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Dipolar Bose and Fermi gases, which are currently being studied extensively experimentally and theoreti-
cally, interact through anisotropic, long-range potentials. Here, we replace the long-range potential by a zero-
range pseudopotential that simplifies the theoretical treatment of two dipolar particles in a harmonic trap. Our
zero-range pseudopotential description reproduces the energy spectrum of two dipoles interacting through a
shape-dependent potential under external confinement very well, provided that sufficiently many partial waves
are included, and readily leads to a classification scheme of the energy spectrum in terms of approximate
angular momentum quantum numbers. The results may be directly relevant to the physics of dipolar gases
loaded into optical lattices.
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I. INTRODUCTION

Many-body systems with dipolar interactions have at-
tracted a lot of attention recently. Unlike the properties of
ultracold atomic alkali vapors, which can be described to a
very good approximation by a single scattering quantity �the
s-wave scattering length�, those of dipolar gases additionally
depend on the dipole moment. This dipole moment can be
magnetic, as in the case of atomic Cr �1,2�, or electric, as in
the case of heteronuclear molecules such as OH �3,4�, KRb
�5�, or RbCs �6�. Furthermore, dipolar interactions are long-
ranged and anisotropic, giving rise to a host of many-body
effects in confined dipolar gases such as rotonlike features
�7–9� and rich stability diagrams �10–17�. The physics of
dipolar gases loaded into optical lattices promises to be par-
ticularly rich. For example, this setup constitutes the starting
point for a range of quantum computing schemes �18–21�.
Additionally, a variety of quantum phases have already been
predicted to arise �22–25�. Currently, a number of experi-
mental groups are working towards loading dipolar gases
into optical lattices.

This paper investigates the physics of doubly occupied
optical lattice sites in the regime where the tunneling be-
tween neighboring sites and the interactions with dipoles lo-
cated in other lattice sites can be neglected. In this case, the
problem reduces to treating the interactions between two di-
poles in a single lattice site. Assuming that the lattice poten-
tial can be approximated by a harmonic potential, the center
of mass motion separates and the problem reduces to solving
the Schrödinger equation for the relative distance vector r�
between the two dipoles. The interaction between the two
aligned dipoles is angle-dependent and falls off as 1 /r3 at
large interparticle distances. In this work, we replace the
shape-dependent interaction potential by an angle-dependent
zero-range pseudopotential, which is designed to reproduce
the scattering properties of the full shape-dependent interac-
tion potential, and derive an implicit eigenequation for two
interacting identical bosonic dipoles and two interacting
identical fermionic dipoles analytically.

Replacing the full interaction potential or a shape-
dependent pseudopotential by a zero-range pseudopotential

�26–32� often allows for an analytical description of ultra-
cold two-body systems in terms of a few key physical quan-
tities. Here we show that the eigenequation for appropriately
chosen zero-range pseudopotentials reproduces the energy
spectrum of two dipoles under harmonic confinement inter-
acting through a shape-dependent model potential; that the
applied zero-range treatment readily leads to an approximate
classification scheme of the energy spectrum in terms of an-
gular momentum quantum numbers; and that the proposed
pseudopotential treatment breaks down when the character-
istic length of the dipolar interaction becomes comparable to
the characteristic length of the external confinement. The de-
tailed understanding of two interacting dipoles obtained in
this paper will guide optical lattice experiments and the
search for many-body effects.

Section II introduces the Hamiltonian under study and
discusses the anisotropic zero-range pseudopotential that is
used to describe the scattering between two interacting di-
poles. In Sec. III, we derive an implicit eigenequation for
two dipoles under external spherical harmonic confinement
interacting through the zero-range pseudopotential and show
that the resulting eigenenergies agree well with those ob-
tained for a shape-dependent model potential. Finally, Sec.
IV concludes.

II. SYSTEM UNDER STUDY AND ANISOTROPIC
PSEUDOPOTENTIAL

Within the mean-field Gross-Pitaevskii formalism, the in-
teraction between two identical bosonic dipoles, aligned
along the space-fixed ẑ axis by an external field, has been
successfully modeled by the pseudopotential Vpp�r�� �11�,

Vpp�r�� =
2��2

�
a00��r�� + d21 − 3 cos2 �

r3 . �1�

Here, � denotes the reduced mass of the two-dipole system,
d the dipole moment, and � the angle between ẑ and the
relative distance vector r�. The s-wave scattering length a00
depends on both the short- and long-range parts of the true
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interaction potential. The second term on the right-hand side
of Eq. �1� couples angular momentum states with l= l� �l
�0� and �l− l��=2 �any l , l��. For identical fermions, s-wave
scattering is absent and the interaction is described, assuming
the long-range dipole-dipole interaction is dominant, by the
second term on the right-hand side of Eq. �1�.

Our goal in this paper is to determine the eigenequation of
two identical bosonic dipoles and two identical fermionic
dipoles under external spherically harmonic confinement
with angular trapping frequency � analytically. The
Schrödinger equation for the relative position vector r� reads

�H0 + Vint�r���	�r�� = E	�r�� , �2�

where the Hamiltonian H0 of the noninteracting harmonic
oscillator is given by

H0 = −
�2

2�
�r�

2 +
1

2
��2r2. �3�

In Eq. �2�, Vint�r�� denotes the interaction potential. The
pseudopotential Vpp�r�� cannot be used directly in Eq. �2�
since both parts of the pseudopotential lead to divergencies.
The divergence of the �-function potential arises from the
singular 1 /r behavior at small r of the spherical Neumann
function n0�r�, and can be cured by introducing the regular-
ization operator �

�r r �27�. Curing the divergence of the long-
ranged 1/r3 term of Vpp is more involved, since it couples an
infinite number of angular momentum states, each of which
gives rise to a singularity in the r→0 limit �33�. The nature
of each of these singularities depends on the quantum num-
bers l and l� coupled by the pseudopotential, and hence has
to be cured separately for each l and l� combination to allow
an analytical solution of the two-dipole Schrödinger equation
to be obtained.

In this work, we follow Derevianko �34,35� and cure the
divergencies by replacing Vpp�r�� with a regularized zero-
range potential Vpp,reg�r��, which contains infinitely many
terms,

Vpp,reg�r�� = �
ll�

Vll��r�� . �4�

The sum in Eq. �4� runs over l and l� even for identical
bosons, and over l and l� odd for identical fermions. For l
� l�, Vll� and Vl�l are different and both terms have to be
included in the sum. In Sec. III, we apply the pseudopotential
to systems under spherically symmetric external confine-
ment. For these systems, the projection quantum number m is
a good quantum number, i.e., the energy spectrum for two
interacting dipoles under spherically symmetric confinement
can be solved separately for each allowed m value. Conse-
quently, a separate pseudopotential can be constructed for
each m value. In the following, we restrict ourselves to sys-
tems with vanishing projection quantum number m; the gen-
eralization of the pseudopotential to general m is discussed at
the end of this section. The Vll� are defined through their
action on an arbitrary r�-dependent function 
�r�� �34,35�,

Vll��r��
�r�� = gll�
��r�

rl�+2
Yl�0��,��

� � �2l+1

�r2l+1rl+1� Yl0��,��
�r��d
	
r→0

�5�

with

gll� =
�2

2�

all�

kl+l�

�2l + 1�!!�2l� + 1�!!
�2l + 1�!

, �6�

where k denotes the relative wave vector, k=
2�E /�2, and
the all� generalized scattering lengths. Since we are restrict-
ing ourselves to m=0, the Vll� are written in terms of the
spherical harmonics Ylm with m=0. When applying the
above pseudopotential we treat a large number of terms in
Eq. �4�, and do not terminate the sum after the first three
terms as done in Refs. �34–36�. We note that the non-
Hermiticity of Vpp,reg does not lead to problems when deter-
mining the energy spectrum; however, great care has to be
taken when calculating, e.g., structural expectation values
�37�.

To understand the functional form of the zero-range
pseudopotential defined in Eqs. �4�–�6�, let us first consider
the piece of Eq. �5� in square brackets. If we decompose the
incoming wave 
�r�� into partial waves,


�r�� = �
nilimi

cnilimi
Qnili

�r�Ylimi
��,�� , �7�

where the cnilimi
denote expansion coefficients and the Qnili

radial basis functions, the spherical harmonic Yl0 in the inte-
grand of Vll� acts as a projector or filter. After the integration
over the angles, only those components of 
�r�� that have li

= l and mi=0 survive. The operator �2l+1

�r2l+1 rl+1 in Eq. �5� is
designed to then first cure the r−l−1 divergencies of the Qnil

,
which arise in the r→0 limit, and to then second “extract”
the coefficients of the regular part of the Qnil

�r� that go as rl

�27�. Altogether, this shows that the square bracket in Eq. �5�
reduces to a constant when the r→0 limit is taken. To un-
derstand the remaining pieces of the pseudopotential, we
multiply Eq. �5� from the left with Qnolo

* Ylomo

* and integrate
over all space. The spherical harmonic Yl�0 in Eq. �5� then
ensures that the integral is only nonzero when l�= lo and
mo=0. When performing the radial integration, the ��r� /rl�

term ensures that the coefficients of the regular part of the
Qnolo

that go as rlo are being extracted �note that the remain-
ing 1/r2 term cancels the r2 in the volume element�.

Altogether, the analysis outlined in the previous paragraph
shows that the functional form of Vll� ensures that the diver-
gencies of the radial parts of the incoming and outgoing
wave are cured in the r→0 limit and that the lth component
of the incoming wave is scattered into the l�th partial wave.
The sum over all l and l� values in Eq. �4� guarantees that
any state with quantum number l can be coupled to any state
with quantum number l�, provided the corresponding gener-
alized scattering length all� is nonzero. We note that the regu-
larized pseudopotential given by Eqs. �4�–�6� is only appro-
priate if the external confining potential in Eq. �3� has
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spherical symmetry �38�. Generalizations of the above zero-
range pseudopotential, aimed at treating interacting dipoles
under elongated confinement, require the regularization
scheme to be modified to additionally cure divergencies of
cylindrically symmetric wave functions. These extensions
will be subject of future studies.

We now discuss the generalized scattering lengths all�,
which determine the scattering strengths of the Vll�. The all�
have units of length and are defined through the free-space

K-matrix elements Klm
l�m� �39�,

all� = lim
k→0

− Kl0
l�0�k�
k

, �8�

for m=0. The scattering lengths all� and al�l are identical
because the K matrix is symmetric. In general, the scattering
lengths all� have to be determined from the K-matrix ele-
ments for the “true” interaction potential, which contains the
long-range dipolar and a short-ranged repulsive part, of two
interacting dipoles. As discussed further in Sec. III, an ap-
proach along these lines is used to obtain the squares shown
in Fig. 3.

Alternatively, it has been shown that the K-matrix ele-
ments �except for K00

00, see below� for realistic potentials,
such as for the Rb-Rb potential in a strong electric field �11�
or an OH-OH model potential �16�, are approximated with
high accuracy by the K-matrix elements for the dipolar po-
tential only, calculated in the first Born approximation. Ap-
plying the Born approximation to the second term on the
right-hand side of Eq. �1�, we find for m=0 and l= l� �l
�1�,

all = −
2D*

�2l − 1��2l + 3�
, �9�

and for m=0 and l= l�+2,

al,l−2 = −
D*

�2l − 1�
�2l + 1��2l − 3�
. �10�

For l�=2 and l=0, e.g., Eq. �10� reduces to a20
=−D* / �3
5�, in agreement with Ref. �34�. The scattering
lengths al−2,l are equal to al,l−2, and all other generalized
scattering lengths are zero. In Eqs. �9� and �10�, D* denotes
the dipole length, D*=�d2 /�2. All nonzero scattering lengths
all� are negative, depend on l and l�, and are directly propor-
tional to d2. Furthermore, for fixed D*, the absolute value of
the nonzero all� decreases with increasing angular momen-
tum quantum number l, indicating that the coupling between
different angular momentum channels decreases with in-
creasing l. However, this decrease is quite slow and, in gen-
eral, an accurate description of the two-dipole system re-
quires that the convergence with increasing lmax be assessed
carefully.

One can now show readily that the K-matrix elements Kl0
l�0

of Vpp,reg, calculated in the first Born approximation, with all�
given by Eqs. �9� and �10�, coincide with the K-matrix ele-

ments Kl0
l�0 of Vpp. This provides a simple check of the zero-

range pseudopotential construction and proofs that the pref-
actors of Vll� are correct. In turn, this suggests that the

applicability regimes of Vpp and Vpp,reg are comparable, if the
generalized scattering lengths all� used to quantify the scat-
tering strengths of Vll� are approximated by Eqs. �9� and
�10�. The applicability regime of Vpp,reg may, however, be
larger than that of Vpp if the full energy-dependent K matrix
of a realistic potential is used instead.

To generalize the zero-range pseudopotential defined in
Eqs. �4�–�6� for projection quantum numbers m=0 to any m,
only a few changes have to be made. In Eq. �5�, the spherical
harmonics Yl0 have to be replaced by Ylm, and the general-
ized scattering lengths have to be defined through limk→0

−Klm
l�m� /k. Correspondingly, Eqs. �9� and �10� become m de-

pendent.

III. TWO DIPOLES UNDER EXTERNAL CONFINEMENT

Section III A derives the implicit eigenequation for two
dipoles interacting through the pseudopotential under exter-
nal harmonic confinement and Sec. III B analyzes the result-
ing eigenspectrum.

A. Derivation of the eigenequation

To determine the eigenenergies of two aligned dipoles
with m=0 under spherical harmonic confinement interacting
through the zero-range potential Vpp,reg, we expand the
eigenfunctions ��r�� in terms of the orthonormal harmonic
oscillator eigenfunctions Rnili

Yli0
,

��r�� = �
nili

cnili
Rnili

�r�Yli0
��,�� . �11�

The pseudopotential Vpp,reg enforces the proper boundary
condition of ��r�� at r=0, and thus determines the expansion
coefficients cnili

. To introduce the key ideas we first consider
s-wave interacting particles �28�, for which the pseudopoten-
tial reduces to a single term, and then consider the general
case, in which the pseudopotential contains infinitely many
terms.

Including only the term with l and l�=0 in Eq. �4�, the
Schrödinger equation becomes

�
nili

cnili
�Enili

− E + V00�Rnili
�r�Yli0

��,�� = 0, �12�

where the Enili
denote the eigenenergies of the noninteracting

harmonic oscillator,

Enili
= �2ni + li +

3

2
��� . �13�

In what follows, it is convenient to express the energy E of
the interacting system in terms of a noninteger quantum
number �,

E = �2� +
3

2
��� . �14�

Multiplying Eq. �12� from the left with Rnolo
* Ylo0

* with lo�0
and integrating over all space, we find that the cnili

with li

�0 vanish. This can be understood readily by realizing that
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the s-wave pseudopotential V00, as discussed in detail in Sec.
II, only couples states with l= l�=0. To determine the expan-
sion coefficients cni0

, we multiply Eq. �12� from the left with
Rno0

* Y00
* and integrate over all space. This results in

cno0�2no − 2���� + Rno0
* �0�g00B0 = 0, �15�

where B0 denotes the result of the square bracket in Eq. �5�,

B0 = � �

�r
�r�

ni=0

�

cni0
Rni0

�r��	
r→0

. �16�

Note that B0 is constant and independent of ni. In Eq. �15�,
the r-independent term Rno0

* �0� arises from the radial integra-
tion over the �-function of the pseudopotential. If we solve
Eq. �15� for cno0 and plug the result into Eq. �16�, the un-
known constant B0 cancels and we obtain an implicit
eigenequation for �,

1 = g00� �

�r
�r�

ni=0

� Rni0
* �0�Rni0

�r�

�2� − 2ni���
�	

r→0

. �17�

Using Eqs. �A1� and �A6� from the Appendix to simplify the
term in square brackets, we obtain the well-known implicit
eigenequation for two particles interacting through the
s-wave pseudopotential under spherical harmonic confine-
ment �28�,

�� − E

2��
+

1

4
�

2�� − E

2��
+

3

4
� −

a00

aho
= 0. �18�

Here, aho denotes the harmonic oscillator length, aho

=
� / ����.
The derivation of the implicit eigenequation for two di-

poles under external harmonic confinement interacting
through the pseudopotential with infinitely many terms pro-
ceeds analogously to that outlined above for the s-wave sys-
tem. The key difference is that each Vll� term in Eq. �5� with
l� l� couples states with different angular momenta, result-
ing in a set of coupled equations for the expansion coeffi-
cients cnili

. However, since Vpp,reg for dipolar systems
couples only angular momentum states with �l− l���2 �see,
e.g., the discussion at the beginning of Sec. II and around
Eqs. �9� and �10��, the coupled equations can, as we outline
in the following, be solved analytically by including succes-
sively more terms in Vpp,reg.

To start with, we plug the expansion given in Eq. �11� into
Eq. �2�, where the interaction potential Vint is now taken to
be the pseudopotential Vpp,reg with infinitely many terms. To
obtain the general equation for the expansion coefficients
cnili

, we multiply as before from the left with Rnolo
* Ylo0

* and
integrate over all space,

cnolo
�2no + lo − 2���� + �Rnolo

* �r�

rlo
	

r→0

��glo−2,lo
Blo−2 + glolo

Blo
+ glo+2,lo

Blo+2� = 0. �19�

Here, the Blo−2, Blo
, and Blo+2 denote constants that are inde-

pendent of ni,

Blo
= � �2lo+1

�r2lo+1
rlo+1��
ni=0

�

cnilo
Rnilo

�r���	
r→0

. �20�

The three terms in the square bracket in the second line of
Eq. �19� arise because the Vl�−2,l�, Vl�l� and Vl�+2,l� terms in
the pseudopotential Vpp,reg couple the state Rnolo

* Ylo0
* , for l�

= lo, with three components of the expansion for �, Eq. �11�.
Importantly, the constants Blo−2, Blo

, and Blo+2, defined in Eq.
�20�, depend on the quantum numbers lo−2, lo, and lo+2,
respectively, which implies that Eq. �19� defines a set of
infinitely many coupled equations that determine, together
with Eq. �20�, the expansion coefficients cnili

. Notice that
Eqs. �19� and �20� coincide with Eqs. �15� and �16� if we set
lo=0 and gll�=0 if l or l��0.

We now illustrate how Eqs. �19� and �20� can be solved
for identical bosons, i.e., in the case where l and l� are even
�the derivation for identical fermions proceeds analogously�.
Our strategy is to solve these equations by including succes-
sively more terms in the coupled equations, or equivalently,
in the pseudopotential. As discussed above, if a00 is the only
nonzero scattering length, the eigenenergies are given by Eq.
�18�. Next, we also allow for nonzero a20, a02, and a22, i.e.,
we consider l and l��2 in Eq. �4�. In this case, the coeffi-
cients cni0

and cni2
are nonzero and coupled, but all cnili

with
li�2 are zero. Using the expressions for B0 and B2 given in
Eq. �20�, we decouple the equations. Finally, using Eqs. �A1�
and �A6� from the Appendix, the eigenequation can be com-
pactly written as

t0 +
q2

t2
= 0, �21�

where

tl =

�� − E

2��
+

1

4
−

l

2
�

22l+1�� − E

2��
+

3

4
+

l

2
� − �− 1�l all

k2laho
2l+1 �22�

and

ql = −
al−2,l

2

k4l−4aho
4l−2 . �23�

Equation �21� can be understood as follows. If only a00 is
nonzero, it reduces to t0=0, in agreement with Eq. �18�. If
only a00, a02, and a20 are nonzero, Eq. �21� remains valid if
a22 in t2 is set to zero. This shows that the term q2 and the
first term on the right-hand side of t2 arise due to the cou-
pling between states with angular momenta 0 and 2. The
second term of t2, in contrast, arises due to a nonzero a22.
Finally, for nonzero a00 and a22, but vanishing a20 and a02,
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Eq. �21� reduces to t0t2=0. In this case, we recover the
eigenequations t0=0 for s-wave interacting particles �28� and
t2=0 for d-wave interacting particles �32�.

We now consider l and l� values with up to lmax=4 in Eq.
�4�, i.e., we additionally allow for nonzero a24, a42, and a44,
and discuss how the solution changes compared to the lmax
=2 case. The equation for the expansion coefficients cni0

re-
mains unchanged while that for cni2

is modified. Further-
more, the expansion coefficients cni4

are no longer zero. Con-
sequently, we have three coupled equations, which can be
decoupled, resulting in the following implicit eigenequation:
t0+q2 / �t2+q4 / t4�=0. In analogy to the lmax=2 case, the q4

term and the first part on the right-hand side of the t4 term
arise due to the “off-diagonal” scattering lengths a24 and a42,
and the second term of t4 arises due to the “diagonal” scat-
tering length a44.

Next, let us assume that we have found the implicit
eigenequation for the case where we include terms in Eq. �4�
with l and l� up to lmax−2. If we now include terms with l
and l� up to lmax, only the equations for the expansion coef-
ficients cnolo

with lo= lmax−2 and lmax change; those for the
expansion coefficients cnolo

with lo� lmax−4 remain un-
changed. This allows the lmax /2+1 coupled equations for the
expansion coefficients to be decoupled analytically using the
results already determined for the case where l and l� go up
to lmax−2. Following this procedure, we find the following
implicit eigenequation

Tlmax
= 0, �24�

where Tlmax
itself can be written as a continued fraction. For

identical bosons we find

Tlmax
= t0 +

q2

t2 +
q4

t4 + ¯ +
qlmax

tlmax

. �25�

Taking lmax→� gives the eigenequation for two identical
bosons under spherical harmonic confinement interacting
through Vpp,reg with infinitely many terms. For two identical
fermions, Eqs. �22�–�25� remain valid if the subscripts 0,2,…
in Eq. �25� are replaced by 1,3,….

The derived eigenequation reproduces the eigenenergies
in the known limits. For the noninteracting case �all all�=0�,
the eigenenergies coincide with the eigenenergies of the har-
monic oscillator, i.e., Enl= �2n+ l+3/2���, where n
=0,1 ,2 , . . . and l=0,2 ,4 , . . . �in the case of identical bosons�
and l=1,3 , . . . �in the case of identical fermions�. The kth
level, with energy �2k+3/2��� for bosons and �2k
+5/2��� for fermions, has a degeneracy of k+1, k
=0,1 , . . .. Nonvanishing all� lead to a splitting of degenerate
energy levels but leave the number of energy levels un-
changed. If all is the only nonzero scattering length, the
eigenequation reduces to that obtained for spherically sym-
metric pseudopotentials with partial wave l �32�.

B. Analysis of the energy spectrum

This section analyses the implicit eigenequation, Eq. �24�,
derived in the previous section for the zero-range pseudopo-
tential for m=0, and compares the resulting energy spectrum
with that obtained for a shape-dependent model potential.
The implicit eigenequation, Eq. �24�, can be solved readily
numerically by finding its roots in different energy regions.
The solutions of the Schrödinger equation for the shape-
dependent model potential are obtained by expanding the
eigenfunctions on a B-spline basis.

Lines in Figs. 1�a� and 1�b� show the eigenenergies ob-
tained by solving Eq. �24� for two identical bosons and two
identical fermions, respectively, interacting through Vps,reg�r��
under external spherically symmetric harmonic confinement
as a function of the dipole length D*. In both panels, we
assume that the interaction between the two dipoles is purely
dipolar, i.e., in Fig. 1�a� we set a00=0. The other scattering
lengths all� are approximated by Eqs. �9� and �10�. Interest-
ingly, for identical bosons, the lowest gaslike level, which
starts at E=1.5�� for D*=0, increases with increasing D*.
For identical fermions, in contrast, the lowest gaslike state
decreases with increasing D*.

In addition to obtaining the eigenenergies themselves, the
pseudopotential treatment allows the spectrum to be classi-
fied in terms of approximate angular momentum quantum
numbers. To this end, we solve the implicit eigenequation,
Eq. �24�, for increasing lmax, and monitor how the energy
levels shift as additional angular momenta are included in
Vpp,reg. Since a level with approximate quantum number l
changes only little as larger angular momentum values are
included in the pseudopotential, this analysis reveals the ap-
proximate quantum number of each energy level. In Fig.
1�a�, the eigenfunctions of energies shown by solid, dashed,
and dotted lines have approximate quantum numbers l=0, 2,
and 4, respectively. In Fig. 1�b�, the eigenfunctions of ener-

0

2

4

6

E
/(

hν
)

(a)

(b)

0 0.2 0.4 0.6 0.8 1
D

*
/a

ho

2

4

6

E
/(

hν
)

FIG. 1. Relative eigenenergies E for �a� two identical bosonic
dipoles and �b� two identical fermionic dipoles interacting through
Vpp,reg �using a00=0 in �a�� under spherical harmonic confinement
as a function of D* /aho. The line style indicates the approximate
quantum number of the corresponding eigenstates. In �a�, a solid
line refers to l�0, a dashed line to l�2, and a dotted line to l
�4; in �b�, a solid line refers to l�1, a dashed line to l�3, and a
dotted line to l�5.
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gies shown by solid, dashed, and dotted lines have approxi-
mate quantum numbers l=1, 3, and 5, respectively. We find
that the lowest excitation frequency between states with ap-
proximate quantum number l=0 �l=1�, increases �decreases�
for identical bosons �fermions� with increasing D*. These
predictions can be verified directly experimentally.

To assess the accuracy of the developed zero-range
pseudopotential treatment, we consider two interacting
bosons with nonvanishing s-wave scattering length a00. We
imagine that the dipole moment of two identical polarized
bosonic polar molecules is tuned by an external electric field.
As the dipole moment d is tuned, the s-wave scattering
length a00, which depends on the short-range and the long-
range physics of the “true” interaction potential, changes. To
model this situation, we solve the free two-body problem
numerically, i.e., the Schrödinger equation, Eq. �2�, with the
trap potential set to zero. To make this calculation numeri-
cally tractable, we introduce a hard core potential that re-
moves the 1/r3 singularity,

Vmodel�r�� = �d21 − 3 cos2 �

r3 if r � b ,

� if r � b .
� �26�

By expanding the wave function into partial waves, the par-
tial differential equation in r� is replaced by a set of coupled
ordinary differential equations in r, each labeled by a partial
wave quantum number l. These equations are solved by
propagating the logarithmic derivative matrix ��	 /�r�	−1,
using Johnson’s algorithm �40�, modified to take variable
step sizes keyed to the local de Broglie wavelength. These
solutions are matched at large r to spherical Bessel functions
to produce the K matrix. Typically, partial waves up to l
�80 are required to ensure convergence in the results re-
ported here.

For d=0, the s-wave scattering length a00 for Vmodel is
given by b. As the dipole length D* increases, a00 goes
through zero, and becomes negative. Just when the two-body
potential supports a new bound state, a00 goes through a
resonance and becomes large and positive. As D* increases
further, a00 decreases. This resonance structure repeats itself
with increasing D* �see Fig. 1 of Ref. �17�; note, however,
that the lengths aho and D* defined throughout the present
work differ from those defined in Ref. �17��.

For the model potential Vmodel, a00 depends on the ratio
between the short-range and long-range length scales, i.e., on
b /D*. To compare the pseudopotential energies and the en-
ergies for the model potential, we fix b and calculate a00 for
each D* considered. The dipole-dependent s-wave scattering
length is then used in the zero-range pseudopotential Vpp,reg.
The other scattering lengths are, as before, approximated by
the expressions given in Eqs. �9� and �10�. Solid lines in
Figs. 2�a� and 2�b� show the eigenenergies obtained for
Vmodel as a function of D*. Crosses show the eigenenergies
obtained for Vpp,reg using a value of lmax that results in con-
verged eigenenergies. The overview spectrum shown in Fig.
2�a� shows that one of the energy levels dives down to nega-
tive energies close to that D* value at which the two-body
potential Vmodel supports a new bound state. The blowup, Fig.

2�b�, around E�5.5�� shows excellent agreement between
the energies obtained using Vpp,reg �crosses� and those ob-
tained using Vmodel �solid lines�; the maximum deviation for
the energy range shown is 0.05%.

As before, we can assign approximate quantum numbers
to each energy level. At D*�aho, the three energy levels
around E�5.5�� have, from bottom to top, approximate
quantum numbers l=2, 4, and 0. After two closely spaced
avoided crossings around D*�0.025aho, the assignment
changes to l=0, 2, and 4 �again, from bottom to top�. If the
maximum angular momentum lmax of the pseudopotential is
set to 2, the energy level with approximate quantum number
l=4 would be absent entirely. This illustrates that a complete
and accurate description of the energy spectrum requires the
use of a zero-range pseudopotential with infinitely many
terms. The energy of a state with approximate quantum num-
ber l requires lmax to be at least l for the correct degeneracy
be obtained and at least l+2 for a quantitative description.

The sequence of avoided crossings at D*�0.025aho sug-
gests an interesting experiment. Assume that the system is
initially, at small electric field �i.e., small D* /aho�, prepared
in the excited state with angular momentum l�0 and E
�5.52��. The electric field is then slowly swept across the
first broad avoided crossing at D*�0.019aho to transfer the
population from the state with l�0 to the state with l�2.
We then suggest to sweep quickly across the second nar-
rower avoided crossing at D*�0.028aho �the ramp speed
must be chosen to minimize population transfer from the
state with l�2 to the state with l�4�. As in the case of
s-wave scattering only �41�, the time-dependent field se-
quence has to be optimized to obtain maximal population
transfer. The proposed scheme promises to provide an effi-
cient means for the transfer of population between states
with different angular momenta and for quantum state engi-
neering.

Figure 2 illustrates that the pseudopotential treatment re-
produces the eigenenergies of the shape-dependent model
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FIG. 2. �Color online� Panel �a� shows the relative energies E
for two aligned identical bosonic dipoles under external spherical
harmonic confinement as a function of D* /aho. Solid lines show the
numerically determined energies obtained using Vmodel with b
=0.0097aho. Crosses show the energies obtained using Vpp,reg with
essentially infinitely many terms, and a00 calculated for Vmodel.
Panel �b� shows a blow-up of the energy region around E�5.5��.
Note that the horizontal axis in �a� and �b� are identical.
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potential Vmodel. To further assess the validity of the pseudo-
potential treatment, we now consider two interacting bosonic
dipoles for which the dipolar interaction is dominant, i.e., we
consider a00=0. For Vmodel with b=0.0031aho, we determine
a set of D* values at which a00=0. Note that the number of
bound states with approximate quantum number l=0 in-
creases by one for each successively larger D*. Crosses in
Figs. 3�a�–3�c� show the eigenenergies for Vmodel with a00
=0 as a function of D* in the energy ranges around 1.5, 3.5,
and 5.5��. For comparison, lines show the eigenenergies
obtained for the regularized pseudopotential with a00=0. As
in Fig. 1, the line style indicates the approximate quantum
number of the energy levels �solid line: l�0; dashed line: l
�2; and dotted line: l�4�. The agreement between the en-
ergies obtained for the pseudopotential with all� given by
Eqs. �9� and �10� and for the model potential for small D* is
very good, thus validating the applicability of the pseudopo-
tential treatment. The agreement becomes less good, how-
ever, as D* increases. This can be explained readily by real-
izing that the dipole length D* approaches the harmonic
oscillator length aho.

In general, the description of confined particles interacting
through zero-range pseudopotentials is justified if the char-
acteristic lengths of the two-body potential are smaller than
the characteristic length of the confining potential. For ex-
ample, in the case of s-wave interactions only, the van der
Waals length has to be smaller than the oscillator length
�29,30�. The model potential Vmodel is characterized by a
short-range length scale, the hard core radius b, and the di-
pole length D*; in Fig. 3, it is the relatively large value of
D* /aho that leads, eventually, to a break down of the pseudo-
potential treatment. As in the case of spherical interactions,
the break down can be pushed to larger D* values by intro-

ducing energy-dependent generalized scattering lengths

all��k�, defined through-Kl0
l�0�k� /k for m=0, and by then solv-

ing the eigenequation, Eq. �24�, self-consistently �29,30�.
Figure 4 shows three selected scattering lengths all��k� for

the model potential Vmodel with D*=78.9b as a function of
energy. This two-body potential supports eight bound states
with projection quantum number m=0 and approximate an-
gular momentum quantum number l=0. Both energy and
length in Fig. 4 are expressed in oscillator units to allow for
direct comparison with the data shown in Fig. 3. The scat-
tering length a00�k�, shown by a solid line in Fig. 4, is zero at
zero energy and increases with increasing energy. Both
a20�k� �dashed line� and a22�k� �dash-dotted line� are nega-
tive. Their zero-energy values coincide with those calculated
in the Born approximation �horizontal dotted lines�.

Using these energy-dependent all��k� to parametrize the
strengths of the pseudopotential and solving the eigenequa-
tion, Eq. �24�, self-consistently, we obtain the squares in
Fig. 3. The energies for Vpp,reg with energy-dependent all�
�squares� are in much better agreement with the energies
obtained for the model potential �crosses� than the energies
obtained using the energy-independent all� to parametrize the
pseudopotential �lines�. This suggests that the applicability
regime of the regularized zero-range pseudopotential can be
extended significantly by introducing energy-dependent scat-
tering lengths. Since the proper treatment of resonant inter-
actions within the regularized zero-range pseudopotential
requires that the energy dependence of the generalized scat-
tering lengths be included, future work will address this issue
in more depth.

IV. SUMMARY

This paper applies a zero-range pseudopotential treatment
to describe two interacting dipoles under external spherically
harmonic confinement. Section II introduces the regularized
zero-range pseudopotential Vpp,reg used in this work, which
was first proposed by Derevianko �34,35�. Particular empha-
sis is put on developing a simple interpretation of the indi-
vidual pieces of the pseudopotential. Furthermore, we clearly
establish the connection between Vpp,reg and the pseudopo-
tential Vpp, which is typically employed within a mean-field
framework. We argue that the applicability regime of these
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FIG. 3. �Color online� Crosses show the relative eigenenergies E
as a function of D* /aho for two identical bosons with a00=0 inter-
acting through Vmodel with b=0.0031aho in three different energy
regions. Lines show E for two identical bosons with a00=0 inter-
acting through Vps,reg with all� given by Eqs. �9� and �10�. As in Fig.
1�a�, solid, dashed, and dotted lines show the energies of levels
characterized by approximate quantum numbers l�0, 2, and 4. The
agreement between the crosses and the lines is good at small D* /aho

but less good at larger D* /aho. Squares show the eigenenergies
obtained for the energy-dependent pseudopotential at D*

=0.242aho; the agreement between the squares and the crosses is
excellent, illustrating that usage of the energy-dependent K matrix
greatly enhances the applicability regime of Vpp,reg.
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FIG. 4. Energy-dependent scattering lengths a00�k� �solid line�,
a20�k� �dashed line�, and a22�k� �dash-dotted line� for the model
potential Vmodel with D*=78.9b as a function of the relative energy
E. In oscillator units, Vmodel is characterized by b=0.0031aho and
D*=0.242aho. For comparison, horizontal dotted lines show the
energy-independent scattering lengths a22, Eq. �9�, and a20, Eq.
�10�, calculated in the first Born approximation.
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two pseudopotentials is comparable if the scattering
strengths of Vpp,reg, calculated in the first Born approxima-
tion, are chosen so as to reproduce those of Vpp.

We then use the regularized zero-range pseudopotential to
derive an implicit eigenequation for two dipoles with projec-
tion quantum number m=0 under external confinement, a
system which can be realized experimentally with the aid of
optical lattices. In deriving the implicit eigenequation, we
again put emphasis on a detailed understanding of how the
solution arises, thus developing a greater understanding of
the underlying physics. The implicit eigenequation can be
solved straightforwardly, and allows for a direct classifica-
tion scheme of the resulting eigenspectrum. Our analysis
sheds further light on the intricate properties of angle-
dependent scattering processes and their description through
a regularized zero-range pseudopotential with infinitely
many terms. By additionally calculating the eigenenergies
for two dipoles interacting through a finite range model po-
tential numerically, we assess the applicability of the devel-
oped zero-range pseudopotential treatment. We find good
agreement between the two sets of eigenenergies for small
D* and quantify the deviations as D* increases. The calcu-
lated energy spectrum may aid on-going experiments on di-
polar Bose and Fermi gases. Finally, we show that the valid-
ity regime of Vpp,reg can be extended by parametrizing the
scattering strengths of Vpp,reg in terms of the energy-
dependent K matrix calculated for a realistic model potential.
This may prove useful also when describing resonantly in-
teracting dipoles.

At first sight it may seem counterintuitive to replace the
long-range dipolar interaction by a zero-range pseudopoten-
tial. However, if the length scales of the interaction potential,
i.e., the van der Waals length scale characterizing the short-
range part and the dipole length characterizing the long-
range part of the potential, are smaller than the characteristic
length of the trap aho, this approach is justified since the
zero-range pseudopotential is designed to reproduce the
K-matrix elements of the “true” interaction potential. This is
particularly true if the pseudopotential is taken to contain
infinitely many terms, as done in this work.
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APPENDIX

In this Appendix, we evaluate the following infinite sum,

Cl = � �2l+1

�r2l+1�rl+1�
n=0

� �Rnl
* �r�
rl 	

r→0
Rnl�r�

2�� − n −
l

2
��� ��

r→0

. �A1�

Writing the radial harmonic oscillator functions Rnl�r� in
terms of the Laguerre polynomials Ln

�l+1/2�,

Rnl�r� =
 2l+2

�2l + 1�!!�1/2Ln
�l+1/2��0�aho

3

�exp�−
r2

2aho
2 �� r

aho
�l

Ln
�l+1/2��r2/aho

2 � , �A2�

we find

�Rnl�r�
rl 	

r→0
=
 2l+2Ln

�l+1/2��0�
�2l + 1�!!�1/2aho

2l+3 . �A3�

Using Eqs. �A2� and �A3�, the Cl can be rewritten as

Cl =
2l+1

�2l + 1�!!�1/2aho
2l+3

� � �2l+1

�r2l+1�exp� − r2

2aho
2 �r2l+1�

n=0

� Ln
�l+1/2��� r

aho
�2�

�� − n −
l

2
��� ��

r→0

.

�A4�

We evaluate the infinite sum in Eq. �A4� using the properties
of the generating function �42�,

�
n=0

�
Ln

�l+1/2���r/aho�2�

� − n −
l

2

= − ��− � + l/2�U�− � + l/2,l + 3/2,�r/aho�2� . �A5�

Using Eq. �A5� together with the small r behavior of the
hypergeometric function U �43�, the expression for the Cl
reduces to

Cl =
�− 1�l22l+2�2l�!!

�2l + 1�!!

��− � +
l

2
�

��− � −
l + 1

2
�

1

��aho
2l+3 . �A6�
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