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We study a Bose-Einstein condensate of a dilute gas with dipolar interactions, at finite temperature, using the
Hartree-Fock-Bogoliubov theory within the Popov approximation. An additional approximation involving the
dipolar exchange interaction is made to facilitate the computation. We calculate the temperature dependence of
the condensate fraction of a condensate confined in a cylindrically symmetric harmonic trap. We show that the
biconcave-shaped condensates found in �Ronen et al. Phys. Rev. Lett. 98, 30406 �2007�� in certain pancake
traps at zero temperature are also stable at finite temperature. Surprisingly, the dip in the central density of
these structured condensates is actually enhanced at low finite temperatures. We explain this effect.
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I. INTRODUCTION

The realization of a Bose-Einstein condensate �BEC� of
52Cr �1� marked a major development in degenerate quantum
gases in that the interparticle interaction via magnetic dipoles
in this BEC is much larger than that in alkali-metal atoms
and leads to an observable change in the shape of the con-
densate. The long-range nature and anisotropy of the dipolar
interaction pose challenging questions about the stability of
the BEC and have led to predictions of unique phenomena,
such as roton-maxon spectra, different phases of vortex lat-
tices, biconcave-shaped condensates, and novel spin textures
�2–16�.

The effect of finite temperature on these phenomena, or
new temperature-dependent effects, remains largely unex-
plored. Theoretical finite-temperature studies have been con-
fined to path-integral Monte Carlo simulations �9� of a small
number �100� of particles and to a homogeneous, quasi-one-
dimensional �quasi-1D� system �17�. In the latter work, the
Popov approximation to the Hartree-Fock-Bogoliubov
�HFB� theory has been applied �18,19�. In systems with
short-range interactions, the Popov approximation has been
found to give excitation spectra in good agreement with ex-
periment for temperatures up to half the critical temperature
for condensation �20�. For the density profile, good accuracy
was shown for even higher temperatures, up to the critical
temperature.

In �13� we have introduced a computational algorithm
which allowed us to calculate the Bogoliubov excitation
spectrum of dipolar condensates in cylindrically symmetric
3D traps at zero temperature. Here we extend this work in a
natural way to describe finite-temperature properties in the
Popov approximation. In essence, the Popov approximation
is a self-consistent solution in which the Bogoliubov excita-
tion spectrum is computed and the different excitation modes
populated according to Bose statistics. This leads to deple-
tion of the condensate and thus a shift in excitation frequen-

cies. The excitation spectrum is recalculated iteratively until
self-consistency is achieved.

II. FORMALISM

The HFB-Popov equations for the case of short-range in-
teractions have been described by Griffin �18�. The generali-
zation to long-range interactions is straightforward, and we
therefore briefly formulate it in this section. The confined
Bose gas is portrayed as a thermodynamic equilibrium sys-
tem under the grand-canonical ensemble whose thermody-
namic variables are the temperature T and the chemical po-
tential �. There is a one-to-one relationship between the
chemical potential � and the total number of particles, N.
Below the critical temperature, N0 of the atoms are in a con-
densate state. The system Hamiltonian K for the system with
a fixed chemical potential is then obtained from the Hamil-
tonian H of the system with fixed number of total particles
via a Legendre transform and has the form

K = H − �N =� dr�̂†�r��H0 − ���̂�r�

+
1

2
� �̂†�r��̂†�r��V�r� − r��̂�r���̂�r� , �1�

where �̂�r� is the Bose field operator that annihilates an
atom at position r, H0= �−�2 /2M��2+Vtrap�r� contains the
kinetic energy and the trap potential, and V�r� is the particle-
particle interaction potential. For the system treated here, the
trap potential is cylindrically symmetric: Vtrap�r�=M���

2�2

+�z
2z2� /2, where M is the atomic mass and �� and �z are the

radial and axial trap frequencies, respectively. For polar
gases the potential V�r� may be written

V�r� =
4��2a

M
��r� + d21 − 3 cos2 �

r3 , �2�

where a is the scattering length, d the dipole moment, r the
distance between the dipoles, and � the angle between the*bohn@murphy.colorado.edu
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vector r and the direction of polarization, which is aligned
along the trap z axis.

The Bose field operator is decomposed into a c-number
condensate wave function plus an operator describing the

noncondensate part, �̂�r�=�N0	�r�+ 
̃�r�, and inserted into

Eq. �1�. Terms cubic and quartic in 
̃�r� are treated within
the mean-field approximation and the grand-canonical
Hamiltonian reduces to a sum of three terms: K=K0+K1
+K2. The first term K0 is a c number, the second term K1 is

linear in 
̃�r� �and its Hermitian conjugate�, and the last term
K2 is quadratic in these quantities. Within the Popov approxi-
mation, the so-called anomalous terms arising from mean

field averages of the form �
̃
̃� are ignored and only “nor-

mal” terms of the form �
̃†
̃�are included �18�. For a system
in equilibrium the linear term K1 is required to vanish iden-
tically, giving a generalized Gross-Pitaevskii �GP� equation
for 	�r�:

	H0 +� dr�N0
	�r��
2 + ñ�r��V�r� − r��	�r�

+� ñ�r�,r�V�r� − r�	�r�� = �	�r� , �3�

where ñ�r���
̃†�r�
̃�r�� is the density of the noncondensate

�thermal� atoms and ñ�r� ,r���
̃†�r��
̃�r�� is the one-particle
reduced density matrix, or the correlation function, of the
noncondensate atoms. The term involving ñ�r� represents the
mean-field contribution due to direct interaction between the
thermal cloud and the condensate. The term involving
ñ�r� ,r� represents the contribution of exchange interaction
between the thermal cloud and the condensate. Note that for
V with only short-range interaction, the exchange term re-
duces in form to that of the direct one. But for long-range
interaction, the nonlocal correlation function is needed. Also,
note that a more careful treatment �21,22� reveals that, for an
atom-number-conserving system, the factor N0 in Eq. �3�
should be replaced by N0−1. This correction is negligible for
N0� �1.

The term K2 has the form

K2 =� dr
̃†�r�L
̃�r� +� drdr�
̃†�r��n�r,r��V�r� − r�
̃�r�

+
N0

2
� drdr�
̃†�r��
̃†�r�V�r� − r�	�r�	�r��

+
N0

2
� drdr�
̃�r��
̃�r�V�r� − r�	*�r�	*�r�� , �4�

where L=H0−�+
dr�V�r�−r�n�r��, in which n�r��= ñ�r��
+N0 
	�r��
2 is the total density and n�r ,r��= ñ�r ,r��
+N0	*�r�	�r�� is the total correlation function.

The term K2 can be diagonalized by the Bogoliubov trans-
formation


̃�r� = �
j

�uj�r�� j + 
 j
*�r�� j

†� �5�

if the quasiparticle amplitudes uj�r� and 
 j�r� satisfy the
coupled HFB-Popov equations

Ejuj�r� = Luj�r� +� dr�V�r� − r�n�r�,r�uj�r��

+ N0� dr�	�r��V�r� − r�
�r��	�r� , �6a�

Ej
 j�r� = L
 j�r� +� dr�V�r� − r�n�r,r��
 j�r��

+ N0� dr�	�r��*V�r� − r�u�r��	�r�*. �6b�

The quasiparticle annihilation and creation operators � j
and � j

† satisfy the usual Bose commutation relations.
In terms of u’s and 
’s, the thermal density correlation

function is written as

ñ�r�,r� = �
j

�uj
*�r��uj�r� + 
 j�r��
 j

*�r��Nex�Ej� + 
 j�r��
 j
*�r� ,

�7�

where Nex�Ej� is the Bose distribution for the quasiparticle
excitations:

Nex�Ej� � ��̂ j
†�̂ j� =

1

exp� Ej

kBT
� − 1

. �8�

The expression for ñ�r� in terms of u and 
 is obtained by
setting r�=r in Eq. �7�. Similar expressions may be easily
obtained for the total and release energy of the condensate in
the trap.

As usual, the self-consistent HFB-Popov equations �3�
and �6� are solved iteratively. At first, one sets ñ�r� ,r�
= ñ�r�=0. The thermal component contribution is then up-
dated at each further step using Eq. �7� until convergence is
reached.

It can be appreciated that long-range interactions present a
significant challenge to the computational implementation of
the HFB-Popov method. The difficulties arise even for zero
temperature, where �ignoring the negligible quantum deple-
tion� the HFB-Popov equations reduce to the Bogoliubov–de
Gennes �BdG� equations, which due to the long-range ex-
change interactions, are now integro-differential rather than
simply differential equations. In Ref. �13� we have intro-
duced a new algorithm, which enabled us to solve the BdG
equations for a gas with dipolar interactions in a 3D trap with
cylindrical symmetry, by utilizing the cylindrical symmetry
to reduce the effective dimensionality of the problem from
3D to 2D. For the finite temperatures with which the HFB-
Popov method is concerned, the long-range interactions in-
troduce an additional difficulty: Equations �3� and �6� in-
volve not only the thermal density ñ�r�, but also the thermal
correlation function ñ�r� ,r�. The most difficult terms are
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those involving the long-range exchange interaction such as

dr�V�r�−r�n�r� ,r�uj�r�� in Eq. �6b�. In the case where there
is no thermal component, the total correlation function is
expressed as a direct product: n�r� ,r�=	*�r��	�r�. In this
case, the above exchange term may be effectively evaluated
by the use of Hankel-Fourier transform �13�. In the presence
of a thermal component, the total correlation function does
not have such a direct product decomposition. It might be
possible to circumvent this complication by direct evaluation
of the exchange integral on a spatial grid �without resort to
Fourier transforms; see, for example, �23��—however, this is
complicated by the singular nature �1/r3behavior� of dipolar
interactions at the origin.

To obtain a feasible numerically solvable problem, we
therefore make an additional approximation: in Eqs. �3� and
�6� we let ñ�r� ,r�=0 for r��r, or equivalently, we let
n�r� ,r�=	�r��*	�r�. Physically, in Eq. �3� this amounts to
ignoring the forces on the condensed part due to the long-
range exchange interaction with the thermalized part. In Eq.
�6� this amounts to ignoring the long-range exchange inter-
action between the thermal component of the gas and itself.
On the other hand, in Eq. �6� we do take into account the
effect on excitation modes and frequencies due to the long-
range exchange interaction with the condensate. We treat ex-
actly the long-range direct interactions which involve n�r�.
We also treat exactly the short-range �contact� interaction,
for which the exchange and direct terms are identical.

A partial justification for the above scheme may be found
in the good agreement between the “two-gas model” of di-
lute BECs and the full HFB-Popov description for gases with
short-range interactions �24�. In the two-gas description, the
condensate wave function is that of a T=0 BEC with the
appropriate �depleted� number of condensate atoms N0 and
the surrounding thermal cloud is described by the statistical
mechanics of an ideal gas in the combined potentials of the
trap and the cloud-condensate interaction. The full HFB-
Popov description may be reduced to the two-gas description
by letting ñ�r ,r��=0 for all r ,r�, so that, in particular, ñ�r�
� ñ�r ,r�=0. The reason for the success of the two-gas model
seems to derive from the fact that the thermal component is
typically much more dilute than the condensate part. There-
fore, to a good approximation, it may be described as an
ideal gas. The approach suggested above for the treatment of
dipolar BEC at T�0 may be described as treating the ther-
mal component as “partly ideal”—i.e., “ideal” only with re-
spect to long-range exchange interactions. Thus, it is a com-
promise between the full HFB-Popov method and the two-
gas description.

Moreover, we note as a general thermodynamical property
that the correlation function ñ�r� ,r� naturally decreases to-
wards zero with increase in temperature �for r��r�. Thus,
with increasing temperature, it makes sense to ignore the
thermal long-range exchange interaction which is due to the
correlation function of the thermal component of the gas.

The number of excitation modes that need to be taken into
account in Eq. �6b� in order to saturate the thermal cloud
density is very large �tens of thousands�. For the higher ex-
citation modes, the semiclassical description has proved very
useful and accurate �13,25�. Thus, we follow the approach of

solving Eqs. �6� for discrete modes up to an appropriate en-
ergy cutoff and using their semiclassical version �13� for
modes above this energy cutoff. The energy cutoff is typi-
cally somewhat larger than the chemical potential and is ad-
justed in each specific case until convergence is achieved.

III. RESULTS

A. Cr in a pancake trap

We first study the effects of temperature for a 52Cr gas in
a trap with frequencies ��=2��100 Hz and �z=2�
�400 Hz �a pancake trap�. The magnetic-dipole moment of
polarized Cr is relatively large for atoms, 6-bohr magnetons.
However, the resulting dipole-dipole interaction is still small
compared to the strength of the short-range interaction �scat-
tering length a=96a0 �26��. A useful parameter here is the
dimensionless quantity �dd= md2

3�2/a
. A homogeneous conden-

sate is unstable if �dd�1 �27�. For Cr, �dd=0.16. However,
using a Feshbach resonance, it is possible to reduce the scat-
tering length and thus increase the dipolar effects �31�. For
the present study we assume a reduced scattering length of
20a0, so that �dd=0.8. The number of atoms in the trap is
taken to be 105.

In Fig. 1 we show the condensate fraction in the pancake
trap as a function of temperature. For comparison, we have
included results of an unpolarized gas by setting the dipole
moment d=0. It is seen that the effect of the polarization of
the gas is to decrease the condensate fraction at any given
temperature, compared to the nonpolarized gas. As a result
the critical temperature is also reduced. This effect may be
expected since in a pancake trap the average dipolar interac-
tion is repulsive; thus, the thermal effect due to polarization
is similar to that of increasing the scattering length.

In Fig. 2 we plot the eigenfrequencies of the lowest col-
lective modes. Although the dipolar interaction causes large
shifts in the frequencies, the temperature dependence of
these shifts is very small, except very near the critical tem-
perature. The shift in frequencies due to polarization is,
qualitatively, similar to that of increasing the effective short-
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FIG. 1. �Color online� Condensate fraction as a function of tem-
perature in a pancake trap with aspect ratio 1:4 �i.e., �� /�z=1/4�:
unpolarized, i.e., dipole moment set to zero �dashed line�, polarized
�solid line�, and ideal gas �dotted line�. The total number of 52Cr
atoms is 100 000.
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range repulsion. Note the Kohn mode �� /��=1� which
should remain constant at 1. The slight deviation from 1 at
higher temperatures is due to Popov approximation which in
effect computes the dynamics of the condensate in the pres-
ence of a static thermal component. A more correct descrip-
tion should treat both components dynamically. Neverthe-
less, the deviation of the Kohn mode from the theoretical
value of 1 is small.

B. Cr in a cigar trap

Figures 3 and 4 show the condensate fraction and lowest
collective-mode frequencies as a function of temperature for
a 52Cr gas in a cigar trap with �z=2��100 Hz and ��

=2��400 Hz �with a reduced scattering length a=20a0 as
before�. Notice that now the effect of the dipolar interaction
is to increase the condensate fraction at any given tempera-
ture, thus increasing also the critical temperature for the on-
set of condensation. Again, this can be understood due to the
dipolar interaction being effectively attractive in a cigar ge-

ometry. Similar to the case of a pancake trap, the dipolar
interaction leads to significant shift in the frequencies of the
low modes, but these shifts depend only weakly on tempera-
ture.

C. Biconcave condensates

We now turn to examine the finite-temperate effects on
the biconcave-shaped condensate reported in Ref. �2�. There,
we found an interesting novel structure of pure dipolar con-
densates in pancake traps at zero temperature. For an appro-
priate choice of parameters, the condensate density does not
obtain its maximum in the center of the trap. Rather, the
maximum density is obtained along a ring and the center of
the trap is the local minimum of the density. This gives rise
to a biconcave condensate shape similar to that of a red-
blood cell. Recently, other shapes have been predicted in
noncylindrically symmetric traps �28�. In this section, we
investigate the temperature effect on the biconcave conden-
sate in a cylindrically symmetric trap.

In Fig. 5 we plot the condensate fraction as a function of
temperature for a pure 52Cr dipolar condensate �i.e., where
the scattering length has been tuned to zero via a Feshbach
resonance� in a pancake trap with aspect ratio �� /�z=1/7.
For number of particles N=16 300, a biconcave structure is
formed at T=0. In this figure it is notable that the dipolar
interaction brings about significant change �about 10%� in
the condensate fraction for temperatures of order half the
critical temperature. Yet the critical temperature itself is al-
most unchanged. Indeed, the analytical formula of Refs.
�29,30� predicts a very small reduction of 0.5% in the critical
temperature.

An interesting question is, what happens to the biconcave
structure with the increase in temperature? The biconcave
shape eventually washes out by T=Tc, yet �as we shall show�
the shape persists to surprisingly high temperature. To study
this, we define a contrast parameter c=1−n�0� /nmax, where
n�0� is the central density and nmax is the maximal density.
For a normal density profile where the maximal density is
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FIG. 2. �Color online� Lowest excitation frequencies a function
of temperature for a 52Cr condensate in a pancake trap with aspect
ratio 1:4: polarized �solid lines� and unpolarized �dashed lines�. For
each angular momentum number m=0,1 ,2 ,3, we plot only the
lowest mode with this m.
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FIG. 3. �Color online� Condensate fraction as a function of tem-
perature in a cigar trap with aspect ratio 4:1: unpolarized �dashed
line�, polarized �solid line�, and ideal gas �dotted line�.
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FIG. 4. �Color online� Lowest excitation frequencies as a func-
tion of temperature for a 52Cr condensate in a cigar trap with aspect
ratio 4:1: polarized �solid lines� and unpolarized �dashed lines�.
Only modes which are even in the z direction are shown. For each
angular momentum number m=0,1 ,2 ,3, we plot only the lowest
even mode with this m.
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obtained at the center, c=0. In Fig. 6 we plot the biconcave
structure parameter for the total density profile, as well as for
the condensed part alone, as a function of temperature. It is
seen that when the temperature approaches about 70% of the
critical temperature, the biconcave structure disappears. Gen-
erally, one would expect the disappearance of the biconcave
structure due to the thermal excitations. We note that accord-
ing to Ref. �2�, the biconcave contrast �at T=0� is reduced
with decreased number of particles. Thus, when the conden-
sate is depleted, we also expect the biconcave parameter to
decrease. For T�0.15Tc, this is indeed the case. But for
lower temperatures, we see that the biconcave contrast, for
both the total density and the condensed part alone, slightly
increases with temperature.

To understand this effect, let us first consider the density
profile of the thermal cloud alone. Consider first the simplest

case of an ideal gas in a harmonic trap. The thermal cloud
occupies harmonic oscillator states according to Bose statis-
tics. The lowest and most populated excited state, one above
the ground state, has a node at the center of the trap. Thus, at
low temperatures, one expects the thermal cloud to have re-
duced density at the center of the trap, even in the absence of
repulsive short-range interactions. This effect is easily veri-
fied by numerical simulations and is seen to be more pro-
nounced when the dimensionality is reduced, such as in
highly pancake or cigar traps. Of course, for an ideal gas, the
total density �thermal+condensate� still has its maximum at
the center.

Consider now the dipolar gas. As the temperature is raised
from T=0, the lowest and most populated thermal gas mode
is a sloshing �Kohn mode� with a node in the center. Thus for
low temperatures the thermal component has lower density
at the center, as is demonstrated in Fig. 7. The thermal com-
ponent creates in turn a mean field, which is shown in Fig. 8.
It shows that the maximum mean-field potential is obtained
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FIG. 5. �Color online� Condensate fraction as a function of tem-
perature in a pancake trap with aspect ratio 1:7, for which bicon-
cave structure is formed at T=0: polarized �solid line� and ideal gas
�dotted line�. The total number of 52Cr atoms is 16 300. The scat-
tering length is assumed tuned to 0.
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perature in a pancake trap with aspect ratio 1:7. Solid line: contrast
parameter for the total density. Dashed line: contrast parameter for
the condensed part. Inset: illustration of a typical biconcave density
profile showing how the biconcave contrast c is defined.
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FIG. 7. �Color online� Radial density profiles of the condensate
density �solid line� and 10� the thermal component density �dashed
line�. Note that we scaled the thermal component density by a factor
of 10 for visual comparison. The trap aspect ratio is 1:7 as in Fig. 6,
and the temperature is T=0.2Tc, where Tc is the critical
temperature.
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FIG. 8. �Color online� The mean dipolar field due to the thermal
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in the center of the trap, even though this is not where the
place of maximum thermal component density. This is due to
the long-range nature of the dipolar interaction: the contribu-
tions from the ring of maximal density of the thermal cloud
add together in the center of trap. The mean field due to the
thermal cloud causes the condensate part to be repelled from
the center. The result is that the biconcave contrast of the
condensate is larger than it would have been with the same
number of condensed particles in a pure harmonic trap with
no thermal component. This gives rise to the behavior seen
in Fig. 6 at low temperatures.

A caveat is that, as mentioned above, we made an ap-
proximation in our computations by ignoring thermal ex-
change effects. This may, in principle modify the effect of
the thermal component on the condensed part, at low tem-
peratures in particular. Exploring the effect of the thermal
exchange interaction would require a considerably heavier
computation than undertaken in this current work.

In Fig. 9 we plot the lowest excitation frequencies as a
function of temperature for the pancake trap with aspect ratio
1:7 �containing the above-mentioned biconcave structure�.
The m=1 is as usual the Kohn mode. Note that at T=0 the
m=2 and m=3 modes are lower than the m=1 mode. The
near degeneracy of the m=1 and m=2 modes at T=0 is
accidental: for a higher number of particles, the m=2 and
m=3 modes actually go below the m=1 mode, a conse-
quence of the discrete rotonlike spectrum discussed in Ref.
�2�. Close to the critical temperature the excitation energies
approach their ideal gas values, as might be expected due to
the decreasing density of the gas. In between there is an
interesting crossing between the m=0 and m=3 modes.

D. Comparison with Monte Carlo simulations

Finally, we have attempted to compare the HFB-Popov
method with the path-integral Monte Carlo simulations of

Nho and Landau �9�. However, we do not find a good agree-
ment. The energies with HFB-Popov approximation for a
dipolar condensate in a pancake trap came about 10% higher
than the Monte Carlo simulation, with a similar discrepancy
in the shape �width� of the dipolar condensates. We note that
the Monte Carlo simulations were performed for a very small
number of particles, between 27 and 125. Under these con-
ditions, the critical temperature is very small, of the order of
the trap frequencies, and in fact lower than the chemical
potential. Thus, only a few low modes are excited even close
to the critical temperature Tc. At the simulated temperature
of 0.4Tc the density of the thermal gas is of the order of that
of the condensate and there is a large overlap between the
two. Under these conditions it may be expected that the ap-
proximation of ignoring the thermal-thermal dipolar ex-
change interactions is invalid. Thus, it is plausible that the
disagreement is due to this additional approximation rather
than the inadequacy of the HFB-Popov method. But for a
number of particles of the order of 104–105, the critical tem-
perature is much higher than the trap frequencies and the
density of the thermal cloud significantly lower than that of
the condensate. Thus, we believe our method should still
give valid results under normal experimental conditions.

IV. CONCLUSIONS

In conclusion, we applied the Hartree-Fock-Bogoliubov-
Popov approximation to dipolar gases in harmonic, cylindri-
cally symmetric traps. For computational reasons, the ex-
change interaction due to the thermal gas has to be ignored
�i.e., we ignore exchange interaction due to long-range spa-
tial correlation in the thermal component�. For normal con-
figurations where the condensate structure at T=0 has a
maximum at the center, we observe a temperature-dependent
behavior similar to that of a gases with contact interaction
�19,20�, but the behavior depends on the aspect ratio of the
trap: for pancake traps, the dipolar interaction is effectively
repulsive, leading to reduction of condensed part at a given
temperature and thus also a reduction of the critical tempera-
ture for condensation, while in a cigar trap, it is effectively
attractive, leading to the opposite thermal effects. For con-
figurations where biconcave structure exists at T=0, we find
the somewhat surprising result that this structure is actually
enhanced at low temperatures �i.e., the ratio of the central
density to the maximal density is reduced�. For higher tem-
peratures, the biconcave structure gradually becomes less
distinct and it disappears at a temperature of about 75% of
the critical temperature. The low excitation spectrum of the
biconcave structure also shows interesting temperature de-
pendence with crossing between different modes.
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FIG. 9. �Color online� Lowest excitation frequencies as a func-
tion of temperature for a 52Cr condensate in a pancake trap with
aspect ratio 1:7. Solid line: lowest m=0 mode. Dashed line: m=1
mode. Dash-dotted line: m=2 mode. Dotted line: m=3 mode.
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