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Dynamical pattern formation during growth of a dual-species Bose-Einstein condensate
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We simulate the growth of a dual species Bose-Einstein condensate using a Gross-Pitaevskii equation with
an additional gain term giving rise to the growth. Such growth occurs during simultaneous evaporative cooling
of a mixture of two gases. The ground state of a dual condensate is normally either a miscible mixture, or an
immiscible phase with two spatially separated components. In a cigar trap the ground state typically consists of
one component in the center, and the other component flanking it. Our simulations show that when the
condensates are formed in a cigar trap and the mixture is phase separated, then the final state upon the end of
the growth is generally far from the true ground state of the system. Instead it consists of multiple, interleaved
bubbles of the two species. Such a pattern was observed recently in an experiment by Wieman’s group at JILA
[Papp, Pino, and Wieman, Phys. Rev. Lett. 101, 040402 (2008)], and our simulations are in good qualitative
agreement with the experiment. We explain the pattern formation as due to the onset of modulation instability

during growth, and study the dependence of the final state pattern on various parameters of the system.
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I. INTRODUCTION

As with common fluid mixtures, dual species Bose-
Einstein condensates (BECs) may exhibit both miscible and
immiscible phases. In the miscible phase, the two species
form a homogeneous solution, while in the immiscible
phase, they separate spatially [1,2]. In a BEC, the occurrence
of these phases is controlled by the ratio of the intercompo-
nent interaction to that of the intracomponent interactions.

The ground state structure of the immiscible phase is typi-
cally that of a ball and shell where one species forms a shell
around the other, or that of two condensates lying side by
side. In a quasi-one-dimensional (1D) trap, the structure can
be of one component flanked by the other. The exact struc-
ture depends on the shape of the trap, the size of each com-
ponent, and the interactions between them. In general, the
two components tend to minimize the surface area that sepa-
rates them, as this surface contributes surface tension energy
[2-6].

By starting from the ground state of a miscible phase and
increasing the intercomponent repulsion (relative to the in-
tracomponent interactions), it is possible to make a transition
from the miscible to the immiscible phase. Such a change in
the interactions can bring about a modulation instability
where the two components separate locally and form a pat-
tern of interleaved bubbles. Alternatively, such a pattern
emerges when half the population of one pure component is
suddenly transferred to another one, and the two components
separate [7-9].
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A recent experiment [10] on a mixture of *Rb and %’Rb
in an elongated cigar trap, observed an intriguing modulated
pattern upon the end of evaporative cooling (shown in figure
4 of that reference). The pattern is that of separated and
interleaved “bubbles” of the two components, with up to 3 or
4 bubbles from each component. This behavior is seen when
the intercomponent repulsion is strong compared to the in-
tracomponent interactions, i.e., when an immiscible phase is
expected. These specific patterns were observed even under
conditions when the interactions strengths were kept constant
during and after the evaporative cooling. Nor is there popu-
lation transfer involved, as the two components are different
isotopes. Following evaporative cooling one may then expect
to obtain a binary condensate in its ground state. But the
observed modulated pattern does not look like the ground
state of the system.

In this paper we suggest that the emergence of this pattern
has to do with the dynamics of the formation of the binary
condensate during the evaporative cooling. When the con-
densates are formed they are initially very small. Their mu-
tual interaction (proportional to the densities) is then weak
and we expect them to coexist spatially, even when the pre-
dicted phase for a Thomas-Fermi (large number of atoms)
regime is immiscible. As the condensates grow, spatial sepa-
ration is triggered by the growing intercomponent repulsion.
One may expect this to bring about a modulation instability
giving rise to the final observed spatial pattern.

Our aim in this paper is to demonstrate this mechanism,
predict the conditions for the formation of the spatial struc-
ture, and determine the factors that influence the number of
bubbles formed. The paper is organized as follows. In Sec. II
we give the theoretical background: we present the Gross-
Pitaevskii gain model for a double condensate, and review
the theory of modulation instability mechanism. In Sec. III
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we present and discuss the results of our numerical simula-
tions. We summarize our conclusions in Sec. I'V.

II. BINARY CONDENSATE GROWTH MODELING
A. Gross-Pitaevskii gain model

We are interested in the dynamics of the formation and
growth of the binary condensate during the evaporative cool-
ing, in order to understand the final spatial pattern that
emerges. The description of BEC growth is a challenging
theoretical problem. In principle, it is possible to perform
first-principles numerical simulations of the relevant equa-
tions [11,12]. However, a great deal of physical insight can
be obtained from a simpler model. In the first instance, the
thermal cloud is much more dilute than the condensate.
Therefore, it is plausible to treat the system as a two fluid
model, where the thermal component is assumed to be an
ideal gas and its interactions with the condensate are ne-
glected. If one is only interested in the condensate, then the
role of the thermal component is simply that of a particle
reservoir feeding the growing condensate. One thus arrives at
the Gross-Pitaevskii gain model [13]. This is a Gross-
Pitaevskii equation modified by a linear gain term. For two
components, the Gross-Pitaevskii gain equations (GPGE)
read
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Here, W, and W, are the wave functions corresponding to
the two condensates. The normalization of each wave func-
tion is taken independently as [dr|W,(r)|*=N,. m, and m, are
the corresponding atomic masses. The condensates are as-
sumed to be trapped in axis-symmetric harmonic potentials

. 1
VE(r.2) = Emi[wfrz + “’?(i)(Z -Z), i=12, (2

where ,,w_; are the radial and transverse trapping frequen-
cies and Z; the axial center of the traps. We allow for the
possibility of different axial trapping frequencies for the two
condensates, as well as for a relative axial shift Z,—Z; be-
tween the centers of the traps, as occurs in the experiment
[10].

The intracomponent coupling constants g;=4mh2a;/m; are
characterized by the scattering lengths @, and a, between
atoms of the same species, while the intercomponent cou-
pling g,=2mh%a,,/m;, (with m%fi"'m%) is determined by
the scattering length a;,, where an atom of component 1
scatters from an atom of component 2. The I';’s are the gain
terms. They contribute to the growth of component i within
time scale 1/1°;. Intuitively, the growth terms arise from bo-

son statistics, where the probability to add an additional atom
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to condensate i is proportional to the number of atoms al-
ready condensed. In practice these are phenomenological pa-
rameters and may be estimated by fitting to an experiment.

B. Modulation instability mechanism

Following the analysis of Refs. [3,5,10] we define the
parameter

A=gg)/gh,~ 1 (3)

that depends upon the ratio of the single species and inter-
species interactions. When the number of atoms is large
enough the system may be treated by the Thomas-Fermi ap-
proximation, which neglects the kinetic energy. Assuming
g12>0, there are two regimes: A>0, where the two conden-
sates are miscible and A <0, where they are immiscible due
to the interspecies repulsion.

It is important to bear in mind that this classification is
correct only when the Thomas-Fermi approximation is valid.
It does not hold for small, trapped condensates, where the
kinetic energy terms are significant. In the numerical simu-
lations presented in the next section we shall show that in
this case the condensates can initially coexist spatially even
when A <0. As they grow, spatial separation sets in. To have
a better understanding of the dynamics of spatial separation,
it is useful to consider an idealized system, of two homoge-
neous condensates in a quasi one dimensional geometry (rel-
evant to the experiment [10]), with respective densities n,
and n,, coexisting spatially at time #=0, as discussed in detail
in Refs. [7,9]. If A>0, the system is stable. If A<0, the
initial state is unstable, and an initially homogeneous system
will evolve dynamically. In this so-called modulation insta-
bility mechanism, the two components separate, and the
separation occurs in a wave pattern with a typical length
scale which depends on the relative interactions and densi-
ties. Regions of over-density of one component appear in
regions of under-density of the other component, and vice
versa. Nonlinearity accelerates the process and brings about
complete spatial separation. A pattern of interleaved bubbles
of the two components emerges. The final spatial pattern can
be very stable, since there is no room for movement to “the
sides,” and the energy barrier for tunneling between the sepa-
rated bubbles is very big.

The analysis of the modulation instability in a dual com-
ponent BEC in a quasi-1D geometry was done in Ref. [7].
There, the assumption of equal masses m;=m,=m has also
been made, which considerably simplifies the analysis. The
behavior of the system at small #>0 can be deduced from
the excitation spectrum. The eigenmodes of the system are
characterized by a longitudinal wave number k and fre-
quency (). For each eigenmode, the wave number k is shared
by the two components [16]. The instability manifests itself
in a continuous range of modes which have imaginary fre-
quencies. The most unstable mode is that with imaginary
frequency of maximum absolute value. This is the mode that
will grow fastest. Its wave number k,,,, is found to be
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FIG. 1. (Color online) Calculated ground state of a dual
(*Rb/%"Rb) condensate in an immiscible phase, in a cigar shaped
trap. Shown are the axial density profiles. The interaction param-
eters are ags=200 bohr, ag;=99 bohr, ags g7=214 bohr. The trap
parameters are radial frequency 27X 130 Hz for both components,
axial frequency 27X 2.9 Hz for 8Rb, and 27X 2.6 Hz for *’Rb.
The number of atoms is 5 X 10* in each component.
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where b is the radial harmonic oscillator length b= \/ﬁ, and
we assume here m;=m,=m.
The imaginary frequency of this mode is found to be
fik;

Gmax = Im(deX) = Z;I;lax 2 (5)

and the time scale for growth iS 7\, =27/ G ..

III. NUMERICAL SIMULATIONS
A. Mechanism of dynamical phase separation

We have performed numerical simulations of the growth
of the dual %Rb/®'Rb condensate based on Eq. (1). In cor-
respondence with the experiment [10], all our simulations
have the following fixed parameters. ag;=99 bohr is the scat-
tering length of %’Rb. ags ¢;=214 bohr is the interspecies
scattering length. The trap parameters are radial frequency
27X 130 Hz for both components, axial frequency 2
X 2.9 Hz for ¥Rb, and 27X 2.6 Hz for *'Rb.

We first demonstrate that the true ground state of the sys-
tem in an immiscible phase is indeed quite simple, as de-
scribed above. We computed the ground state with ags=200,
and the other scattering lengths fixed as above, so that A
< 0. The ground state for this system with 50 000 atoms in
each component is shown in Fig. 1. The calculation is 3D,
and the figure shows the density profile p(z) along the long z
axis, where p(z)=[p(x,y,z)dxdy. We have also performed
additional computations which modeled the effects of a
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gravitational sag that breaks the cylindrical symmetry and
slightly shifts the centers of masses of the two components.
In all cases, the ground state was still similar in shape to that
of Fig. 1.

We now investigate the consequences of a dynamical
growth of a dual condensate during evaporative cooling. The
exact growth time of the condensates in the experiment [10]
is not known, but has been roughly estimated to be between
100-500 ms [17]. In our simulations we begin with the
ground state consisting of ten atoms of each component, and
let the condensates grow for 300 ms. We choose gain terms
I'=I,=14.2 57!, giving rise to a final population of 51 000
atoms in each component. The number of atoms N;(f) of
component i at time ¢ can be calculated from N,(r)
=N;(0)e*'". We assume that after 300 ms full condensation
has been achieved and the growth is terminated. The I';’s are
then set to zero and further dynamics are atom number con-
serving. Figure 2 shows stages in the growth of the dual
condensate under these conditions. Animations of this evolu-
tion are available through EPAPS [18].

In the initial state (panel r=0), the number of atoms is
very small so that the mean field interactions are weak. Each
condensate’s shape is essentially Gaussian and they are al-
most perfectly overlapping. As the density grows (due to the
imaginary gain term), the interactions kick in (around
130 ms, compare panels =120 and =180), leading to phase
separation at the center, where density is largest. After the
end of the growth (at 300 ms, panel t=300) the modulation
pattern is observed to be quite stable, apart from a breathing
motion, with the components almost fully separated and
forming multiple interleaved bubbles, as shown in Fig. 3.
Note the increasing vertical scales, which account for grow-
ing particle numbers.

The onset of the immiscibility is triggered by the emer-
gence of the modulation instability. The natural wavelength
of the modulation instability corresponds to the unstable
mode with maximum imaginary amplitude. This is 27/ k.,
where k,, is given by Eq. (4); for the purpose of using this
equation, which assumes species with equal masses, we use
the average mass of the two isotopes of Rb, neglecting their
small mass difference. Also, for our nonhomogeneous sys-
tem, we use in it the maximum density of each component.
As the density of the condensates grows, their spatial extent
increases and at the same time the modulation instability
wavelength decreases. The decrease of the modulation insta-
bility wavelength with time is shown in Fig. 4. Around
60 ms after the beginning of the growth, the modulation in-
stability wavelength becomes comparable to the size of the
condensate as measured by the r.m.s. of the density profile of
the combined condensates. The onset of dynamical separa-
tion is seen somewhat later at 130 ms. This lag in time may
be due to two factors. First, the MI wavelength (4) assumes a
homogeneous condensate. In other words, it applies when
the local density approximation (LDA) is valid. On the other
hand, the number of atoms in each component at =130 ms
is only about 400. Thus, the LDA approximation is not yet
reliable. Secondly, as we discuss below, there is a time scale
associated with the growth of the unstable mode, and this
leads to a lag between the initial seeding of the instability
and its growth to an observable size. Nevertheless, the cross-
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FIG. 2. (Color online) Dynamical growth of a dual BEC with the same interaction and trap parameters as in Fig. 1. The initial state is

the ground state with ten atoms in each component.

ing of the curves of the r.m.s. size of the condensate and the
modulation instability wavelength indicates, to within a fac-
tor of 2 in time, the onset of the dynamical instability.

As condensation proceeds and the density continues to
grow, the spatial extent of the condensates increases and at
the same time the modulation instability wavelength de-
creases further. This leads to the continuous separation of the
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FIG. 3. (Color online) The final spatial pattern resulting from
the dynamical growth of the dual condensate as simulated in Fig. 2.

two components into smaller and smaller “bubbles,” as can
be seen in Fig. 2. The final size of individual bubbles is
determined by the point at which essentially complete spatial
separation between the two components is achieved, so that
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FIG. 4. (Color online) The modulation instability wavelength
(solid line) corresponding to the simulation of Fig. 2, as computed
from Eq. (4). This is compared with the r.m.s. size of the total
density of both condensates along the trap long axis (dashed line).
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FIG. 5. (Color online) The time scale for growth of modulation
instability corresponding to the simulation of Fig. 2, as computed
from Eq. (5). The horizontal axis is the simulation time, while the
vertical axis is the time scale for the growth of the most unstable
mode. This time scale is 7,x =27/ G pax-

no more subdivisions are possible. The exact point at which
this happens depends strongly on the nonlinear dynamics and
is thus difficult to estimate solely from the linear small per-
turbations analysis which is behind Eq. (4). Typically, the
final modulation instability wavelength is much smaller than
the size of the observed bubbles, but this has no effect since
at this point the bubbles are already almost purely separated
components.

Regarding the temporal evolution, we can compare two
time scales. One is the time scale over which the conden-
sate’s population grows, and the other is the time scale for
the growth of the most unstable mode. This modulation in-
stability time scale depends on the density and thus is itself
time-dependent. Figure 5 shows the evolution of the modu-
lation instability time scale Tmax=% as a function of the
simulation time, where G, is given by Eq. (5). As the den-
sity of the condensate grows, the timescale for the growth of
the most unstable mode is decreasing exponentially. Around
130 ms the time scale of growth of the unstable mode be-
comes comparable to the time scale of growth of the conden-
sates themselves. As we have seen, this coincides with the
point where dynamical phase separation begins to be observ-
able in the simulation. With increasing simulation time, the
modulation instability growth time scale becomes very short,
leading to the rapid appearance of bubbles between 180 and
240 ms in Fig. 2.

B. Factors affecting the spatial pattern formation

We explored some of the factors that affect the final spa-
tial pattern upon the end of evaporative cooling. As noted
above, the condition for phase separation in the Thomas-
Fermi limit is A <0 where A is defined in Eq. (3). We find
that having a negative A with larger absolute magnitude
leads to the dynamical formation of fewer bubbles. For ex-
ample, Fig. 6 shows the modulation pattern after 1000 ms
with the only difference from Fig. 3 that ags has been re-
duced from 200 to 81 bohr, so that A, which for the previous
case equals —0.57, is now —0.82. The number of separated
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FIG. 6. (Color online) The final spatial pattern resulting from
the dynamical growth of the dual condensate, with scattering pa-
rameters ags=81 bohr, ag;=99 bohr, and ags_g;=214 bohr; to be
compared with Fig. 3. All other parameters are the same as in
Fig. 3.

bubbles is clearly reduced, from 25 in the first case to 17 in
the second. The physical reason for this effect is as follows.
When A is more negative (larger absolute value), the dy-
namical phase separation begins earlier in the growth process
when the size of the condensates is smaller. Since the size of
the condensates is smaller, they divide into smaller number
of bubbles. Saturation (that is, complete spatial separation of
the two components) is also achieved earlier, and no further
subdivision occurs at later times. On the other hand, with
smaller absolute value of A the condensates have a chance to
increase there size before the onset of phase separation.
Thus, eventually, when phase separation takes place, a larger
number of bubbles can be formed.

An even more dramatic effect is seen when the centers of
the traps of the two components are shifted one from the
other along their long axis by a small distance, as may occur
due to residual gravitational sag. This can occur when the
trap is slightly tilted off the horizontal to the earth, as appar-
ently occurred in the experiment [10]. Even if the tilt is
slight, the effect can be large in the axial direction due to the
low and different trapping frequencies for the two compo-
nents in this direction. This leads to asymmetry in the spatial
pattern formation. Figure 7 shows an asymmetrical pattern
obtained with a dual condensate with the same interaction
parameters as Fig. 3, but with the centers of the traps of the
two components shifted 1.7 um from each other. Figure 8
shows the time dynamics leading to this pattern. The initial
shift is clearly seen in the partial overlap between the “seed”
Gaussian of the two components. As the density grows, the
intercomponent repulsion causes the centers of mass of the
two components to move farther apart. At the same time,
modulation instability and bubble formation occurs where
the two components overlap. Due to the reduced spatial over-
lap (compared to the case with no shift of the traps’ centers),
the final number of bubbles is much reduced.

We also note that the modulation instability mechanism
which is at the heart of the spatial pattern formation requires
a quasi-one-dimensional geometry. In a fully 3D trap (with
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FIG. 7. (Color online) The final spatial pattern resulting from
the dynamical growth of the dual condensate, with parameters iden-
tical to that of Fig. 3, except that there is a shift of 1.7 um between
the centers of the traps of the two components.

aspect ratio close to one), even if “bubbles” are seeded, they
would quickly merge and coalesce. This is because a spatial
pattern which contains many bubbles would have higher en-
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ergy then one with continuous, bulk configuration with no
bubbles, due to the contribution of surface tension energy
[6]. But, in the quasi-1D trap there is a high energy barrier
for the merging of two bubbles of one component separated
by a bubble of another component. This is essentially a tun-
neling process which is highly suppressed. Our numerical
simulations support this picture. For example, we find that in
a trap with aspect ratio A=w,/®w,=10 (compared with X\
=45 in the simulations discussed above) it is quite hard to
see bubbles, and at most four to five are formed.

Another factor in the growth dynamics concerns the start
of condensation of the two components. When the atom
numbers of the two components are the same, they have the
same critical temperature and so may be expected to begin
condensation at the same time. However, when the two com-
ponents contain different number of atoms, the critical tem-
perature of the larger component is higher (7.%N'?3), so it
may be expected to begin condensation first. The time delay
between the start of condensation of the two components will
then depend on their atom number ratio and on the rate of
evaporative cooling. We have performed simulations with
large time delay such that one component begins to condense
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FIG. 8. (Color online) Dynamical growth of a dual BEC leading to the pattern formation seen in Fig. 7.
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FIG. 9. (Color online) The final spatial pattern resulting from
the dynamical growth of a condensate with parameters approximat-
ing the experimental conditions of [10], Fig. 4(b) there: ags
=81 bohr, ag;=99 bohr, ags_g;=214 bohr. Trap frequencies are as
in Fig. 1 above. The number of **Rb atoms is 10* and that of ®’Rb,
6 10* The trap centers of the two components are shifted by
3.4 um from each other along the long axis of the trap, to simulate
residual gravitational sag (see text).

after the end of condensation of the second. We find that in
this case the growth of the component which condenses later
occurs at the edges of the first one, and they form a structure
similar to the usual ground state, with no bubble pattern. This
may be expected since the first component to condense cre-
ates a repulsive potential which repels the second component
from condensing in the center of the trap. Thus, a sufficient
temporal overlap between the condensation of the two com-
ponents seems essential for formation of a bubble pattern.

C. Comparison with experiment

To make a concrete connection with the experimental re-
sults [10], we simulated as close as possible the conditions
under which the remarkable bubble patterns seen in Figs.
4(b) and 4(c) of Ref. [10] were observed. The result is shown
in Fig. 9. The number of atoms (reported in the caption) was
also estimated from the experiment [19], with 6 X 10* *'Rb
atoms and 1 X 10* 3°Rb atoms. In this simulation we assume
that the two components begin to condense together. Due to
the different atom numbers this might not have been the case
in the experiment, but should be good enough as long as the
time delay between condensation of the two components is
not too long. In the simulation we can see the formation of
three bubbles of 3°Rb immersed in and between the larger
cloud of ¥'Rb. This result is qualitatively similar to that ob-
served in the experiment. A two-dimensional density contour
plot is shown in Fig. 10. In comparing with the experimental
figures in Ref. [10], one should bear in mind that we plot the
in situ density profile, while the experiment observed the
density following a period of free expansion. Overall, the
comparison with the experiment is quite encouraging, espe-
cially bearing in mind that we do not know parameters such
as the exact time(s) of the growth of the two condensates,
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FIG. 10. (Color online) A two-dimensional rendition of the spa-
tial pattern shown in Fig. 9. The density is in units of
10'3 atoms/cm? (see color bars).

and the initial condensate “seed” sizes. The condensates in
the experiment also show evidence for gravitational sag. In
the radial direction, gravitational sag breaks the cylindrical
symmetry, an effect we have not attempted to simulate here.
However, we do include the effect of asymmetry in the axial
direction due to residual gravity sag along this direction,
which can occur due a slight tilting of the trap from the
horizontal to the earth.

IV. CONCLUSIONS

In this work we have put forward a mechanism which
explains the intriguing experimental observations of Ref.
[10]. These observations showed the formation of a spatial
modulated pattern of a dual BEC condensate upon the end of
evaporative cooling in an highly elongated cigar trap. The
mechanism we suggest includes two crucial elements. One,
the growth of the dual condensates which is modeled by
imaginary gain terms in the Gross-Pitaevskii gain equation
(1). Second, as the condensates grow and their mutual inter-
action becomes more and more dominant, the mechanism of
modulation instability kicks in, and gives rise to the evolu-
tion of spatial modulation with smaller and smaller wave-
length. The initial linear instabilities are amplified by the
nonlinearity in the system, and this process comes to an end
when full spatial separation between the two components is
achieved. The final pattern is very long lived due to the large
energy barrier for the separated component “bubbles” to
cross over each other. The quasi-1D nature of the trap is
essential, otherwise no barriers exist to prevent any formed
“bubbles” from merging and coalescing into continuous,
bulk components.

Naturally, the gain model is a simplified, phenomenologi-
cal model of the growth of two coherent condensates from
the thermal gases, which does not include the interactions
between the condensates and the thermal gases, nor any di-
rect temperature dependence. The thermal gas only enters
through its role as a particle reservoir (for the gain terms).
Thus, in principle, other mechanisms such as thermal fluc-
tuations may also play a role in the final observed spatial
pattern in the experiments. It would be of interest to have a
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more elaborate (but therefore, more complicated) modeling
of the evaporative cooling process of a dual condensate. One
such possible model may be the stochastic Gross-Pitaevskii
equation [14] which recently was shown to give excellent
agreement with the experimental observation of spontaneous
vortex formation in evaporative cooling of a single compo-
nent BEC [15]. Nevertheless, the encouraging agreement be-
tween our simulations and the experiment supports our belief

PHYSICAL REVIEW A 78, 053613 (2008)

that the simple model put forward here already captures the
essential physics at the root of the observed phenomenon.
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