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We consider cold collisions of OH molecules in the2P3/2 ground state, under the influence of a magnetic
field. We find that modest fields of several thousand gauss can act to suppress inelastic collisions of weak-
field-seeking states by two orders of magnitude. We attribute this suppression to two factors:sid an indirect
coupling of the entrance and the exit channel, in contrast to the effect of an applied electric field; andsii d the
relative shift of the entrance and exit scattering thresholds. In view of these results, magnetic trapping of OH
may prove feasible.
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I. INTRODUCTION

As the experimental reality of trapping ultracold polar
molecules approaches, a clear understanding is needed of
how the molecules interact in the trap environment. On the
most straightforward level, collisions are essential for cool-
ing the gas by either evaporative or sympathetic cooling
methods. A high rate of elastic collisions is desirable, while a
low rate of exothermic, state-changing collisions is essential
if the cold gas is to survive at all. Furthermore, a clear un-
derstanding of two-body interactions allows one to construct
a realistic model of the many-body physics in this dilute
systemf1g.

One promising strategy for trapping ultracold molecules
might be to follow up on successes in trapping of cold atoms,
and to construct electrostaticf2,3g or magnetostaticf4g traps
that can hold molecules in a weak-field-seeking state. Cold
collisions of polar molecules in this environment have been
analyzed in the past, finding that inelastic collision rates
were unacceptably high in the presence of the electric field,
limiting the possibilities for stable trappingf5g. Reference
f5g found that the large inelastic rates were due to the strong
dipole-dipole interaction coupling between the molecules.
One important feature of the dipole-dipole interaction is its
comparatively long range. Even without knowing the details
of the short-ranged molecule-molecule interactions, the di-
pole forces alone were sufficient to change the internal mo-
lecular states. Indeed, a significant finding was that for weak-
field seekers, the molecules are prevented from approaching
close to one another due to a set of long-range avoided cross-
ings. Therefore, a reasonably accurate description of molecu-
lar scattering may be made using the dipolar forces alonef6g.

A complementary set of theoretical analyses have consid-
ered the problem of collisional stability of paramagnetic
molecules in a magnetostatic trap. For example, the weak-
field-seeking states of molecules are expected to survive col-
lisions with He buffer gas atoms quite wellf7,8g. Collisions
of molecules with each other are also expected to preserve
their spin orientation fairly well, and hence remain trapped
f9g. However, this effect is mitigated in the presence of a
magnetic fieldf10,11g.

So far, no one appears to have considered the influence of
magneticfields on cold molecule-molecule collisions where
both species haveelectric dipole moments. In this paper we

approach this subject, by considering cold OHs2P3/2d-
OHs2P3/2d collisions in a magnetic field. To the extent that
the applied electric field is zero, one might expect that dipole
forces average to zero and thus do not contribute to destabi-
lizing the spin orientation. It turns out that this is not quite
correct, and that dipole-dipole forces still dominate long-
range scattering. However, applying a suitably strong mag-
netic field turns out to mitigate this effect significantly. Inter-
estingly, even in this case the residual second-order dipole
interactions are sufficiently strong to restrict scattering to
large intermolecular separation.

The main result of the paper is summarized in Fig. 1,

FIG. 1. sColor onlined Thermally averaged rate constants for
collisions of weak-field-seeking states of OH, as a function of ap-
plied electric fieldsad and magnetic fieldsbd. In both cases, solid
lines denote elastic scattering rates, while dashed lines denote in-
elastic scattering rates. Two temperatures are considered. Applying
an electric field drives the inelastic collision rates up while an ap-
plied magnetic field drives inelastic collision rates down.
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which contrasts the influence of electric and magnetic fields.
Figure 1sad plots the elasticssolid curvesd and inelastic
sdashed curvesd collision rate constants for OH molecules in
their uFMFel= u22−l, weak-field-seeking hyperfine statesfor
details on quantum numbers, see belowd. As the electric field
is increased, the inelastic rate constant grows to alarmingly
large values, making the gas collisionally unstable, as was
shown in Ref.f5g. Figure 1sbd shows the analogous rate con-
stants in a magnetic fieldsin both cases the field is assumed
to lie along the positivez axis of the laboratory reference
framed. In this case the magnetic field has the effect of sup-
pressing collisions, all the way down to a rate constant of
2310−13 cm3/s at fields ofB=3000 G. These results are
moreover fairly robust against raising the temperature to
merely coldsnot ultracoldd temperatures,,1 mK, attainable
in buffer-gas loading or Stark slowing experiments. This is
good news for experiments—it implies that cooling strate-
gies that rely on collisions may be feasible, provided a suit-
ably large bias magnetic field is applied.

Our main goal here is to analyze the suppression of rates
in a magnetic field. The organization is as follows. First we
review the relevant molecular structure, and especially the
Stark and Zeeman effects, to illustrate their complementary
natures. We then present an overview of the scattering
model, including a review of the dipole-dipole interaction.
Then we present an analysis of the system in a magnetic field
using a reduced channel model that encapsulates the essen-
tial collision physics. Finally, the model is qualitatively un-
derstood using the adiabatic representation.

II. ELECTRIC VERSUS MAGNETIC FIELDS APPLIED
TO MOLECULES

Both the Stark and Zeeman effects in molecules have a
similar form, since both arise as the scalar product of a di-
pole moment with an external field. Their influence on the
molecule is quite different, however, since they act on fun-
damentally different degrees of freedom. The electric field is
concerned primarily with where the chargesare in the mol-
ecule, whereas the magnetic field is concerned with where
they aregoing. This is of paramount importance, since it
implies that the electric field is a true vectorsodd under the
parity operationd, whereas the magnetic field is a pseudovec-
tor seven under parityd f12g. An electric field will therefore
mix parity states of a molecule, while a magnetic field will
mix states only of a given parity. This distinction is explored
further in Ref.f13g; here we will only focus on those aspects
of immediate relevance to our project.

The rest of this paper will, fundamentally, restate this fact
in the context of scattering, and follow up the consequences
that arise from it. To set the context of this discussion, and to
fix our notation, we first consider the molecules in the ab-
sence of external fields.

A. Molecular structure in zero external field

The OH radical has a complicated ground state structure
which includes rotation, parity, nuclear spin, electronic spin,
and orbital degrees of freedom. We assume that the vibra-

tional degrees of freedom are frozen out at low temperatures,
and hence treat the molecules as rigid rotors. We further
assume that perturbations due to far away rotational levels
are weak. We do, however, include perturbatively the influ-
ence of theV=1/2 finestructure level, as described in Ref.
f5g.

The electronic ground state of OH is2P, with V=3/2.
OH is an almost pure Hund’s casesad molecule, meaning the
electronic degrees of freedom are strongly coupled to the
intermolecular axis. The electronic state of the molecule in
the J basis is denoted byuJMJVluLSl whereJ is the total
electronic angular momentum,MJ is its projection onto the
laboratory axis, andV is J’s projection onto the molecular
axis. S and L are the projections of the electron’s spin and
orbital angular momentum onto the molecular axis, and their
sum equalsVs=S+Ld. The electronic degrees of freedom
uLSl will be suppressed for notational simplicity because
they are constant for all the collisional processes we con-
sider.

To describe the molecular wave function we assume a
rigid rotor ka ,b ,g uJMJVl=Î(s2J+1d /8p2)DMJV

J! sa ,b ,gd,
where sa ,b ,gd are the Euler angles defining the molecular
axis andDMJV

J! is a WignerD-function. It is necessary for a
P-state molecule to use the parity basis because OH has a
L-doublet splitting which separates the two parity states
se/ fd. The L doublet arises from a coupling to a nearbyS
state. It is the coupling of theS state to theP state of the
same parity which breaks the degeneracy of the twoP parity
statesf14g.

In the parity basis the molecular wave function is written

uJMJV ± l = S uJMJVl + euJMJ − Vl
Î2

D , s1d

where e=+ s2d represents thee sfd state, andV= uVu. It
should be noted that the sign ofe is not the parity, rather the
parity is equal toes−1dsJ−1/2d f14g. Thus for the ground state
of OH whereJ=3/2, theparity is equal to −e. Throughout
the paper we use6 to denote the sign ofe, not parity. In the
parity basis there is no dipole moment, because this basis is
a linear combination of electric dipole “up” and “down.”
This fact has important implications for the dipole-dipole
interaction.

Including the hyperfine structure is important because the
most dominant loss processes are those that change the hy-
perfine quantum number of one or both of the scattering
molecules. The hyperfine structure arises from interaction of
the electronic spin with the nuclear spinsId which must then
be included in the molecular basis set. In the hyperfine basis
the OH states areuFMF± l, where F=J+ I and MF is its
projection onto the laboratory axis. Here we suppressV in
the notation, as its value is understood. To construct basis
functions with quantum numberF we expand in Clebsch-
Gordan coefficients:

uFMF ± l = o
MJMI

uJMJV ± luIMIlkJMJIMIuFMFl. s2d

Relevant molecular energy scales for the scattering prob-
lem are theL-doublet splitting which isD,0.0797 K, the
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hyperfine splitting isDhf,0.0038 K. OH also has an electric
dipole momentm,1.668 D. Throughout this paper we use
kelvin sKd as the energy unit, except in the instances of ther-
mally averaged observables. For reference, 1 K
=0.695 cm−1.

B. Stark effect in OH

As noted above, the distinguishing feature of the Stark
effect is that it mixes molecular states of opposite parity
separated by theL-doublet splitting. A consequence of this is
that the Stark energies vary quadratically with electric field
at low fields, and linearly only at higher fields. The field
where this transition occurs is given roughly by equating the

field’s effectmW E·EW to theL-doublet splitting.fHeremW E is the

molecule’s electric dipole moment, andEW is the field. In OH,
this field is approximatelyE0,D /2mE,1000sV/cmd.g

The Stark Hamiltonian has the form

HS= − mW E ·EW , s3d

where we take the field to be in theẑ direction. In the basis in
which V has a definite sign, the matrix elements are well
known f15g:

kJMJVuHSuJMJVl =
− mEEVMJ

JsJ + 1d
. s4d

In the Stark effect there is a degeneracy between states with
the same sign ofVMJ, meaning ±MJ are degenerate in an
electric field. We can recast the Stark Hamiltonian into the
J-parity basis set from Eq.s1d. Doing so, we find

kJMJVeuHSuJMJVe8l =
− mEEVMJ

JsJ + 1d
S1 − ee8

2
D . s5d

In this expression, the factors1−ee8d /2 explicitly represents
the electric field coupling between states of opposite parity,
since it vanishes fore=e8.

Finally, using the definition of theF-parity basis in Eq.
s2d, we arrive at the working matrix elements of the Stark
effect:

kFMFeuHSuF8MFe8l = − mEES1 + ee8s− 1dJ+J8+2V+1

2
D

3s− 1dJ+J8+F+F8+I−MF−V+1fF,F8,J,J8g

3 S J 1 J8

− V 0 V8
DS F8 1 F

MF 0 − MF
D

3HF F8 1

J8 J I
J . s6d

In this notationf j1, j2,…g=Îs2j1+1ds2j2+1ds¯d. Figure 2
shows the energy levels of OH in the presence of an electric
field. Both parity states are shown, labelede and f. An es-
sential point of Fig. 2 is that thee and f states repel as the
electric field in increased. This means that all of thef sed
states increasesdecreased in energy as the field in increased,
implying that states of the same parity stay close together in

energy as the field is increased. This fact has a crucial effect
on the inelastic scattering as we will show.

The highest-energy state in Fig. 2 is the stretched state
with quantum numbersuFMFel= u22−l. It is this state whose
cold collisions we are most interested in, becausesid it is
weak-field seeking, andsii d its collisions at low temperature
result almost entirely from long-range dipole-dipole interac-
tions f5g. Molecules in this state will suffer inelastic colli-
sions to all of the other internal states shown. The rate con-
stant shown in Fig. 1 is the sum of all rate constants for all
such processes.

C. Zeeman effect in OH

When OH is in an external magnetic field the electron’s
orbital motion and intrinsic magnetic dipole moment both
interact with the field. The interaction is described by the
Zeeman Hamiltonian which is

HZ = − mB ·B = m0sL + geSd ·B. s7d

Here m0 is the Bohr magneton andge is the electron’sg
factor sge,2.002d. As above, we assume the field to be in
the laboratoryẑ direction. In theJ basis, the Zeeman Hamil-
tonian takes the formf16g

kJMJVuHZuJMJVl =
m0BsL + geSdVMJ

JsJ + 1d
. s8d

This is quite similar to the equivalent expressions4d for the
Stark effect, except that the electron’sg factor plays a role.

FIG. 2. Stark effect for the ground state of OH with the hyper-
fine structure accounted for. In zero field thef states and thee states
are separated by theL-doublet energy. The gray line indicates the
state of interest for our analysis, theu22−l state. An important fea-
ture of this interaction is that the opposite parity states repel and
thus like parity states stay close together in energy.
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Interestingly, for a2P state the prefactorsL+geSdV is al-
ways greater than zero. We now recast the Zeeman interac-
tion into theJ-parity basis sets1d. This gives us

kJMJVeuHZuJMJVe8l =
m0BsL + geSdVMJ

JsJ + 1d
dee8 s9d

for V=3/2 states, and

kJMJVeuHZuJMJVe8l =
m0BsL − geSdVMJ

JsJ + 1d
dee8 s10d

for V=1/2 states. Notice that forV=1/2, theorbital and
spin contributions to the molecular magnetic moment nearly
cancel, to within the deviation ofge/2 from 1. For theV
=3/2 states of interest to us, however, the magnetic moment
remains large.

The key feature of the Zeeman matrix elements9d is that
it is diagonal ine, in contrast to the Stark matrix element.
This trait persists in the hyperfine basis as well, where the
matrix elements are

kFMFeuHZuF8MFe8l = m0BsL + geSdS1 + ee8s− 1dsJ+J8+2Vd

2
D

3 s− 1dJ+J8+F+F8+I−MF−V+1fF,F8,J,J8g

3 S J 1 J8

− V 0 V8
DS F8 1 F

MF 0 − MF
D

3HF F8 1

J8 J I
J . s11d

Figure 3 shows the Zeeman energies in the hyperfine basis,
for low fFig. 3sadg and highfFig. 3sbdg fields. For OH in the
2P3/2 state, the parity factorf1+ee8s−1dsJ+J8+2Vdg /2 reduces
simply to dee8. Because the magnetic field preserves parity,
Fig. 3sbd amounts to two copies of the same energy level
diagram, separated in energy by theL-doublet energy. For
small magnetic fields the molecularg factor is gmag

OH ~ sF2

+J2− I2d, and is always positive for OH. This is in contrast to
the low-field magnetic moment of alkali-metal atoms which
is gmag

alkali~ sF2−J2− I2d sand whereJ, of course, refers to the
sum of orbital and spin angular momentad. In Eq. s11d for
V=1/2 thefactor L+geS goes toL−geS.

III. SCATTERING HAMILTONIAN

A complete potential energy surface for the interaction of
two OH molecules, including the relatively long-range part
most relevant to cold collisions, is at present unavailable.
Certain aspects of this surface have, however, been discussed
f17g. For the time being, we will follow our previous ap-
proach of focusing exclusively on the dipole-dipole interac-
tion. It appears that molecules in the highest weak-field-
seeking states are mostly insensitive to short-range effects.

The “raw” scattering channels have the form
uF1MF1

e1luF2MF2
e2lulmll, which specifies the internal state of

each molecule and the partial wavel describing the relative
orbital angular momentum of the molecules. In a field, of

course, the hyperfine and parity quantum numbers are no
longer good. It is therefore essential to consider a set of
scattering channels “dressed” by the appropriate field. This is
achieved by diagonalizing the Stark or Zeeman Hamiltonian
of each molecule, including theL doubling and hyperfine
structure. The resulting eigenvectors then comprise the mo-
lecular basis used to construct the scattering Hamiltonian.
Field dressing is essential because otherwise nonphysical
couplings between channels persist to infinite separation. The
diagonal contributions of the Stark and Zeeman Hamiltonian
in the field-dressed basis define to the scattering thresholds
asR→`.

The channels involved in a given scattering process are
further constrained by symmetries; namely scattering of
identical bosons restricts the basis set to even values ofl
only. In addition, the cylindrical symmetry enforced by the
external field guarantees that the total projection of angular
momentum on the field axis,M =MF1

+MF2
+ml, is a con-

served quantity.
The scattering wave function is expanded in these field-

dressed channels, leading to a set of coupled-channel
Schrödinger equations

S− "2

2mr

d2

dR21I +
"2l̂2

2mrR
21I + VIsRd + HIFSDcW sRd = EcW sRd,

s12d

where cW is the multichannel wave function andmr is the
reduced mass. The operatorHIFS denotes the fine structure,
including the effect of an electric or magnetic field.sIn this

FIG. 3. Zeeman effect for the ground state of OH, in lowsad and
high sbd fields. This plot is the same for both thee and f states for
zero electric field because the Zeeman interaction preserves parity.
The u22−l state is indicated in gray.
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paper we do not yet include the simultaneous effect of both
fields.d

In Eq. s12d, the operatorVI represents the interaction be-
tween the molecules. We are most interested in the dominant
dipole-dipole interaction whose general operator form is

Hmm = −
3sR̂ · m̂1dsR̂ · m̂2d − m̂1 · m̂2

R3 . s13d

wherem̂i is the electric dipole of moleculei, R is the inter-

molecular separation, andR̂ is the unit vector defining the
intermolecular axis. This interaction is conveniently rewrit-
ten in terms of tensorial operators as followsf18g:

Hmm = −
Î6

R3 o
q

s− 1dqCq
2 · sm1 ^ m2d−q

2 . s14d

HereCq
2su ,fd is a reduced spherical harmonic that acts only

on the relative angular coordinate of the molecules, while
sm1 ^ m2d−q

2 is the second-rank tensor formed from two
rank-1 operatorsmi that act on the state of theith molecule.
These first-rank operators are written as reduced spherical
harmonicsCq

1sabd wherea andb are two of the Euler angles
of the rigid rotator wave function. With this form of the
dipole-dipole interaction, we can then evaluate the matrix
element.

In the hyperfine parity basiss2d the matrix elements
are f5g

k12lmluHmmu1828l8ml8l =
Î6mE

2

R3 fl,l8,J1,J18,J2,J28,F1,F18,F2,F28gS1 + e1e18s− dJ1+J18+2V1+1

2
DS1 + e2e28s− dJ2+J28+2V2+1

2
D

3s− 1ds1+F1+F18+F2+F28+J1+J18+J2+J28+M1+M2−V18−V28+MldS 1 1 2

MF1
− MF18

MF2
− MF28 Ml − Ml8

D
3S J1 1 J18

− V1 0 V1
DS J2 1 J28

− V2 0 V2
DS 1 F1 F18

MF1
− MF18

− MF1
MF18

DS 1 F2 F28

MF2
− MF28

− MF2
MF28

D
3S l8 2 l

Ml8 Ml − Ml8 − Ml
DSl8 2 l

0 0 0
DHF1 F18 1

J18 J1 I
JHF2 F28 1

J28 J2 I
J . s15d

A central feature of this matrix element is the factor
s1−e1e18ds1−e2e28d, usingJi =Ji8=Vi =3/2. As aconsequence
of this factor, matrix elements diagonal in parity identically
vanish in zero electric field. Instead, for example, two
f-parity states only interact with one another via coupling to
a channel consisting of twoe-parity states.

This dependence on parity is perhaps not unexpected,
since the dipole-dipole force is of course transmitted by the
dipole moment of the first molecule producing an electric
field that acts on the second molecule. But in a state of good
parity, the first molecule does not have a dipole moment until
it is acted upon by the second molecule. Thus, both mol-
ecules must simultaneously mix states of opposite parity to
interact. Notice that in the presence of an electric field, the
dipoles are already partially polarized, and this restriction
need not apply; the scattering channels are already directly
coupled. This change is of decisive importance in elucidating
the influence of electric fields on collisions. In a magnetic
field, by contrast, parity remains conserved and the interac-
tions are intrinsically weaker as a result.

IV. INELASTIC RATES OF OH-OH COLLISIONS
IN EXTERNAL FIELDS

We move now to the consequences of the interactions15d
on scattering. Scattering calculations are done using the log-

derivative propagator methodf19g. To ensure convergence at
all collision energies and applied fields, it was necessary to
include partial waves up tol =6, and to carry the propagation
out to an intermolecular distance ofR=104 a.u. before
matching to long-range wave functions. Cross sections and
rate constants are computed in the standard way for aniso-
tropic potentialsf20g.

We remind the reader that throughout we consider
collisions of molecules initially in theiruFMFel= u22−l
states, which are weak-field-seeking for both electric and
magnetic fields. Thus for a scattering process incident on an
s partial wave, the incident channel will be writtenuil
= uF1MF1

e1luF2MF2
e2lulmll= u22,−lu22,−lu00l.

In the following, we will make frequent reference to “en-
ergy gap suppression” of collision rates. This notion arises
from a perturbative view of inelastic collisions, in which
case the transition probability amplitude is proportional to
the overlap integral

E dRcisRdVifsRdc fsRd s16d

whereci,f denote the incident and final channel radial wave
functions, andVif is the coupling matrix element between
them. In our case,ci will have a long de Broglie wavelength
corresponding to its essentially zero collision energy. The de
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Broglie wavelength ofc f will instead grow smaller as the
energy gapEi −Ef between incident and final thresholds
grows. Thus the integral ins16d, and correspondingly the
collision rates, will diminish. For this reason, the collisions
we consider tend to favor changing the hyperfine states of
the molecules over changing the parity states, since the hy-
perfine splitting of OH is smaller than theL doubling.

A. Electric field case

To calculate scattering in the presence of an electric field,
we only need to include partial wavesl =0,2 for numerical
accuracy ofK2

inel for the field range that we consider,E
ø1000 V/cm, and at a collision energy of 10−5 K. Here we
are only interested in the trend and identification of the loss
mechanism. To numerically converge the inelastic rates at
higher field values, where the induced dipoles are large,
naturally requires more partial waves.

Figure 4sad shows the totalsblackd and partialsgrayd in-
elastic rate constantK2

inel as a function of the electric field
fcompare Fig. 1sadg. Even in zero field, where the dipolar
forces nominally average out, the rate constant is large, com-
parable to the elastic rate constant. This fact attests to the
strength of dipolar forces in OH, even in second order.

The light gray line in Fig. 4sad represents losses to the
dominant zero-field loss channelu10−lu22−lu22l. The dark
gray curve in Fig. 4sad represents instead the dominant loss
process at higher electric field values, in channelu21−l
u22−lu21l. Whereas the former rate remains relatively insen-
sitive to field, the latter rises dramatically.

This behavior arises from two competing tendencies in an
electric field. The first is the increasing mixing of different
parity states as the field is turned on, leading to an increasing
strength of the direct dipole-dipole coupling that affects both
exit channels. This additional coupling would, in general,
cause inelastic rates to rise. It is, however, offset by the com-
peting tendency for inelastic rates to become less likely when
the change in relative kinetic energy of the collision partners
is larger. Figure 4sbd shows the threshold energies for the two
exit channels in Fig. 4sad, versus field, with zero representing
the energy of the incident threshold. Here it is evident that
loss to the channelu22−lu10−lu22l sgray lined is accompa-
nied by a large gain in kinetic energy, whereas loss to chan-
nel u21−lu22−lu21l sdark gray lined gains comparatively
little kinetic energy, and thus the latter channel is more
strongly affected by the increased coupling generated by the
field.

B. Magnetic field case

To gain insight into the suppression of the inelastic rates
in a magnetic fieldfFig. 5sadg, calculations were at a repre-
sentative collision energyE=10−5 K. To converge the calcu-
lations in high fieldsBù1500 Gd required partial wavesl
=0,2,4,6. We have only considered collisions with incident
partial wave l =0, since higher-partial-wave contributions,
while they exist, contribute to rates only at the fraction of a
percent level.

Because the electric field remains zero, parity is still a
rigorously good quantum number. Therefore states of the

FIG. 4. sad Total sblackd and selected partial inelastic rates for
OH-OH collisions as a function of electric field. The light gray
curve is the dominant zero-field inelastic loss process to channel
u10−lu22−l. In the presence of the field, a different channel,
u21−lu22−l, becomes dominantsdark grayd. sbd. The thresholds for
these exit channels, relative to the incident threshold.

FIG. 5. sColor onlined sad The total and partial inelastic rates for
OH-OH collisions as a function of magnetic field. The lines are
explained in the text.sbd The corresponding thresholds, referred to
the incident channel’s thresholdsEi =0d. The dashed curve is one
possible intermediate channel.
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same parity are not directly coupled. Nevertheless, the domi-
nant loss channels in a magnetic field share the parity of the
incident channel wave functionuil= u22,−lu22,−lu00l. Figure
5sad illustrates this by showing the totalsblackd and partial
scolord inelastic rates as a function of the magnetic field. The
loss rates shown correspond to the exit channelsufl
= u10−lu22−lu22l slight grayd, u11−lu22−lu41l sdark grayd,
and u10−lu10−lu44l sredd.

Since direct coupling to these final channels is forbidden
to the dipolar interaction, all coupling must occur through
some intermediate channeluintl. Moreover, owing to the par-
ity selection rules in the matrix elements15d, this intermedi-
ate channel must have parity quantum numberse1=e2=+.
Since this coupling is second order, the dominant exit chan-
nels can consist of bothd-wave sl f =2d and g-wave sl f =4d
contributions, in contrast to the electric field case.

The primary feature of the inelastic rates in Fig. 5sad is
that they decrease significantly at large field. This decline is
the main reason for optimism regarding evaporative cooling
strategies in OH; an applied bias field of 3000 G can reduce
the inelastic rate constant to below 2310−13 cm3/s ssee Fig.
1d. The cause of this decrease can be traced directly to the
relative separation of the incident and final channel thresh-
olds, along with the indirect nature of the coupling.

To see this, we reduce the model to its essential ingredi-
ents: s1d a strong dipole-dipole interaction,s2d the relative
shift of the thresholds as the magnetic field is tuned,s3d an
extremely exothermic intermediate channel, ands4d the cen-
trifugal barrier in the final and intermediate channels. The
Hamiltonian for a reduced model isHmodel=T0+Vmodel,
whereT0 is the kinetic energy operator andVmodel in matrix
form is

Vmodel= 1 Ei 0 a/R3

0 Ef + cf/R
2 b/R3

a/R3 b/R3 Eint + cint/R
22 . s17d

Herecj is a centrifugal repulsioncj ="2l jsl j +1d /2mr, a andb
are dipole-dipole coupling strengths, andEj are the threshold
energies for thej th channel, which mimic the essential fea-
ture of the Zeeman effect in this system. The channels
hi , f , intj have quantum numbersse1e2di =se1e2d f =s−−d and
se1e2dint=s++d. The incident channel has partial wavel i =0,
while dipole coupling selection rules allowl int=2, andl f =2
or l f =4.

The model Hamiltonians17d explicitly excludes direct
coupling between incident and final channels, whereas cou-
pling is mediated through the “int” channel. Parameters char-
acteristic of the physical problem area=0.12 a.u., b
=0.10 a.u.,Ei =0, Ef =−0.003→−0.1 K, andEint=−0.17 K,
l i =0, l f =2 or 4, andl int=2. Because of the energy gap sepa-
ration losses to the intermediate channels are negligible. We
find, in addition, that movingEint has little effect on the rate
constants for loss to channelf.

In this model we use the threshold separation instead of
magnetic field because that is the essential effect of the field,
to shift incident and final thresholds relative to each other.
We have chosenEf to vary over a range similar to the effect

of changing the field from 0 to 1000 G for the dominant
zero-field loss channelu10−lu22−l.

Figure 6 shows the inelastic rates computed within this
model. This three-channel model does a reasonable job of
mimicking the prominent features of the full calculation, in-
cluding the eventual and lasting decrease in rates as the states
are separated in energy. In addition, theg-wave rates decay
more slowly as a function of field than do thed-wave rates,
consistent with the full calculationscompare Fig. 5d. The
declining values of the rate constant cannot, however, be
attributed to a simple overlap integral of the forms16d, since
the incident and final channels are not directly coupled. We
therefore present a more refined adiabatic analysis of this
process in the next subsection.

C. Adiabatic analysis of the magnetic field case

To understand the system’s magnetic field behavior we
analyze the reduced channel models17d in the adiabatic rep-
resentationf21,22g. This representation assumes thatR is a
“slow” coordinate. At everyR we diagonalize the Hamil-
tonian in all remaining degrees of freedom. Since it is not
rigorously true thatR varies infinitely slowly, the residual
nonadiabatic couplings can be accounted for in the kinetic
energy operator. Written more formally we diagonalize

WI = S"2lsl + 1d
2mrR

2 1I + VIsRd + HIZD , s18d

where the terms are the centrifugal barrier, the potential ma-
trix including dipole-dipole interaction, and the Zeeman
Hamiltonian. Diagonalizing the matrix in Eq.s18d, we get
WIuasRdl=UasRduasRdl whereUasRd are the eigenvalues and
uasRdl are the eigenvectors. With the eigenvectors we are
able to form a linear transformationXsRdI which transforms
between the diabatic and adiabatic representations, i.e.,
XTWI sRdXI=UIsRd. The eigenvalues and eigenvectors have ra-
dial dependence, but for notational simplicitysRd will be
suppressed hereafter.

FIG. 6. Inelastic rate constants for the three-channel model sys-
tem, Eq.s17d, as functions of initial and final threshold separation.
The two curves are ford- andg-wave exit channels, black and gray,
respectively. In theg-wave channelK2

inel evolves more slowly as the
thresholds are separated. The threshold separation shown corre-
sponds to varying a magnetic field from 0 to 1000 G for the domi-
nant loss channelu10−lu22−l.
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To distinguish between adiabatic and diabatic representa-
tions we use Greek letterssa ,b ,…d to denote the adiabatic
channels and Roman letterssi , j ,…d to denote diabatic chan-
nels. When considering specific inelastic processes in the
diabatic basis we denote initial and final channels asi and f
and for the adiabatic channels asi and w. In the limit R
→`, the two sets of channels coincide.

A partial set of adiabatic potential curves generated in this
way is shown in Fig. 7, exhibiting an avoided crossing at
R=150. Thus molecules incident on the uppermost channel
scatter primarily at large values ofR. This point has been
made in the past when an electric field is appliedf5g; here we
note that it is still true in zero electric field, and that scatter-
ing calculations can proceed without reference to short-range
dynamics.

The transformation between the representations isR de-
pendent implying that the channel couplings shift from the
potential to the kinetic energy operator. Using the adiabatic
representation changes Eq.s12d to

SXIT− "2

2mr

d2

dR2XI + UIDjWsRd = F− "2

2mr
S d2

dR2 + 2PI
d

dR
+ QID + UIG

3jWsRd = EjWsRd. s19d

HerejW =XITcW .
To get the channel couplings in the adiabatic picture we

need matrix elements of the derivative operators, defined as
Pab=kaud/dRubl. We evaluate thePab matrix, the dominant
off-diagonal channel coupling, using the Hellmann-Feynman
theoremf22g

Pab =

o
kl

Xak
T ¹ VklXlb

Ua − Ub

. s20d

Scattering amplitudes are then easily estimated in the
adiabatic distorted-wave Born approximationsADWBA d;
namely, we construct incident and final radial wave functions
fi,w that propagate according to the adiabatic potentialsUi,w.
In terms of these adiabatic wave functions, the scatteringT
matrix is given by an overlap integral analogous to Eq.s16d,

Tiw =
p"2

mr
kfiu

d/dRQPI + PId/dRW

Î2
ufwl. s21d

Hered/dRQ sd/dRW d is the radial derivative operator acting to
the left srightd. The cross section for identical bosons issiw

=s8p /ki
2duTiwu2. From here we are able to numerically calcu-

late a rate constant for inelastic lossK2
inel=visiw wherevi is

the asymptotic velocity given byÎ2UisR→`d /mr.
The result of the ADWBA is shown in Fig. 8. The two

curves are ford- sblackd and g-wave sgrayd inelastic chan-
nels. Several key features are present that also occur in the
full calculation, namely,s1d the inelastic rate goes down with
increasing threshold separation;s2d there is a zero in the rates
as seen in Fig. 5;s3d the g-wave inelastic rate goes more
slowly than thed-wave as seen in the model and the full
calculation. The ADWBA accounts for all of these. The first
feature, diminishing rates, still arises from an energy gap
suppression, since the de Broglie wavelengths of incident
and final channels still do not match well. In the ADWBA
this process is further helped along by the fact that the re-
sidual channel coupling, represented byP, is localized near
the avoided crossings of the adiabatic potential curves.

The ADWBA helps to visualize this suppression, as
shown by the sample wave functions in Fig. 9. This figure
showsci, sd/dRdcw, andPiw for various values ofEf. Vary-
ing Ef mimics the shift of the thresholds in an applied mag-
netic field. The values ofEf of Fig. 9 areEf= sad 26, sbd
222, andscd 262 mK. The effect of the differentEf’s leave
ci mostly unchanged; however,cw becomes more exother-

FIG. 7. The relevant adiabatic potential curves for the OH-OH
system. Shown are two different values of the final threshold energy
Ei −Ef =5 mK sad and 15 mKsbd.

FIG. 8. Inelastic rate constants as estimated by the adiabatic
distorted wave Born approximation for the three-channel system.
The black curve is for ad-wave exit channel and the gray for a
g-wave exit channel. The threshold separation shown corresponds
to varying a magnetic field from 0 to 1000 G for the dominant loss
channelu10−lu22−l.
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mic and therefore more oscillatorysldb clearly shortensd.
Moreover, the dominant coupling region, wherePiw peaks,

moves to shorterR as Ef increases. This motion is obvious
from the avoided crossing in Fig. 7.

The transition amplitude in the ADWBA is proportional to
the integral of the product of the three quantities in Fig. 9.
Because of the shortening of the de Broglie wavelength in
the exit channel, this integral will eventually vanish, ac-
counting for the zero in the inelastic rates. Thetotal rate will,
in general, not vanish, since there are many exit channels,
and they will experience the destructive interference at dif-
ferent values of the threshold, hence at different fields.

Finally, theg-wave inelastic rates are not so strongly af-
fected by the separation ofEi and Ef because theg-wave
centrifugal barrier is larger, meaning a greater energy is re-
quired to change the wave function at short range such that
velocity node can pass through the coupling region. The zero
in this rate constant will thus occur at larger threshold sepa-
rations.

V. CONCLUSIONS

We have explored the influence of a magnetic field on the
cold collision dynamics of polar molecules. The dipole-
dipole interactions remain significant even in the absence of
an electric field that polarizes the molecules. In general this
implies that molecular orientations are unstable in collisions,
making magnetic trapping infeasible. We have found, how-
ever, that a suitably strong magnetic field can mitigate this
instability.

Beyond this result, we note that laboratory strength fields
can exert comparable influence on cold collisions, if applied
separately. A useful rule of thumb in this regard is that an
electric field of 300 V/cm acting on a 1 D dipole moment
causes roughly the same energy shift as a 100 G field acting
on a 1 Bohr magneton magnetic moment. This raises the
interesting question of how the two fields can be applied
simultaneously, to exert even finer control over collision dy-
namics. This will be the subject of future investigations.
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