé-(z)’ (23)

converges to the unit matrix.
The K matrix is determined at r = ry,x by the matrix
operation,

ZEFEM) _ (3/dr) (F&M)

Kf=— )
ZEFEQ — (3/9r) (FEO)

(24)

The scattering matrix S in the relative 4+ c.m. representation
is determined by

_I—in

SE=__""
I +iK§’

(25)
where in this equation, I represents the unit matrix. The
scattering matrix in the symmetrized individual representation
|ny ny,y) is found by gathering all individual scattering matri-
ces S corresponding to different values of N and by applying
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a transformation from the relative 4+ c.m. representation to the
symmetrized individual representation,

&)
> oMy N Lyt (26)

SMLWJ’ =U

The transformation matrix U, with elements Uy, 5,08 =
(nyny,y|n,N),canbe found using the relations in Appendix C.
We use the transpose U7 of the matrix U instead of its inverse
because U is not generally a square matrix.

E. Observables

After a collision, the quantum probability from an initial
state ny n, to a final state n n, for defined numbers M, ,n,y
is given by PHMZ "n)l/nz |S,:WﬁZ "nﬁ »,)> The elastic, inelastic
(confining state changmg) and reactive probabilities are given

by

el, Mp,n,y — pML.ny
P Ly _P}’lll’lznll’lgv
in, Mp,n,y _ Mp.n.y
P - Pn]n2 nyny’ (27)
n'y nh#ny ny
Pre Mpny — 1— Pel, Mp.ny _ Pin. ML,n,y'

We mean by “inelastic” processes that change the external
confining states of the molecules. Finally, for an initial state
ny ny, the elastic, inelastic, and reactive cross sections are given
by [35-37]

h 2
L M
)fl na «/ﬁ M;y | SnlLl’l,,nn]: ny Av
ol = > pmMenY A, (28)
o 2M ¢ Mpny
h
o — pre- M. YA
" V2uE. ng

The inelastic state-to-state cross section is given by

P AL (29)

ny nb.nyny

; h

arlzrllnzton’I n = m Z
Mp.n.y

The factor A represents symmetrization requirements for
indistinguishable particles in a same internal and confining
state [11,38]. The cross sections are found by summing
over all the contributions of different values of M;,n,y. For
the ultralow energies involved in this study, only the first
partial wave will be required for indistinguishable molecules
(same internal states n = 41 and same confining state y =
+1): the M, = 0 partial wave for indistinguishable bosons
and the M; = =+1 partial wave for indistinguishable fermions.
The temperature dependence of the loss rates in the two-
dimensional plane is found by averaging the cross sections
over a two-dimensional Maxwell-Boltzmann distribution of
the relative velocity v = \/2E./u in the two-dimensional

plane. This gives a two-dimensional thermalized rate,

oo
prame = [Cotnmufedv, G0
0
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with

f) = v e fir, (31)
kB
where kp is the Boltzmann constant. The rate in Eq. (30)
corresponds to the rate per molecule, not the event or collision
rate [11,38].
Selection rules apply due to symmetrization of the wave
function under permutation of identical molecules (Ap-
pendix D). The rules are

ny (D" =n(=Df = (D" =ep. (32)

This limits the summation over My,,n,y in Egs. (28) and (30)
and the values of the quantum numbers j” and n” used in
Egs. (11) and (17).

In the following, we will consider molecules of KRb as
an illustrative example of experimental interest [1,2,5,22].
For concreteness, we will take the isotope **K®’Rb for the
bosonic molecules; the results for the bosonic isotope 41K37Rp
[5] are nearly identical. We take the isotope “°K®’Rb for
the fermionic molecules [1,2,22]. Convergence of the results
have been checked with the matching distance ry.x and the
number of adiabatic functions N,gi,, included in the expansion
of the wave function. Unless stated otherwise, we choose
Fmin = 10 ap and rpx = 10000 ag (ag = 0.529 Angstroms is
the Bohr radius), Ny = 10000 sectors, 0 < n,ny < npear =

Nygiab = 203" = 6, and only the first partial waves M; = 0,1
depending on the species and the selection rules involved.
We used N; = 80 Legendre polynomials for v < 100 kHz
and N; = 120 for v > 100 kHz, to construct the adiabatic
functions. This yields converged results of 10% at most for the
elastic rates (more especially at high confinement) and 1% for
the reactive and inelastic rates. For Vs, we use A = —10 K
and r, = 10 ag, which adequately reproduces experimental

loss rates in three-dimensional collisions [2].

III. SUPPRESSION OF CHEMICAL REACTIONS

We discuss in this section how chemical reactions proceed
when the reactants are subject to different confinements and
electric fields. We present in Fig. 2 the adiabatic energies
g€j(rp) for the symmetry y (=DMt = —1 (top panel) and the
symmetry y (—1)"t = +1 (bottom panel), for a trap with v =
20 kHz and induced dipole moment d = 0.1 D. These energies
converge at large r to the energies of the relative harmonic
oscillator ¢,. To associate a specific confined collision with a
symmetry y (—1)"%, one has to use Eq. (32). If the molecules
are identical fermions in the same internal state, n = +1 and
ep = —1,and then y (—1)Mt = —1, so the scattering problem
only employs the black and red dashed curves of the top panel
in Fig. 2. In addition, if the identical fermionic molecules are
in the same external state, then y = +1, and the scattering
problem only uses the black curves. If, however, the identical
fermionic molecules are in different internal states, both values
of n are relevant. Then, inthe case of = —1,now y (=1)"t =
+1, and the black and red dashed curves of the bottom panel
have to be employed as well. If the fermionic molecules are
in different internal states, but in the same external state, then
y = +1, and one has to use only the black curves of both
panels.
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v (1) =
35 ———— ——
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2
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ﬁ
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FIG. 2. (Color online) Adiabatic energies versus r for the
y (=)™t = —1 symmetry (top panel) and for the y (—1)Mt = +1
symmetry (bottom panel), for v = 20 kHz and d = 0.1 D. The black
(red dashed) curves correspond to y = +1 (y = —1) manifolds. We
also show how values of L and n adiabatically connect. V;, is the height
of the barrier for molecules in the lowest confining state (n = 0). ag
is the Bohr radius.

Using similar arguments, if molecules are identical bosons
in the same internal state, one has to use the black and red
dashed curves of the bottom panel. If besides they are in
the same external state, only the black curves have to be
used. If they are in different internal states, all black and red
dashed curves of both panels have to be used, while only the
black curves of both panels are used if the identical bosons
are in different internal states but in the same external state.
The case of two different polar molecules corresponds to all
curves of all symmetries employed. Also, note that because
y (=DM = (=DE = (=DMt in Eq. (32), the values of
L and M; + n are odd for the top panel and even for the
bottom panel, and the y = +1 (y = —1) curves corresponds
to even (odd) relative quantum numbers n (y = (—1)"). There-
fore, symmetry consideration is essential for the dynamics
of ultracold molecules in confined geometry and electric
field.

We now discuss the differences between the symmetries
rather than a specific confined collisional case. We focus on
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the symmetry y (—1)Mt = —1 with y = +1 (black curves of
the top panel in Fig. 2) and on the symmetry y (— )"t = +1
with y = +1 (black curves of the bottom panel in Fig. 2).
The former case corresponds to the dynamics of identical
indistinguishable fermions and the latter to the dynamics of
identical indistinguishable bosons. By indistinguishable, we
mean identical molecules in the same internal and external
states. For the discussion, we focus only on the lowest black
curve if we assume molecules in the ground state of the
trapping potential. Two striking differences can be seen due to
the statistics of the systems. First, the lowest curve connects
at short distance to an adiabatic curve with a L = 1 adiabatic
barrier V,, (depicted with a green arrow) for the y (—1)Mt =
—1 symmetry (top panel), while no barrier is present (L = 0)
for the y (—1)M: = 41 symmetry (bottom panel). This makes
indistinguishable bosonic molecules likely to chemically react
in confined geometry compared to fermionic molecules.
Second, the lowest curve (y = +1) corresponds to M; = +1
for the first symmetry while it corresponds to My = O for the
second one. Under an electric field, the M; = 0 component
always corresponds to an attractive dipole-dipole interaction
whereas the M; = 1 component corresponds to a repulsive
dipole-dipole interaction (which can eventually turn into an
attractive one at higher dipoles [2,11]). For this rather small
confinement, it means that we can still, up to a certain dipole,
use an electric field to increase the barrier V,, for indis-
tinguishable fermions. This is not true for indistinguishable
bosons. We will refer to this kind of suppression as “statistical
suppression,” as it depends on the fermionic and bosonic
character. To get suppression for indistinguishable bosons, we
will have to increase the confinement and the electric field,
which will be referred to in the following as “potential energy
suppression.”

To understand these two types of suppression, it is useful
to plot the height of the barrier V;, which the molecules
at ultralow temperature must tunnel through. We plot this
barrier in Fig. 3 for the symmetry y (—1)Yt = —1 with
y = +1 (top panel) and for the symmetry y (—1)Mt = +1
with y = +1 (bottom panel), as a function of the confinement
v and the dipole moment d induced by the electric field,
for the lowest confining state. For the first symmetry (top
panel), there are two ways to get a high barrier. One way is
for small confinements and small d. The barrier increases to
reach a maximum at d =~ 0.15 D. The fact that the barrier
decreases for higher dipoles comes from contributions of
higher values of L =3,5,... [2,11]. For d = 0.15 D, if
we follow this maximum of the three-dimensional plot for
increasing confinements, we see that Vj, decreases again. When
v increases, the zero-point energies (the ones at large » in
Fig. 2) increase while the barrier is not affected at short
distance because the confinement is small. Then, the effective
height of the barrier is decreased [15] as v increases. The
second way to achieve high barriers V}, is for high dipoles
and high confinements. The barrier increases monotically,
emphasizing the electric field suppression of confined chem-
ical rates. When the molecules are highly confined in a two-
dimensional plane perpendicular to an applied electric field,
they collide side by side. This repulsive electric interaction
enhances the barrier and makes the molecules stable against
collisions [12—17].
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FIG. 3. (Color online) Height of the adiabatic barrier V, versus
d and v for indistinguishable fermions (top panel) and for indistin-
guishable bosons (bottom panel) in the lowest confining state.

For the second symmetry (bottom panel), there is only one
way to increase the barrier. The striking difference is that for
small confinement and/or small dipoles, there is no barrier at
short range as already seen in Fig. 2. The only way to raise the
barrier is for high confinements and high dipoles as for the first
symmetry, where the electric dipole repulsion come into play.
The rise of the barrier at high confinements and high dipoles
is independent of the symmetrization of the molecules, as V,
converges to similar values for both cases.

The behavior of V, has crucial consequences on the
dynamics of the molecules. To get the rate coefficients of a
specific confined collision, one has to add the rates obtained
from a scattering calculation using the adiabatic curves of
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FIG. 4. (Color online) Elastic and reactive rate coefficient versus
d and v for indistinguishable fermions (top panel) and for indistin-
guishable bosons (bottom panel) at E. = 500 nK. The elastic curve
is plotted in red.

the individual symmetries ¥ (—1)M* involved in the specific
problem. The rates for the symmetry y (—1): = —1 with
y = +1 is presented in the top panel and for the symmetry
y (=DMt = 41 with y = +1 in the bottom panel of Fig. 4,
as a function of v and d for a collision energy E. = 500 nK.
Qualitatively, the behavior of the reactive rates is opposite
to the height of the corresponding barriers, while the elastic
rates increase only in a monotonic way with d and v. For
small confinements and dipoles (say v = 20kHz,d = 0.15D),
the reactive rates are suppressed for the first symmetry (top
panel) representing approximately 1072 of the elastic rates.
No such suppression is seen for the second symmetry (bottom
panel). This shows that this statistical suppression is only due
to symmetrization requirements, but has the advantage to work
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at rather realistic experimental confinements and dipoles. For
high confinements and dipoles, the reactive rates of fermions
and bosons can be suppressed by three to four orders of
magnitude compared to the ones at small confinements. This
is made possible by the anisotropy of the dipolar interaction
of polar molecules in confined geometries as explained in
Refs. [12-17].

The elastic rates increase as d* or d, depending on the
collision energy and magnitude of the dipole [39], and increase
with v [15,16]. Therefore, this potential energy suppression of
the reactive rates and enhancement of the elastic processes will
help evaporative cooling of fermionic and bosonic molecules,
and will make amenable the creation of degenerate Fermi
gases or Bose-Einstein condensates of polar molecules. This
suppression is not due to symmetrization requirements but to
the fact that the molecules possess a permanent electric dipole
moment. Therefore, this suppression will also be effective for
molecules in distinguishable states or even for nonidentical
polar molecules.

It is worth noting that the fermionic statistical suppression
is still effective if the fermions are in different external states
(y = %1), since both black and red dashed curves of the top
panel in Fig. 2 have to be used. The red curves corresponds to
a M; = 0 component, whose barrier height V,, decreases for
increasing electric field. There is no statistical suppression at
all if the molecules are in different internal states (n = £1),
because the curves from the bottom panel in Fig. 2 have to
be used including the barrierless curve L = 0. This has been
confirmed experimentally [22].

Finally, no statistical suppression can occur in the case
of different polar molecules, for which all curves of all
symmetries in Fig. 2 should be employed. Only the potential
energy suppression can apply in that case.

IV. INELASTIC COLLISIONS BETWEEN
CONFINING STATES

We saw that chemical suppression of indistinguishable
fermions and bosons can always be obtained if sufficiently
high confinements and electric fields are applied. However,
the magnitude of these high confinements is still beyond
of those that can be currently achieved experimentally. For
a realistic experimental frequency of v ~ 20 kHz, loss of
indistinguishable fermions can be suppressed by taking ad-
vantage of the alternative statistical suppression whereas loss
of indistinguishable bosons cannot realistically be suppressed.
Moreover, for small confinements, it is possible that higher
trap confining states can be populated. The reason is that
the energy spacing between two allowed confining states
Ae =0.96 uK for v >~ 20 kHz can be of the order of the
temperature 7 =~ 500 nK of the gas. Then, the changing-state
dynamics of molecules in small confining optical lattices must
be understood as well. We consider in the following fermions
and bosons in same internal states but not necessarily in the
same external confining states, for a realistic confinement of
v = 20 kHz.

~ We present in Fig. 5 the nonthermalized rate coefficients
0 = 0g, v as a function of the collision energy for
the inelastic and reactive processes, for indistinguishable
fermionic molecules (top panel) and indistinguishable bosonic
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FIG. 5. (Color online) Rate coefficient ﬂ(";(')'m versus collision
energy E. for d =0.1 D and v =20 kHz, for indistinguishable
fermions (top panel) and indistinguishable bosons (bottom panel),
initially in the ground state of the confining trap n, =n, = 0.
The thick solid (dashed) curve corresponds to reactive (inelastic)
scattering. The thin solid black lines represent the confining state-to-
state rate coefficients.

molecules (bottom panel) in the same internal and external
states. The molecules start in n; =0 and n, =0 and v =
20 kHz, d = 0.1 D. States between 0 < ny,ny < ngy =7
have been used for collision energy E. > 1 uK to converge
these results. At ultralow energy, the fermionic reactive rate
scales as E,, and as In"2(y/2 it E,) for the bosons, in agreement
with the threshold laws [40,41]. When the collision energy is
sufficiently high, excited confining states become energetically
open. Overall, bosons react at higher rate than fermions, as
expected, since there is no barrier for bosons, whereas there
is a barrier for fermions. Moreover, molecules that start in
the ground confining state are much more likely to react
chemically than to go to a higher confining state. The inelastic
rate for the fermionic molecules is an order of magnitude
smaller than its reactive rate. It is a factor of 3-8 smaller than
the reactive rate for the bosonic molecules.

A. Gas in thermal equilibrium

We now consider a thermal equilibrium at a temperature of
T = 500 nK. The population p of the molecules in 7, is given
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by a Maxwell-Boltzmann distribution,

pny) = ——=—- (33)

At T =500 nK in a trap with v =20 kHz, p(n, = 0) >~ 0.852,
pn, =1) = 0.126, and p(n, = 2) =~ 0.019. In the following
we will neglect contribution of molecules in n, = 2, and
consider only molecules in n, = 0,1 for simplification. The
coefficients p(n.) will play a role in the rate equations below.
We present in Fig. 6 the thermalized rates Bg;* d
T " (top panel), B Tre and Bii Lin (middle panel),

T ® (bottom panel), as a function of d for v = 20 kHz at

= 500 nK. The reactive and inelastic rates are plotted as a
thick and dashed solid line. The fermionic and bosonic case
are plotted in red and blue, respectively.

We discuss first the case of molecules in the ground states
ny = 0,n, =0 (top panel). For bosons, the reactive rate is
high and the inelastic collision is insignificant. For fermions,
however, the inelastic rate can reach 20% of the amount
of the reactive rate at d = 0.23 D. The magnitude of the
thermalized inelastic rates is proportional to the amount of
molecules allowed by the Maxwell-Boltzmann distribution
at T = 500 nK to have kinetic energy greater than the first
excited inelastic thresholds ny = 1,n, = landn; = 0,n, =2
at 1.92 uK. We also plot in circles (fermions) and triangles
(bosons) the nonthermalized reactive rate By, = o, v. We see

that ,BT " = By is a reasonable approximation at small dipole

moments. A% differs by 35% from B;" at the highest dipole,
however. ThlS comes from the fact that at these dipoles, the
molecules do not collide in the Wigner regime anymore and
the height of the barrier for fermions (or characteristic energy
for bosons) is comparable to the temperature. Note that if
the confinement is increased to v = 30 kHz, the inelastic rate
(represented as thin dashed black lines) decreases by about
an order of magnitude, because for the same temperature, it
is harder to excite molecules in higher confining states as the
energy thresholds increase with the confinement. Then the
inelastic collisions for ground-state molecules become less
important as the confinement increases.

If the molecules are now in the first excited states
ny = l,n, =1 (middle panel), reactive collisions, for both
bosons and fermions, are about 30% smaller than the ones
for molecules in n; = 0,n, = 0. A qualitative explanation is
that n; = 1,n, = 1 (which has a y = +1 symmetry) projects
onto an n = 0,N = 2 state and an n = 2, N = 0 state (see
Appendix C). When we look at the corresponding adiabatic
energies in Fig. 2 for the fermions, the n = 2 curve connects
to the L = 3 adiabatic barrier which is much higher than the
L =1 barrier, suppressing more strongly the reactive
collisions and increasing inelastic collisions. For bosons, the
reactive rates are still high compared to fermions, because
the n =0 curve connects to an L =0 curve. However,
the reactive rates are smaller than for the ny =0,n, =0
case, because there is now the n = 2 curve that connects
to an L =2 curve, suppressing chemical reactivity. The
inelastic processes are much more important in the present
case because the Maxwell-Boltzmann distribution allows all
molecules to have sufficient kinetic energy to contribute to
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FIG. 6. (Color online) Thermalized rate coefficient versus d for
T =500 nK and v = 20 kHz. The solid (dashed) curves correspond
to reactive (inelastic) processes. The red and blue curves correspond
respectively to fermions (indicated by F) and bosons (indicated by
B) in same internal states, but not necessarily in the same external
states. The molecules are considered initially in n; =0,n, =0
(top panel), in n; = 1,n, = 1 (middle panel), and in n; = 0,n, =1
(bottom panel).

the inelastic process, while in the precedent case, only a part
of the molecules were allowed to contribute to the inelastic
process. For bosons, the inelastic magnitude is about half the
reactive rate (at most, at d = 0.3 D), but for fermions, it can
even exceed the reactive rate for d > 0.1 D.

Finally, we discuss the case of molecules in different states
ny = 0,n, = 1 (bottom panel). This channel cannot decay to
the energetically allowed n; = 0,n, = 0 channel, because the
two channels correspond to different values of N. However,
the molecules are in different confining states now so that
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two contributions y = %1 are involved in the calculation,
and both black and red dashed curves of Fig. 2 have to be
used. This is shown in the bottom panel of Fig. 6 as the
thin solid line for y = +1 and thin dashed line for y = —1.
Compared to fermionic molecules in the same confining states,
the reactive rates are bigger. This comes mainly from the
y = —1 contribution, which corresponds to M; = 0 head-
to-tail attractive dipolar interactions (see Table I). For bosonic
molecules in different confining states, the reactive rates are
similar to those for molecules in the same confining states,
except that the y = —1 contribution gives an enhancement
at high dipoles due to the M; = 1 component of the L = 2
adiabatic curve (see Table I). This component corresponds
to an attractive dipolar interaction (see Eqgs. (8) and (9) of
Ref. [11]) and can enhance the reactive rate at high dipoles.
The L = 2 barrier is high at small dipoles (see Fig. 2) and
suppresses the reactive rates. However, the strong dependence
of d*L+1/2) of the rates [11] leads to a d'° dependence,
as shown in the figure, and eventually makes a significant
contribution at high dipoles.

We saw on one hand that inelastic processes can be
important for molecules initially in excited confining states,
especially for fermions, and that on the other hand molecules
can chemically react at high rates for molecules initially in
different confining states, even for fermions because they are
not indistinguishable anymore. What are the consequences of
this for the dynamics of a molecular gas? This is what we
answer in the next subsection.

B. Rate equations

The rate equations for the density of molecules n,_(¢) in
state n, as a function of time are given by

no(t) = —Bgg™ (1) — Boi™ no(1) ny (¢)
— Bloo11 (1) + Bl 100011 (1)

(1) = =B ni() — By;™ no(H)ny(t)
= Bliio00 M (1) + Bioo 11 D5(1),

where ng(¢) [n;(¢)] are the individual densities of molecules
in state n, = 0 [r, = 1]. Similar equations hold for n, > 2,
but for simplicity, to avoid additional inelastic terms in the
equations, we assumed p,, > << Pu.=0.1-

If we assume a gas in thermal equilibrium for each time ¢,
the Maxwell-Boltzmann distribution implies that ng(¢) =
P(0)n(7) and ny (7) = p(1) niey(7) [we assume p(0) + p(1) =~
1 in our example], where ny(¢) is the density of the
total molecules. Then by summing the equations previously
mentioned, we obtain the rate equation for n(#)

niai(t) = —{p*(0) B + p*(1) B1;"
+2 p(0) p(1) B3y fnd (1) (35)

Inelastic rates cancel each other in the full equation, because
two molecules go back and forth in n; = 0,n, =0 and n; =
1,n, = 1, without participating in the loss process. Although
inelastic collisions are responsible for the evolution of the
individual density of molecules ny(¢) and n;(¢), they are not
responsible for the evolution of the total density of molecules
in the thermal gas.

(34)
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AtT = 500nK, B/;" = ;" but p>(1) <« p>(0) so that the
second term on the right-hand side of the previous equation
can be neglected. As a result the density of the total molecules

will show a faster decay due to a fast rate 2 p(0) p(1) /SOTl‘re

and a slow decay due to a slow rate p?(0)Bg;". For ex-

ample, for fermionic KRb at d = 0.2 D, 2 p(0) p(]),BOTI’re ~
1.4107% cm? s~!, and p2(0) By ~ 5.10~% cm? s~'. The
fast and slow decays are due to high interstate reactive
rates (collisions between different confining states) and low
intrastate reactive rates (collisions between same confining
states). The two types of decay can be tuned by changing
the relative populations p(0) and p(1), by changing the
temperature 7 and/or the confinement v. Note that even if
the population of the molecules in different confining states
are not given by a Maxwell-Boltzmann distribution, say, for
example, p(0) = 0.5 and p(1) = 0.5, and is independent of
time, inelastic rates still cancel each other in the equation for
the total density of molecules. Again, inelastic collisions play
arole in the loss of molecules from individual trap levels, but
do not for the loss of the total molecules. These theoretical
findings well support recent experimental data of confined
fermionic KRb molecules in electric fields [22].

V. CONCLUSION

We have developed in detail a rigorous time-independent
quantum formalism to describe the dynamics of particles with
permanent electric dipole moments in a confined geometry, by
treating the reactive chemistry using an absorbing potential.
Elastic, reactive, and inelastic rate coefficients can be com-
puted for a given collision energy, temperature, confinement,
and dipole moment (or electric field), for a system of
fermionic or bosonic molecules. The selection rules play an
important role for the dynamics of confined molecules and
have dramatic effects on the collisional properties. Different
rates are obtained for fermionic and bosonic molecules in
same or different confining states. Two kinds of suppression
can occur for chemical reactions: a statistical suppression
applies only for fermions at rather small induced dipoles
and confinements realistically accessible in an experiment,
and a potential energy suppression applies for both fermions
and bosons at rather high induced dipoles and confinements.
Inelastic rates can be important, even as high as reactive
rates for molecules initially in excited states. However, the
inelastic rates do not play a role in the loss process of the total
number of molecules in a gas, since molecules are inelastically
excited and relaxed, back and forth. Only reactive rates are
responsible for the evolution of the loss of the total molecules.
Fast and slow decays of the molecules can be seen due to
interstate and intrastate confined collisions. This work has been
highly motivated by recent experiments of KRb molecules in
confined geometry and electric field, and has proved very good
theoretical support for the experimental observations [22].
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APPENDIX A: DIPOLE-DIPOLE INTERACTION

We assume the molecules are in their 'S electronic
ground states and same nuclear spin states. N, represent
the rotational quantum number of the molecule T = 1,2,
My, the quantum number associated with its projection onto
the quantization axis Z. L represents the orbital angular
momentum quantum number of the two molecules, and M,
the quantum number associated with its projection onto the
quantization axis Z. In the free molecule-molecule basis
state |Ny, My,, Na, My,, L, My), the matrix elements of the
dipole-dipole interaction,

Wy - o — (L - P (s - V)

Vaa =
4rregr3

(A)

where [i, is the electric dipole moment of molecule T = 1,2,
evaluate to

(N1, My,, No, My,, L, M| Vaa|N{, M}, N3, My, L', M} )
=30 w2 (

4egr3

x QL+ 1)L + 1)\/(21\71 +1)2N] +1)

1 1 2

P p2 —P>

X<N1 1 N{)( N 1 N{)
0 0 0)\-My p M,
N, 1 N N 1 N

X(o 0 0)(—MN2 P2 M;%)

L 2 L L 2 U
X b
00 0)\-Mm, —p M

with p1 = —(My, — My,) = —AMy,, py=—(M},, — My,) =
—AMy,, and p = p;+ pr=—AMy, — AMy, = (M} —
M;p) = AM;. The electric field mixes different rotational
states N, with the same value of |My,|. In this paper
we consider molecules in My, =0, therefore p; = pr =
p =0 and then M; = M;. In an electric field, a dressed
state |D;) = a;|N, =0, My, =0) + b |N; =1, My, =0)
is formed, where the coefficient a.,b,, with a% + b% =1,
depends on the value of the electric field. We considered
here the example of a small electric field that only mixes
significantly the N =0 and N =1 state. In the dressed
molecule-molecule basis state | Dy, Dy, L, M), the diagonal
element of the dipole-dipole interaction in the incident channel
is given by

_I)ML+MN| +My,

x /N, + 1) 2N + 1)(

(Dy, Dy, L, My,|Vaa|l Dy, Dy, L', M)
=a;ay b1 5,(0,0,0,0, L, My |Vyl|1,0,1,0, L', My)
+a; by b1 a(0,0,1,0, L, M;|Val1,0,0,0, L', M)
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+byazay by(1,0,0,0, L, M;|Vaal0,0,1,0, L', M})

+b1byayay(1,0,1,0, L, M;|Va|0,0,0,0, L', M},)

—mﬂlﬂz
dmegr?

x QL+ 1)L + 1)/33

11 2\/1 1 o\'/L 2 L

“lo o o)lo o o 0 0 0
L 2 L

X /2 IR]
(Lo & o)

- 2"1‘12( DM QL +1) QL + 1)

ey r3
« L 2 L L 2 L

0 0 O -M, 0 M;
IL' M),

=4dajar by by (=DM

dy da(1 — 3 cos? )

= (LM
< 2 4 egr3

(A3)

where the full dipoles w, have been now replaced by the

electric field induced dipoles d., given by

2a; b,
V3

For molecules in [My,| > 0, one can also have components

of the dipole-dipole interaction other than 1 — 3 cos? 6, corre-
sponding to the case AM; # 0.

d, = r. (A4)

APPENDIX B: RELATION BETWEEN | n,) AND |n,N)

In Eq. (7), we use the following characteristics [42]:

1 mew /4  mox?
gn, (X) = T~ |(—nh) % H, (y/mw/hx), (Bl)

Hy (x+y)=2" r/zzk‘(—Hk(x«/_)Hn V),

(B2)
() Hy, () mmimr) i e
H, (x)H, (x)=
= klme — B! k(e — k)
X H tcm,n, (x) 2" k!, (B3)

The individual |n; ny) states are written in terms of the
relative + c.m. |n,N) states by

|00) = 10,0),
01) = %|O,1>+%|l,o>,
[10) = %IOJ) - %ILO),
02) = ;|o 2) + \;EH,I) + %|2,0>, (B4)
120) = ;|o 2) — }2|1,1>+%|2,0>,
111y = %m,z) - %|2,0>.
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APPENDIX C: RELATION BETWEEN |n; n,7) AND |n, N)

Using Eq. (5) and Appendix B, the symmetrized individual
|nyny,y) states are written in terms of the relative + c.m.
|n,N) states by

|00,y = +1) =10,0),
01,y =+1> —10,1),
1
102,y = +1) = —=10,2) + —=2,0),
«/_ V2
1
1L,y =+1) = 10,2) — 12,0),
«/— V2

(ChH

1
112,y = +1) ,/ |o3 512:1).
122 —+1>—f|04> |22)+,/3|40>
7]/— - 8 E) 2 E) 8 £ E)

01,y = —1) = [1,0),
IOZV——)—III

112,y = —1) = = |12 ,/ |30

Note that (— 1)1+ = (—1)"+N.

APPENDIX D: SELECTION RULES

For initial states ny,n, and final states n),n), since com-
ponents of different N do not mix together in the collision
process, we have

(_l)nl-H’lz — (_1)11/1-"-11/2’ (Dl)

after a collision.
Atlong range, in cylindrical coordinates, if we use the sym-
metrized individual representation |n; ny,y ), the permutation
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P requires the substitutions z; — 22,20 — 21,9 —> @+ 7
which leads to the selection rule,

ny (=DM = ep. (D2)

If we use the relative representation |n, N) states, then the
permutation P requires the substitutions z - —z,90 — ¢ + 7
which leads to

n(=DMetn (D3)

= €p,

from the properties of the g,(z) functions. At short range,
in spherical coordinates, using the Legendre polynomials,
the permutation P requires the substitutions § — 7 — 0,9 —
¢ + 7 which leads to

n(-DF =ep (D4)

We summarize in Table I the different selection rules for
identical bosons and fermions.

TABLE I. Selection rules for the dynamics of identical bosons
and fermions in confined two-dimensional geometry.

n L Y My n
Fermions
+1 1,3,5... +1 1,3,5... 0,24...
1,3,5... —1 0,24... 1,35...
-1 0.24... +1 0,24... 0,24...
2,4.6... -1 1,3,5... 1,3,5...
Bosons

n L V4 ML n
+1 0.24... +1 0,24... 0,24...
2,4.6... -1 1,3,5... 1,35...
-1 1,3,5... +1 1,3,5... 0,24...
1,3,5... -1 0,24... 1,3,5...
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