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We explore the structure and dynamics of dipolar Bose-Einstein condensates �DBECs� near their threshold
for instability. Near this threshold a DBEC may exhibit nontrivial biconcave density distributions, which are
associated with instability against collapse into “angular roton” modes. Here we discuss experimental signa-
tures of these features. In the first, we infer local collapse of the DBEC from the experimental stability
diagram. In the second, we explore the dynamics of collapse and find that a nontrivial angular distribution is
a signature of the DBEC possessing a biconcave structure.
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I. INTRODUCTION

The role of dipole-dipole interactions in the structure and
dynamics of quantum many-body systems is at the forefront
of both theoretical and experimental research. The dipole-
dipole interaction is long ranged and anisotropic, in contrast
to the isotropic s-wave contact interaction, and leads to novel
physics in ultracold spinor �1,2�, fermionic �3–7� and
bosonic �8–12� many-body systems.

For example, the anisotropy of the dipole-dipole interac-
tion leads to unusual properties of a Bose-Einstein conden-
sate �BEC�. The condensate will experience “magnetostric-
tion,” wherein its aspect ratio does not match that of the trap
in which it is confined �13�. Additionally, a dipolar BEC
�DBEC� is expected to exhibit novel density profiles, for
instance a biconcave shape where the maximum density oc-
curs at the periphery of the condensate rather than at its
center �9�, or else more elaborate densities for noncylindri-
cally symmetric traps �14�. In contrast to magnetostriction,
these density profiles have not thus far been directly imaged
in experiments since shapes in the density profiles likely
wash out upon expansion of the condensate.

Unusual density distributions are, however, intimately re-
lated to a more clearly observable property of the gas,
namely, its macroscopic collapse. Because the dipole-dipole
interaction is always attractive for dipoles in a head-to-tail
orientation, a DBEC will always become unstable for a suf-
ficiently large dipole density and collapse inward, just as in
the case for atomic BECs with attractive contact interactions.
The difference is that, since the dipole-dipole interaction is
anisotropic, the density at which the instability occurs de-
pends on the aspect ratio of the harmonic trapping potential
that confines the dipoles.

This instability has been probed experimentally in a
DBEC of atomic 52Cr �15�. In this experiment the condensate
was stabilized by tuning the s-wave scattering length to a
sufficiently large value. Instability was then triggered by re-
ducing this scattering length below a critical value. Strik-
ingly, the observed anisotropic density distribution of the
collapsed cloud was well reproduced within the mean-field
theory �16�.

On the theory side, the detailed mechanism of the collapse
has been discussed in �17,18�. The picture that emerges is
that for sufficiently oblate traps the collapse of the DBEC

occurs via local-density fluctuations rather than a global col-
lapse to the trap’s center. In this case the instability is driven
by fluctuations into a soft “rotonlike” mode, which is unique
to condensates with dipolar interactions �8�. Depending on
the trap’s aspect ratio, the roton can have nodal surfaces in
either the radial or angular coordinate, for a cylindrically
symmetric condensate, and these nodal patterns should dic-
tate the details of the condensate’s collapse. In particular, for
condensates with a biconcave density profile, the roton decay
mode should always have an angular nodal pattern. Measur-
ing an angular collapse would then be an experimental sig-
nature of the biconcavity.

Thus far there is no direct experimental evidence for the
roton or for the local collapse in a DBEC although we have
argued that the data in Ref. �15� supports the idea of a local
collapse �18�. Further, Ref. �17� has explored circumstances
of local collapse in various trap geometries, contrasting ap-
proaches where the collapse is initiated by either rapid or
else adiabatic changes in the scattering length.

In this paper we, therefore, tackle head on the prospects
for observing local collapse. After some preliminary remarks
in Sec. II, we proceed in Sec. III to analyze and extend the
experimental result in Ref. �15�. We argue that for oblate
traps the scattering length required to stabilize the conden-
sate can be explained within mean-field theory but only if the
collapse occurs locally. Further, the distinction between local
and global collapses becomes more clear if the number of
dipoles is increased. In Sec. IV we develop an understanding
of a more direct measurement of condensate collapse, fol-
lowing the experimental procedure of Ref. �16�, which in-
cludes an expansion that allows for imaging of the cloud. We
show that angular structure in the expanded image is a direct
signature of biconcave structure.

II. PRELIMINARIES

Consider a dilute gas of dipolar entities each with dipole
moment d polarized in the axial �z� direction. The interaction
between two such entities interacting by both the dipole-
dipole and contact interactions is given, in cgs units, by

V�r − r�� = d21 – 3 cos2 �

�r − r��3
+

4��2as

M
��r − r�� , �1�

where �r−r�� is the distance between the particles, � is the
angle between r−r� and the z axis, M is the particle mass,
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and as is the s-wave scattering length of the particles. The
contact interaction �second term in Eq. �1�� is either repul-
sive �as�0� or attractive �as�0�, regardless of the orienta-
tion of the particles. The dipole-dipole interaction �first term
in Eq. �1��, however, changes sign depending on the parti-
cle’s orientation. Two dipoles aligned in the direction of their
polarization ��=0� attract each other while two dipoles
aligned orthogonal to this direction ��=� /2� repel each
other.

We consider such a gas confined by a harmonic potential
of the form U�r�= 1

2 M��
2��2+	2z2�, where 	=�z /�� is the

trap aspect ratio, describing to what degree the trap is prolate
�	�1� or oblate �	�1�. The trapping potential introduces a
zero-point contribution to the condensate energy, which
serves to stabilize the system. A gas without dipoles but pos-
sessing a small negative scattering length proves stable for
sufficiently low density at any trap aspect ratio. The negative
scattering length at which the condensate goes unstable
scales only weakly with trap aspect ratio. When the stability
threshold is crossed, e.g., when the scattering length be-
comes sufficiently negative to destabilize the BEC, the con-
densate undergoes macroscopic collapse. For purely contact
interactions, the mean-field potential of the condensate is di-
rectly proportional to the density of the condensate so col-
lapse occurs where the particle density is greatest, at the
center of the trap �19�.

By contrast, the trap aspect ratio plays a decisive role in
determining the stability of a DBEC. In a prolate trap, a
DBEC behaves much like a BEC with attractive contact in-
teractions. This geometry favors attraction between dipoles
and will induce a global collapse to the center for a critical
dipole-dipole interaction strength. Vice versa, a DBEC in an
oblate trap might be expected to behave much like a BEC
with repulsive contact interactions since the dipolar entities
are predominately repulsive in this geometry. However, as
shown in �9�, there exists a finite critical dipole-dipole inter-
action strength, for any aspect ratio, at which a DBEC be-
comes unstable. The mechanism for collapse in this large 	
regime, however, is very different than that of a DBEC in a
prolate trap or of a BEC with purely contact interactions.

In an oblate trap, the axial trapping frequency is large,
which acts to suppress elongation in the trap center, render-
ing the global collapse unlikely. Instead, the dipoles in the
condensate are expected to form local-density maxima
whose spatial widths are on the order of the axial harmonic-
oscillator length az=�� /M�z. Each such bunch of dipoles
then elongates axially, leading to local collapse. These local-
density maxima are related to the softening of a roton mode,
whose characteristic wavelength az sets the scale of the local
collapse �8,11�.

III. LOCAL COLLAPSE: EVIDENCE
FROM THE STABILITY DIAGRAM

Thus far only one experiment has explored the stability of
a DBEC as a function of the trap aspect ratio �15�. Rather
than tune the dipole moment to a critical value, the experi-
ment instead artificially stabilized the condensate by intro-
ducing a positive s-wave scattering length via a Fano-

Feshbach resonance. Upon reducing the scattering length
below a critical value acrit, the experiment was able to trigger
collapse in the DBEC.

The resulting experimental stability diagram �reproduced
from �15�� is presented in Fig. 1 as a plot of the critical
scattering length acrit versus aspect ratio 	. These results rep-
resent the measurement performed on a condensate of N=2

104 52Cr atoms. For prolate traps, a comparatively large
scattering length is required to achieve stability. As 	 is in-
creased, the zero-point energy in the axial direction stabilizes
the DBEC, and stable condensates are possible with a
smaller critical scattering length.

This figure also shows the results of two alternative nu-
merical calculations of critical scattering length. In one, the
theoretical division between stable �shaded� and unstable
�unshaded� regions of parameter space is determined by nu-
merically solving the nonlocal Gross-Pitaevskii equation
�GPE� using the potential in Eq. �1�. A second approach,
already employed as an approximation in the experimental
paper, shows the dividing line between the stable and un-
stable regions as a dashed line. This approximation posits a
Gaussian ansatz wave function �normalized to unity�,

���,z� = � 1

�3/2��
2�zāho

3 �2

exp	 − 1

2āho
2 � �2

��
2 +

z2

�z
2�
 , �2�

where �� and �z are the variational parameters and āho

=�� /M�̄, where �̄=�3 ��
2�z is the geometric mean trap fre-

quency. Using this ansatz, the Gross-Pitaevskii energy func-
tional �20�,

E��,��� =� 	 �2

2M
����r��2 + U�r����r��2

+
N − 1

2
���r��2� ���r��V�r − r����r��dr�
dr ,

�3�

FIG. 1. �Color online� The stability diagram of a DBEC of N
=2
104 52Cr atoms plotted as critical scattering length versus trap
aspect ratio. The points show the experimental results of �15�, the
shaded regions show the results of solving the GPE exactly, and the
dashed line shows the results of the Gaussian ansatz. The theoretical
methods disagree as trap aspect ratio 	 increases, and the exact
results fit the experimental data with great accuracy. The pink
�darker� regions are where biconcave structure is predicted on the
condensate profile.

WILSON, RONEN, AND BOHN PHYSICAL REVIEW A 80, 023614 �2009�

023614-2



where N is the condensate particle number, is calculated for
a given āho to determine whether the energy E�� ,��� has a
minimum, and thus to determine if the condensate is ener-
getically stable. The presence of a minimum, local or global,
corresponds to the presence of a stable ground state. A key
feature of the Gaussian trial wave function is that it always
places the maximum density in the condensate’s center, i.e.,
it is incapable of describing local collapse. For prolate traps,
the maximum density is in the center. In this case the Gauss-
ian ansatz and the numerical solution to the GPE agree with
each other on the critical scattering length, and they both are
in good agreement with the experimental result.

Care must be taken, however, using this approximation
for oblate condensates. This can be seen in the 	�1 region
of the stability diagram in Fig. 1, where the Gaussian ansatz
predicts a lower critical scattering length than that predicted
by the GPE. We attribute this difference to the ability of the
GPE to model local collapse. Indeed, for larger aspect ratios
we observe a local collapse into rotonlike modes, as we will
discuss in the next section, and as have been reported in Ref.
�17�. Further, the experimental determination of acrit tends to
show better agreement with the GPE prediction than with
that of the Gaussian ansatz. We interpret this as an experi-
mental support for the occurrence of local collapse, albeit
somewhat indirect evidence. However, the roton modes in-
volved in collapse might have either radial or angular nodal
structure. This experiment does not make this distinction.

Within the uncertainty in the experiment, the data in Fig.
1 discriminates between the two methods but one may wish
for a clearer discrimination. We, therefore, consider cases
where the atom number is increased. The critical scattering
length acrit is shown in Fig. 2 for DBECs with atom numbers
of N=104, 105, and 106. For a given trap, increasing the
number of dipoles increases the relative importance of the
dipole-dipole interaction, which acts to further destabilize

the condensate. Thus, as predicted by the GPE, acrit increases
with increasing atom number. Vice versa, the Gaussian an-
satz predicts a more stable condensate with increasing atom
number. The difference between the two theoretical ap-
proaches could then be clearly distinguished in such an ex-
periment.

Although Fig. 2 plots only the domain of aspect ratios
10−2�	�103, it is straightforward to obtain the stability
thresholds in the 	
1 and the 	�1 limits for fixed �̄. These
limits are usefully described in terms of the characteristic
dipole length, given by �in cgs units� �15�

add =
d2M

3�2 . �4�

In the limit of large dipole-dipole interactions, Nadd / āho�1,
the interaction-dependent term in E�� ,��� dominates over
the other terms since it scales with N. Thus, in this limit, the
condensate is unstable if this interaction-dependent term is
negative. Now, to treat the limits of very small and large 	,
we consider, respectively, the harmonic trapping potential in
the limits �z→0 and ��→0.

Taking the limit �z→0 corresponds to an infinitely pro-
late, or cigar-shaped trap. In this geometry, the dipolar mean-
field term reduces to a simple coupling to the condensate
density, d2������� 1–3 cos2 �

�r−r��3
�����dr�=−4��2add������2 /M,

because the dipole-dipole interaction reduces to a delta func-
tion in � for this geometry. Thus, in the quasi-one-
dimensional �1D� geometry, the total mean-field term be-
comes 4��2�as−add�������2. Thus in the limit Nadd / āho�1
and 	
1, we find that the DBEC is unstable when as�add.
Similarly for the limit ��→0, corresponding to an infinitely
oblate trap, the dipolar mean-field term reduces to
8��2add���z��2 /M, giving a total mean-field term of
4��2�as+2add����z��2 for this geometry. Thus, in the limit
Nadd / āho�1 and 	�1, we find that the DBEC is unstable
when as�−2add. However, this argument only applies for
the Gaussian ansatz. As seen in Fig 2, for any fixed 	, the
true instability �computed using the GPE� occurs at higher
as /a0 ratios as N is increased. This corresponds to the fact
that actual instability in a pancake trap is of roton nature,
which is not captured by the simple argument above. These
limits are indicated in Fig. 2, and the mean-field calculations
are detailed in the Appendix.

IV. LOCAL COLLAPSE: EVIDENCE
FROM THE COLLAPSED CLOUD

To take a closer look at the nature of collapse, it is nec-
essary to track the collapse itself as a function of time. This,
too, has been achieved in the 52Cr DBEC experiments, which
are excellently reproduced by time-dependent mean-field
theory �16�. These experiments have not, however, focused
directly on observing consequences of local collapse. Here
we discuss the prospects of making such a measurement.

Briefly, in such an experiment the scattering length is al-
tered from a value where the condensate is stable against
collapse to a somewhat lower value a�acrit. After this tran-
sition, the atoms begin their collapse into high-density re-
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FIG. 2. �Color online� For a DBEC of atomic 52Cr, this figure
illustrates the critical s-wave scattering length �below which the
DBEC is unstable� as a function of trap aspect ratio 	 in units of the
Bohr radius for �̄=2�
700 Hz. The blue �dotted�, black �dot-
dashed�, and red �solid� lines correspond to N=104, N=105, and
N=106, respectively. The lines without crossed symbols are the
results of the Gaussian ansatz and lines with crossed symbols are
the results of the exact solution of the GPE. Notice how, as N is
increased, the Gaussian ansatz predicts a more stable condensate
while the exact solution predicts a less stable condensate.
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gions where three-body recombination takes over, ejecting
atoms from the trap. The trap is generally released after some
hold time to expand the cloud for imaging. The resulting
density patterns show intricate shapes and depend on details
such as whether the passage from stable to unstable is adia-
batic or diabatic �17�.

A. Modes of instability

The underlying physics of the instability and collapse is
determined by the softening of the roton modes. We compute
these modes by solving the Bogoliubov de Gennes �BdG�
equations as in Ref. �10�, exploiting the cylindrical symme-
try of the system. Namely, we make the quasiparticle ansatz,

��r,t� → ����,z� + �u��,z�ei�m�−�t� + �v���,z�e−i�m�−�t��e−i�t,

�5�

where � is the quasiparticle energy, m is the projection of the
quasiparticle momentum onto the z axis, � is the chemical
potential of the ground state ��� ,z�, and �
1 to ensure that
the quasiparticles have small amplitudes. By solving the
BdG equations for various m quantum numbers, we deter-
mine whether the DBEC is dynamically stable or unstable by
determining whether the quasiparticle energy is purely real
or has a nonzero imaginary part, respectively �20�.

Figure 3 illustrates the mode softening for a DBEC con-
taining N=104 52Cr atoms at an aspect ratio 	=8. Plotted is
the energy of the excitation as a function of the scattering
length as, labeled by its azimuthal angular-momentum quan-
tum number m. The solid lines depict the real parts of these
energies while the symbols represent their imaginary parts.
As as diminishes, the energies of these modes drop to zero,
and thereafter become purely imaginary. The first such tran-
sition, at as
−0.9a0, identifies the scattering length at which
the DBEC is dynamically unstable since any small perturba-
tion is capable of exciting this mode, which then grows ex-
ponentially in time. Thus an unstable condensate quickly

grows high-density peaks in regions defined by the antinodes
of these modes.

Figure 3 is a particular example illustrating the modes that
contribute to instability at a particular aspect ratio 	=8. At
this aspect ratio the condensate’s density exhibits a bicon-
cave shape, and so decay into angular rotons is expected. We
stress that, at all aspect ratios where the maximum density
lies at the center rather than at the periphery, the rotons re-
sponsible for instability are always m=0 modes that do not
exhibit an angular structure. This connection is essential to
connecting observed angular decay circumstantially to bi-
concave structure.

Regardless of whether the roton is purely radial or angular
in nature, it leads a DBEC to instability at a fixed length
scale, as mentioned in Sec. II, having wavelength 
2�az. As
the trap aspect ratio 	 is increased, the ratio of the axial to
the radial harmonic-oscillator lengths, az /a�, is decreased so
more roton wavelengths can fit around the circumference of
the condensate for larger 	. For biconcave condensates, this
results in angular rotons with larger m quantum number be-
ing responsible for instability for larger 	 since more angular
nodes can fit into the condensate in this regime. For N=104

52Cr atoms in a trap with 	=8 and �̄=2�
700 Hz, this
mode happens to have m=3. Indeed, the circumference of
the region of maximum particle density in this biconcave
condensate is 
6�az, or three roton wavelengths.

B. Numerics and the “ideal experiment”

The mode that brings about the dynamical instability de-
termines not only the scattering length at which the conden-
sate will collapse but also how the condensate will collapse
as the stability threshold is crossed. Consider preparing a
DBEC of N=104 52Cr atoms just above the stability thresh-
old in a trap with aspect ratio 	=8. These are the collective
modes whose energies are shown in Fig. 3. A small jump in
scattering length to a value just below acrit would cause the
condensate to go unstable by a macroscopic occupation of
the m=3 mode that has a nonzero imaginary energy at this
scattering length. The density of the condensate during the
collapse would change, on a time scale �
2� / Im���, as the
atoms macroscopically occupy three clumps that self-attract
in the z direction.

Decay of the condensate into a roton mode with m�0
requires breaking the condensate’s initial cylindrical symme-
try by introducing fluctuations into the mode. In an experi-
ment this is caused by thermal fluctuations but in our calcu-
lation we must make this happen artificially. To do this, we
seed the condensate wave function by adding to it a small
contribution of the excited-state mode,

��r�� → ���,z� + 0.01e2�i�e3i�ū3��,z� , �6�

where e3i� describes the basic angular variation in the roton
mode, and � is an additional phase that will determine the
overall rotation of the collapsed condensate. In the absence
of a seed like this, the numerical solution remains at its un-
stable equilibrium for a time long compared to the natural
lifetime 2� / Im���. The apparent lifetime in this case is de-
termined by the time before roundoff error starts to affect the
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FIG. 3. �Color online� The real and imaginary parts of the low-
lying BdG modes for a condensate of N=104 52Cr atoms with mean
trap frequency �̄=2�
700 Hz and trap aspect ratio 	=8, plotted
as a function of the s-wave scattering length as. The real parts are
represented by solid lines and the imaginary parts, developing
where the real parts go to zero, are represented by markers. The
m=3 mode, being the first to develop a nonzero imaginary energy,
serves to define acrit for this aspect ratio.
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time evolution of the GPE. However, once the wave function
is seeded as above, the decay occurs on the expected time
scale.

After the collapse is triggered, the condensate indeed
forms the three clumps as expected, as seen in Fig. 4. Shown
is the density of particles, as viewed in the x-y plane, i.e.,
looking down from the axis of the dipoles’ polarization. Each
peak was initially seeded by a density fluctuation at the an-
tinode of the m=3 excited-state roton wave function. Thus
the three peaks are uniformly equally spaced in angle, as
befits the symmetry of the mode. An angular display of this
sort would provide unambiguous evidence for nonlocal col-
lapse. Moreover, the fact that the collapse occurred in an
angular coordinate provides indirect evidence for the bicon-
cave structure of the initial state.

While the relative positions of the three peaks in this ex-
periment are well defined by the symmetry of the roton
mode, there is still an overall undetermined angle of rotation
of the whole pattern. Numerically, this is set by the angle �
in Eq. �6�. Since the angular dependence of the condensate
density, with this wave function, is proportional to cos�3�
+��, we expect that, if there is no unphysical dependence on
the numerical grid, the collapse will occur rotated by an
angle � /3 for any initial phase �. Indeed, we find that the
collapse dynamics are unaffected by the grid, as is illustrated
in Fig. 4. Here, we input the initial phases �=� /�13 and
�=� /�3, and find that the collapsed wave function is rotated
by exactly these phases times 1/3. Although not shown here,
simulations for other initial phases give the same results.
Based on this ability to reproduce the same angular pattern
but rotated in a predictable way, we conclude that the under-
lying Cartesian grid is adequate to describe this collapse.

C. More realistic experiment

Figure 4 illustrates the kind of clean angular distribution
that might be expected in the ideal experiment, where an
infinitesimal change in scattering length is possible, and
where only a single roton mode is excited. Thus far, neither
of these circumstances is true in the 52Cr experiments.
Whereas Fig. 3 shows the difference in scattering length at
which modes with different m quantum numbers develop

imaginary energies to be a fraction of a Bohr, experimental
uncertainties in the Feshbach-tuned scattering length of 52Cr
are �2a0 �15�. Additionally, imaging of a 52Cr DBEC was
done after a time of free expansion in this experiment, not in
trap as is described in the scenario above. We propose, with
slight modification, an experiment similar to the one de-
scribed by �15� that presents us with the possibility of ob-
serving angular structure in the collapse and expansion of a
DBEC.

Instead of making a very small jump in scattering length
across the stability threshold, consider making a jump of
�as=−14a0. For a 52Cr DBEC with N=104 atoms, we nu-
merically prepare, for �̄=2�
700 Hz, a condensate in a
trap with 	=2 and scattering length as=20a0, and a conden-
sate in a trap with 	=8 and scattering length as=10a0, where
both scattering lengths are about 10a0 above acrit for their
respective aspect ratios. We then ramp the scattering length
from its initial value to its final value over a time period of 8
ms. These scattering length ramps are illustrated by the ar-
rows in Fig. 5. Although an 8 ms ramp time is not suffi-
ciently slow to make the change completely adiabatic �the
characteristic trap period is 2� / �̄=1.4 ms�, it is sufficiently
slow to allow a biconcave shape to form during the ramp.

FIG. 4. �Color online� Collapsed condensate in a trap with mean frequency �̄=2�
700 Hz and aspect ratio 	=8 after 10.5 ms. The
perturbation for the collapse is controlled to have m=3 symmetry and the global phases as shown in the frames. Each frame corresponds to
a different value of the initial phase �. The collapsed condensates are rotated by � /3, ensuring that the finite grid size does not influence the
small length scale dynamics of the condensate collapse.

FIG. 5. �Color online� Stability diagram for N=104 52Cr atoms.
The white region is dynamically unstable while the darker regions
are stable. The pink �darker� islands are where biconcave structure
is found in the ground state of the condensate. The mean trap fre-
quency is �̄=2�
700 Hz for all aspect ratios 	. The arrows illus-
trate the initial and final values of scattering length in the experi-
ment proposed in the text.
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Once this ramp has been made, we hold the collapsing con-
densate in the trap for thold=2 ms and then turn off the trap
to let the collapsed condensate propagate in free space. In an
actual experiment, the expanded cloud could then be imaged
to determine its density profile after expansion.

To ensure that we accurately simulate an experimental
scenario and to break the cylindrical symmetry of the con-
densate in a physically consistent way, we seed the conden-
sate prior to the time evolution with numerical noise. Al-
though the nonprojected GPE can only model the condensate
dynamics at zero temperature, an experiment will unavoid-
ably have a very small but finite temperature present in the
gas. This means that the condensate fraction will not be ex-
actly unity but something slightly less. To account for this,
we correct our condensate by adding excited modes �quasi-
particles� with weights determined by the Bose-Einstein dis-
tribution �21�,

nj = �e��j−��/kBT − 1�−1, �7�

where nj is the number of particles occupying the quasipar-
ticle state with energy � j, T is the temperature of the Bose
gas, � is the chemical potential of the condensate, and kB is
the Boltzmann constant.

Using the quasiparticle spectrum given by solving the
BdG equations and a temperature of T=100 nK, we then
perturb our initial condensate by

��r� → ���,z� + �
J

�nj

N
e2�i�j�um,j��,z�eim�

+ vm,j
� ��,z�e−im�� , �8�

where �� j� are random numbers between zero and one, nj is

given by Eq. �7�, and um,j�� ,z� and vm,j
� �� ,z� are BdG modes

with quantum number m and energy � j. Also, we include the
factor �1 /N in the weighting because the condensate wave
function ��r� is normalized to unity instead of being normal-
ized to N. We impose a cutoff on the sum in Eq. �8� of � j
�2kBT, where T=100 nK, simplifying the problem by ig-
noring higher energy modes that contribute little to the ther-
mal excitations of the system. Indeed, setting T=100 nK is
an experimentally accessible temperature �22�.

Additionally, because the condensate density becomes
very large during the collapse process, a three-body loss term
is required to accurately model the collapse and expansion
dynamics �15�. The rate constant for three-body recombina-
tion was experimentally determined to be L3=2

10−40 m6 /s for 52Cr. We account for this loss in our simu-
lations by including the term −i�N�N−1�L3���r��4 /2 in the
time-dependent GPE, given by

i�
���r,t�

�t
= �−

�2

2M
�2 + U�r� + �N − 1� � dr�V�r − r��


���r�,t��2 − N�N − 1�
i�L3

2
���r,t��4���r,t� ,

�9�

where V�r−r�� is given in Eq. �1�.
Figure 6 illustrates the numerical time evolution of these

condensates through the collapse and expansion described
above. As before, these images represent density profiles in
the x-y plane, as viewed from the polarization axis. The top
four frames illustrate the collapse and expansion of a con-
densate in a trap with aspect ratio 	=2, in which there is no
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FIG. 6. �Color online� Collapse dynamics of DBECs, both in harmonic traps with mean frequency �̄=2�
700 Hz, corresponding to the
scattering length ramps illustrated in Fig. 5. �a� A DBEC in a trap with aspect ratio 	=2, at t=0 ms the condensate has as=20a0, the
scattering length is ramped down to as=6a0 over 8 ms, the collapsed condensate is held in the trap for thold=2 ms, and then expanded until
t=16 ms. The collapse and expansion is purely radial. �b� A DBEC in a trap with aspect ratio 	=8, at t=0 ms the condensate has as

=10a0, the scattering length is ramped down to as=−4a0 over 8 ms, the collapsed condensate is held in the trap for thold=2 ms, and then
expanded until t=14.5 ms. The condensate becomes biconcave during the ramp in scattering length and thus collapses with angular
structure, preserving an angular character during expansion.
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biconcave shape and in which, consequently, there should be
no collapse to angular roton modes. During its collapse, the
condensate maintains its peak density in the center. After the
trap is removed and the gas is allowed to expand, its cylin-
drical symmetry is preserved.

By contrast, the lower four panels of Fig. 6 illustrate a
representative time evolution for a condensate in a trap with
aspect ratio 	=8. In this case, by 7.5 ms the condensate has
established its biconcave structure. When the condensate col-
lapses, it does so into roton modes with angular nodal struc-
ture, leading to local collapse with angular nature. After the
trap is turned off and the condensate expands for 4.5 ms, the
angular structure remains in the density of the expanded
cloud. The collapse is clearly dominated by a roton with m
=3 in this simulation. However, because several angular
modes are involved, the angular pattern no longer experi-
ences pure m=3 angular symmetry. Moreover, each mode
arrives with a random initial phase, meaning that there is a
random asymmetry due to the interference between the un-
stable modes. In the experiment this will imply nonrepeat-
ability of the observed density peaks from shot to shot.

Nevertheless, once the angular pattern is established, its
vestiges remain in the expanded cloud. In the final expanded
picture, the clear break from cylindrical symmetry indicates
that the decay modes have angular dependence, hence that
the condensate went through a biconcave phase.

We note that a collapse and expansion experiment was
done on a DBEC of 52Cr �23�. However, it did not probe the
parameter regime for biconcave structure formation.

The results of simulations that are very similar to the ones
described above are presented in �17�, where DBEC collapse
is modeled in trap and not through the expansion process and
not including a three-body loss term in the simulation. Ref-
erence �17� performs simulations of DBEC collapse for both
adiabatic and nonadiabatic �instantaneous� jumps in scatter-
ing length, and find very interesting results regarding the
presence of global and local collapses in the condensate dy-
namics. For adiabatic collapse, where the change in scatter-
ing length is sufficiently slow to track the condensate across
the roton softening in the BdG spectrum, they present a criti-
cal trap aspect ratio above which local collapse occurs. We
confirm these results but point out that, while local collapse
is very interesting �and can be evidence for the presence of
the roton in these systems�, its manifestation in a DBEC is
much richer than has been discussed in previous work. A
mapping of DBEC collapse via the experiment proposed
above can determine not only whether collapse was global or
local but whether collapse was radial or angular and thus
provide evidence for the underlying biconcave structure.

We point out that the experiment proposed above is just
one of many experimental methods that would demonstrate
the angular nature of DBEC collapse. Certainly, taking data
for a number of additional trap aspect ratios would assist in
mapping out the regions where biconcavity exists. Also, we
expect that smaller and slower jumps in scattering length,
which may be had with less uncertainty in the Feshbach-
induced scattering length, would assist in understanding how
and where collapse occurs. Slower ramping of the scattering
length allows the condensate to be tracked more adiabati-
cally and thus allows for collapse to begin when only one

BdG mode has a nonzero imaginary energy, making the map-
ping of the collapse much more clear. Instantaneous or very
fast jumps in scattering lengths across a biconcave region
will miss this structure completely and thus result in a purely
radial collapse. For an angular collapse to occur, the bicon-
cave structure must manifest itself in the condensate prior to
collapse.

V. CONCLUSION

In conclusion, we have shown that in order to correctly
map out the stability of a DBEC, a computational method
that is sensitive to the local nature of DBEC collapse must be
used. Methods such as the Gaussian ansatz that are not sen-
sitive to such phenomenon will incorrectly predict the stabil-
ity of the system. Also, we draw a connection between the
BdG spectrum of a DBEC and the nature of the DBEC col-
lapse. Not only can the BdG quasiparticles predict where a
DBEC will collapse in parameter space, they can also predict
how a DBEC will collapse. For DBECs without biconcave
structure, this collapse is purely radial while for DBECs with
biconcave structure, this collapse has angular structure. Per-
forming collapse and expansion experiments on a 52Cr
DBEC can reveal this angular structure and thus provide an
experimental method for mapping biconcave structure in
DBECs.
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APPENDIX: CALCULATION OF THE MEAN-FIELD
IN REDUCED DIMENSIONS

We consider the calculation of the mean-field potential
due to the dipole-dipole interaction in two different geom-
etries, one with ��→0 �a quasi-two-dimensional �2D� geom-
etry� and one with �z→0 �a quasi-1D geometry�. In the
quasi-2D geometry, we assume that the condensate wave
function depends only on z and is homogeneous in the �
direction �or in the x and y directions�, and in the quasi-1D
geometry, we assume that the condensate wave function de-
pends only on � �or on x and y� and is homogeneous in the z
direction.

We begin with the expression for the dipole-dipole inter-
action potential in momentum space �24�

Ṽdd�k� =
4�

3
d2�3 cos2 �k − 1� , �A1�

where �k is the angle between the direction of the dipole

polarization �ẑ or k̂z, for the DBEC we are considering� and
the vector k. Using this momentum-space representation, the
coordinate-space mean-field potential due to the dipole-

dipole interaction is given by the convolution of Ṽdd�k� with
the condensate density in momentum space, ñ�k�,
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Udd�r� = F−1�Ṽdd�k�ñ�k�� , �A2�

where F−1 is the inverse Fourier-transform operator. First,
consider the quasi-2D geometry, in which the condensate
density is homogeneous in x and y. The condensate density
in momentum space is then given by the Fourier transform,

ñ2D�k� = F�n2D�z�� = ñ2D�kz���kx���ky� . �A3�

Substituting this result and Eq. �A1� into Eq. �A2�, and writ-
ing cos2 �k=kz

2 / �kx
2+ky

2+kz
2� gives an expression for the

mean-field potential in the quasi-2D geometry,

Udd
2D�r� = F−1	4�

3
d2�3

kz
2

kx
2 + ky

2 + kz
2 − 1�ñ2D�kz���kx���ky�
 .

�A4�

The operation of the inverse Fourier transform on this
momentum-space function gives

Udd
2D�r� =

8�

3
d2���z��2 =

8��2add

M
���z��2, �A5�

where ���z��2 is the coordinate-space condensate density in
the quasi-2D geometry. We carry out the same calculation for
the quasi-1D geometry, where the condensate density in mo-
mentum space is given by

ñ1D�k� = F�n1D�x,y�� = ñ1D�kx,ky���kz� . �A6�

Substituting this function into Eq. �A2� gives

Udd
1D�r� = −

4�

3
d2������2 = −

4��2add

M
������2, �A7�

where ������2 is the coordinate-space condensate density
in the quasi-1D geometry, written in terms of � instead of x
and y.
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