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Abstract. We show that, under achievable experimental conditions, a
Bose–Einstein condensate of polar molecules can exhibit dielectric character.
In particular, we derive a set of self-consistent mean-field equations that couple
the condensate density to its electric dipole field, leading to the emergence of
polarization modes that are coupled to the rich quasi-particle spectrum of the
condensate. While the usual roton instability is suppressed in this system, the
coupling can give rise to a phonon-like instability that is characteristic of a
dielectric material with a negative static dielectric function.

The electrical properties of any material are encoded in its dielectric function κ(q, ω), which
relates the induced dipole moments within the material to an applied electric field with
wave vector q and frequency ω. For its predicted relationship to a variety of novel physical
phenomena, the possibility of κ taking on negative values has generated much interest. For
the ac case, it is well known that the dielectric function can become negative, for example, at
frequencies near an atomic resonance, resulting in the high reflectivity of metals [1]. Similarly,
under specially engineered circumstances the magnetic permeability of certain materials can
become negative, resulting in a negative index of refraction [2, 3].

For a dc field, however, the existence of a negative dielectric function becomes more subtle.
Formally, in the infinite-wavelength limit q → 0, a material is stabilized only if its dielectric
function, or constant, is non-negative [4]. Such is not necessarily the case for q 6= 0, however,
where the dielectric constant may take on negative values without violating causality [5].
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The presence of a negative dielectric constant (κ(q, ω = 0) < 0) is predicted to significantly
alter the electrical properties of materials by, for example, giving rise to the attraction of
like charges within a material. In this case, the negative dielectric constant is thought to
have profound implications for the maximum critical temperature for superconductivity [4].
Experimentally testing such assertions has proven difficult, although the dc limit has been
approached in certain materials [6].

In this paper, we propose that the realm of negative dielectric constant can be studied in
soon-to-be constructed ultracold molecule experiments, in which electrically polar molecules
are produced in a Bose–Einstein condensate (BEC). Specifically, we consider molecules whose
permanent dipole moments are easily aligned in sufficiently weak applied fields. In this case,
the molecules exert fields on one another that are comparable to the applied field, and the BEC
acquires dielectric as well as superfluid character. We show that altering either the density
of the gas or the strength of the applied field can drive the dielectric constant of the system
to be negative, triggering a long-wavelength instability of the condensate. This instability is
qualitatively completely different than those studied previously in dipolar BECs with fixed
dipole moments, being the phonon [7] and roton instabilities [8]. Additionally, the decay times
of this dielectric instability are found to be relatively long, allowing for this state to be observed
and studied in detail. Critical in our analysis is the emergence of polarization modes that are
coupled to quasi-particle excitations of the BEC. Thus, we show that non-trivial physics emerges
in the system of ultracold polar molecules in small fields, and motivate the exploration of this
regime, or the regime of the dielectric superfluid, for future experiments.

As a qualitative guide, we first consider a homogeneous dielectric placed in an applied field.
This system is characterized by the well-known Clausius–Mossotti relation, which expresses the
dielectric constant κ in terms of the polarizability α of the microscopic constituents,

κ − 1 =
nα

1 − (4π/3)nα
, (1)

where n is the number density of the dielectric [1]. Equation (1) suggests that large enough
values of nα could drive the dielectric constant of the homogeneous material to be negative. As
discussed in [4], this is indeed possible for materials with static dielectric functions κ(q, ω = 0)
with small but non-zero wave number (q > 0). Most dielectric materials such as ceramics,
glasses and plastics have κ ∼ 1–10, mostly due to their large densities [9], while most gases have
κ ∼ 1 because their densities are very small. Gases of heteronuclear polar molecules, however,
can realize large values of nα due to their possibly large polarizabilities, resulting in very large
dielectric constants for these systems even in the dilute gaseous state where n is small.

The heteronuclear molecules that we consider here possess permanent dipolar moments
dmax in their body-fixed frames. In the absence of an applied electric field, the ground state
of each molecule is a parity eigenstate and the orientations of the molecular dipole moments
average to zero in the laboratory frame. However, the presence of an applied electric field
mixes the molecular parity states, and the average dipole orientation becomes non-zero. Because
the energy splitting between these states, 1, can be very small, the resulting molecular
polarizabilities can be very large (see table 1 for examples). In particular, this polarizability is
distinct from the more familiar polarizability, which is of the order of 1–100 a.u., and arises
solely from the electric degrees of freedom. In a weak electric field E, the molecules then
acquire a laboratory-frame dipole moment d = αE characterized by the molecular polarizability
α ∝ d2

max/1, where dmax is the limiting value of the molecular dipole moment in large applied
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Table 1. Candidate molecules.

Molecule dmax (a.u.) 1 (a.u.) α (a.u.)

87Rb133Cs 0.49 7.6 × 10−8 2.1 × 106 [19, 20]
232Th16O 1.53 4.6 × 10−12 1.0 × 1012 [21, 22]

fields and1 is the splitting of the parity doublet [10]. This polarizability is an intrinsic property
of a heteronuclear molecule. The molecular dipole moment in the laboratory frame is therefore
uniquely determined by the local electric field via the polarizability α.

While the gas of heteronuclear polar molecules can possess a large polarizability due to
the small parity splittings, this feature is quickly lost at finite temperature. Indeed, a thermal
gas of polar molecules, at temperatures T such that kBT >1, has both parity states equally
populated, causing the dipolar character of the system to vanish. However, in an ultracold,
Bose-condensed gas the lower molecular state can be dominantly populated, thus realizing
high polarizability α. Thus, polar molecules, at sufficiently low temperature, can exhibit
polarizability and hence dielectric character, albeit from a different microscopic origin than
atoms or non-polar molecules.

To deal with the properties of this inhomogeneous dielectric system, we cannot simply
employ the results derived for a homogeneous material. We therefore begin by considering a
generalized dielectric formalism. The energy density of a dielectric material with a polarization
P(x) induced by an electric field E(x) is given by

w(x)= −
1

2
P(x) · E(x). (2)

To account fully for the internal interaction energy of the system, we write the electric field
as E(x)= Eapp + EP(x), where Eapp is the applied, or external field in the absence of the
BEC and EP(x) is the polarization field. The polarization, by definition, is the dipole density
P(x)= n(x)d(x), where n(x) is the particle density of the dielectric and d(x) is the local dipole
moment of a constituent at point x, or the dipole field.

In a dielectric material, the dipoles are induced by the local field and can be expressed, in
the linearly polarizable regime, as d(x)= αE(x). This leads to an expression for the polarization
of the dielectric,

P(x)= n(x)α
[
Eapp + EP(x)

]
. (3)

We can now calculate the field produced at a point x due to the presence of this polarization
simply by the convolution over the electric field produced by a dipole at a point x′,

EP(x)=

∫
dx′

3 n (P(x′) · n)− P(x′)

|x − x′|3
, (4)

where n is the unit vector in the direction x − x′. A self-consistent solution to equations (3)
and (4) can be used to calculate the energy density of a dielectric material, equation (2), given
the density n(x) and polarizability α of the constituents.

For a Bose-condensed gas of polar molecules in the dilute regime, we interpret
the dielectric density as the magnitude squared of the mean-field condensate wave function,
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n(x)= |9(x)|2, where
∫
dx|9(x)|2 = N , and N is the number of molecules in the system. Now,

the polarization can be expressed as P(x)= d(x)|9(x)|2 and the field EP(x) in equation (4) can
be expressed in terms of the dipole field d(x) and the wave function 9(x),

EP(x)= −

∫
dx′

d(x′)− 3 n (d(x′) · n)
|x − x′|3

|9(x′)|2. (5)

The dipole field d(x) gives the dipole moment of a molecule at point x. From equations (3)
and (5), it follows that the dipole field obeys the self-consistent expression depending
on 9(x),

d(x)= α

[
Eapp −

∫
dx′

d(x′)− 3 n (d(x′) · n)
|x − x′|3

|9(x′)|2
]
, (6)

where we see that a molecule with polarizability α at point x obtains an induced dipole moment
d(x) due to contributions from both the applied field Eapp and the field produced by the other
dipoles in the system.

From equation (2), we can now express the energy of this system, including kinetic and
trapping energies, as a functional of 9(x) and the dipole field d(x). Neglecting any short-range,
non-dipolar interactions between the molecules, this energy functional is given by

E[9,d] =

∫
dx9?(x)

[
−

h̄2

2M
∇

2 + U (x)−
1

2
d(x)

·

[
Eapp −

∫
dx′

d(x′)− 3 n (d(x′) · n)
|x − x′|3

|9(x′)|2
]]
9(x), (7)

where M is the mass of a polar molecule and U (x) is the trapping potential. The ground
state of this system is found by minimizing the total energy with respect to any variation of
9?. Such a task is seemingly straightforward, but care must be taken when considering the
9(x) dependence of the dipole field d(x). Due to the self-consistent nature of equation (6),
a functional derivative of d(x) with respect to 9?(x) is not straightforward. To handle this
relationship, we treat equation (6) as a constraint on the system and employ a Lagrange
multiplier technique for minimizing (7).

We define a modified energy functional �[9,d], given by

�[9,d] = E[9,d] + λ · F[9,d], (8)

where F[9,d] is defined so that equation (6) is satisfied when ∂�/∂λi = 0 and, by construction,
λ is a vector Lagrange multiplier with units of electric field. Now, a wave function 9(x) that
minimizes the total energy of this system is found by setting ∂�/∂9?

= 0. Performing this
operation, we derive the nonlinear Schrödinger equation, or Gross–Pitaevskii equation (GPE)
for 9(x), given by

µ9(x)=

[
−

h̄2

2M
∇

2 + U (x)+
1

2
d(x) ·

(
λ − Eapp

)
+ (αλ + d(x)) ·

∫
dx′

d(x′)− 3 n (d(x′) · n)
|x − x′|3

|9(x′)|2
]
9(x), (9)

New Journal of Physics 14 (2012) 043018 (http://www.njp.org/)

http://www.njp.org/


5

where µ= µE + λ · µF is the chemical potential of the condensate, whose terms µE and µF,i

can be calculated by projecting equation (9) onto 9?(x) and matching the terms proportional
to 1 and λi , respectively. The components λi of the vector Lagrange multiplier are found by
enforcing ∂�/∂di = 0, and obey the coupled equations

1

2
NEapp,i −

∫
dx|9(x)|2

∫
dx′

|9(x′)|2di(x′)
1 − 3 cos2 θi

|x − x′|3

+
∑
γ= j,k

∫
dx|9(x)|2

∫
dx′

|9(x′)|2dγ (x′)
3 cos θi cos θγ

|x − x′|3

=
1

2
λi

[
N +α

∫
dx|9(x)|2

∫
dx′

|9(x′)|2
1 − 3 cos2 θi

|x − x′|3

]

−
1

2

∑
γ= j,k

λγα

∫
dx|9(x)|2

∫
dx′

|9(x′)|2
3 cos θi cos θγ

|x − x′|3
, (10)

where θi is the angle between n and î . Equations for the components λ j and λk are found by
cyclic permutations of the indices in equation (10). Thus, the ground state of the dilute BEC of
polar molecules in weak applied fields is described by equations (6), (9) and (10). Interestingly,
we see that these equations couple the condensate wave function to the dipole field, so a change
in density can result in a change in the dipole moment of the polar molecules, and vice versa.
In the strong field limit of fully polarized dipoles, however, d(x)→ dmax and α → 0. In this
case, equation (9) becomes identical to the non-local GPE that is typically used to study dipolar
BECs [11].

An instructive and relevant case to consider is a gas of polar molecules in a one-dimensional
(1D) harmonic trap, where U (x)=

1
2 Mω2

z z2 and the applied field is homogeneous in the
z-direction, Eapp = ẑEapp. Indeed, such quasi-two dimensional (q2D) geometries are sought after
to stabilize dipolar gases against collisional loss [12–14] and energetic instabilities due to the
attractive part of the dipole–dipole interaction [15]. In this translationally invariant geometry, all
transverse (in-plane) components of the electric field due to the dipole polarization will cancel,
so we can write EP(x)= ẑEP(x), and subsequently d(x)= ẑd(x). With these simplifications, the
GPE (equation (9)) can be rewritten as

µ9(x)=

[
−

h̄2

2M
∇

2 + U (x)+
1

2
d(x)

(
λ− Eapp

)
+ (αλ+ d(x))

∫
dx′d(x′)|9(x′)|2

1 − 3 cos2 θz

|x − x′|3

]
9(x), (11)

and the equation for the dipole field (equation (6)) can be rewritten as

d(x)= α

[
Eapp −

∫
dx′

|9(x′)|2d(x′)
1 − 3 cos2 θz

|x − x′|3

]
, (12)
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where θz is the angle between n and ẑ. In this geometry, the vector Lagrange multiplier has just
one non-zero component corresponding to the z-direction, λ= ẑ · λ, where

λ=
NEapp − 2

∫
dx|9(x)|2

∫
dx′

|9(x′)|2d(x′)
1−3 cos2 θz

|x−x′|3

N +α
∫
dx|9(x)|2

∫
dx′|9(x′)|2

1−3 cos2 θz

|x−x′|3

. (13)

Equations (11), (12) and (13) fully describe the BEC of polar molecules in the q2D geometry
described above. Thus, we seek solutions for the condensate wave function 9(x) and the
corresponding dipole field d(x) that self-consistently satisfy these equations. We note that the
results presented in the following are nearly quantitatively equivalent to those that follow from
neglecting the 9(x) dependence of d(x) in the derivation of the GPE, equation (9), which
amounts to setting λ= 0 in this work. The governing equations for this system are, however,
quite general for describing a BEC of polar molecules in weak applied fields, and may be crucial
for future studies.

To describe the pure condensate in this q2D geometry, we note that the lowest energy state
is that with zero in-plane momentum, 9(x)→9(z)=

√
n2Dχ(z), where n2D is an integrated

2D density and χ(z) is the axial wave function of the condensate, normalized to unity. For
a condensate wave function with this form, the polarization field, and therefore the dipole
field of the condensate, depend only on z. For this case, all of the convolution integrals in
equations (11), (12) and (13) can be performed analytically, using the result from [8]∫

dx′ f (z′)
1 − 3 cos2 θz

|x − x′|3
=

8π

3
f (z). (14)

Thus, we see that equation (12) reduces to

d(z)= α

[
Eapp −

8πn2D

3
|χ(z)|2d(z)

]
, (15)

which yields the solution for the condensate dipole field,

d(z)=
αEapp

1 + (8πn2Dα/3)|χ(z)|2
. (16)

The form of this result is in stark contrast with the well-known Clausius–Mossotti result (1),
where the denominator of equation (16) is replaced by 1 − (4π/3)nα, where n is the density
of the homogeneous 3D dielectric. Indeed, the Clausius–Mossotti result does not necessarily
hold for inhomogeneous systems, like the one we consider here, which has a finite extent in
the polarization direction. For this case, the net electric fields of the other dipolar molecules
in the system sum to point locally in the direction opposing the applied field. For linearly
polarizable molecules, this results in a decrease of the local dipole moment, which is reflected in
equation (16). The case is the opposite for the homogeneous 3D system, or a quasi-2D system
where the applied field lies parallel to the plane of symmetry, or indeed any system that is
homogeneous in the direction of the applied or polarization field. In this case, the result [8]∫

dx′ f (x ′, y′)
1 − 3 cos2 θz

|x − x′|3
= −

4π

3
f (x, y) (17)

can be used to reproduce the Clausius–Mossotti result.
For the case at hand, however, equation (16) makes clear the interesting relation between

the condensate density and the corresponding dipole field, revealing that the dipole moments

New Journal of Physics 14 (2012) 043018 (http://www.njp.org/)

http://www.njp.org/


7

−6 −4 −2 0 2 4 6
0

0.2

0.4

0.6

0.8

1

d
(z
)/
(α
E
ex
t)

z/lz

 

 

i

ii
iii

Figure 1. The dipole field corresponding to the condensate mode of the q2D
system, given by equation (16). For this figure, we take the axial wave function
χ(z) to be a Gaussian normalized to unity with width lz. The lines correspond
to (i) n2Dα|χ(0)|2 = 0.046, (ii) n2Dα|χ(0)|2 = 0.70 and (iii) n2Dα|χ(0)|2 = 3.71,
and coincide with the points shown in figure 2. For a given polarizability, higher
densities reduce the local dipole moment inside the gas.

of the condensed molecules are smaller where their density is larger. This dipole field is shown
in figure 1 for various values of n2Dα|χ(0)|2, where we take χ(z) to be a Gaussian of width
lz =

√
h̄/Mωz. The widely studied dipolar BECs with fixed dipole moments, trapped in oblate or

q2D geometries, are predicted to be unstable to roton-like quasi-particles beyond some critical
density or interaction strength set by the dipole moment of the bosons [8, 16]. Equation (16)
suggests that this mechanism may be suppressed in the dielectric BEC for larger values of nα
as the dipole moments are diminished in the region of higher density.

We explore the stability of this system more quantitatively by investigating the behavior
of small fluctuations on top of the ground state, that is, when 9(z)→9(z)+ δψ(x, t) and
δ � 1. Such perturbations to the ground condensed state do not necessarily possess translational
symmetry, and a full treatment of the mean-field equations (11) and (12) must be considered.
To handle the time-dependence of the fluctuations ψ(x, t), we generalize equation (11) to its
time-dependent form, where the stationary condensate has the time dependence e−iµt . In this
case, µ is replaced by ih̄∂t in equation (11).

Whereas the usual linearization of the GPE results in a single equation for ψ(x, t), the
linearization of equations (11) and (12) results in an equation for ψ(x, t) and an equation for the
corresponding linear response of the dipole field. To this end, we take d(z)→ d(z)+ δσ (x, t),
where σ(x, t) describes the linear deviations from the condensate dipole field d(z) due to the
fluctuations ψ(x, t). The equation for ψ(x, t) is given by

ih̄∂tψ(x, t)=

[
−

h̄2

2M
∇

2 + U (x)−µ
]
ψ(x, t)

+ (αλ+ d(z))

[∫
dx′

1 − 3 cos2 θz

|x − x′|3
σ(x′, t)|9(z′)|2

]
9(z)

+ (αλ+ d(z))

[∫
dx′

1 − 3 cos2 θz

|x − x′|3
d(z′)9?(z′)ψ(x′, t)

]
9(z)
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+ (αλ+ d(z))

[∫
dx′

1 − 3 cos2 θz

|x − x′|3
d(z′)9(z′)ψ?(x′, t)

]
9(z)

+ (αλ+ d(z))

[∫
dx′

1 − 3 cos2 θz

|x − x′|3
d(z′)|9(z′)|2

]
ψ(x, t)

+σ(x, t)

[∫
dx′

1 − 3 cos2 θz

|x − x′|3
d(z′)|9(z′)|2

]
9(z)

+
1

2

(
λ− Eapp

)
d(z)ψ(x, t)+

1

2

(
λ− Eapp

)
σ(x, t)9(z) (18)

and the equation for σ(x, t), the linear response of the dipole field, is given by

σ(x, t)= −α

∫
dx′

1 − 3 cos2 θz

|x − x′|3

[
d(z′)

[
9?(z′)ψ(x′, t)

+ ψ?(x′, t)9(z′)
]

+ σ(x′, t)|9(z′)|2
]
. (19)

Now, a complete description of the small fluctuations of the Bose condensate of polar molecules
in the linearly polarizable regime must self-consistently satisfy the coupled equations (18)
and (19).

In the q2D geometry, the fluctuations ψ(x, t) take the form of plane-wave Bogoliubov
quasi-particles [17],

ψ(x, t)=
√

n2Dχ(z)
[
ueiq·ρe−iωt + v?e−iq·ρeiωt

]
, (20)

where the u and v amplitudes are normalized to |u|
2
− |v|2 = 1 and we assume that the lowest-

lying quasi-particle excitations occupy the axial condensate wave function χ(z), which amounts
to using the single-mode approximation. Typically, inserting this ansatz into equation (18)
results in a coupled set of Bogoliubov–de Gennes (BdG) equations for the frequencies ω [17].
Now, these BdG equations have terms ∝ σ(x, t) in addition to the more familiar terms
∝ ψ(x, t). Using the BdG ansatz (20), the function σ(x, t) spatially decouples into radial plane
waves and a function that depends only on z, much like the form of ψ(x, t) in equation (20).
Thus, a solution to equation (19) describes a polarization mode with plane-wave character
corresponding to a quasi-particle with in-plane momentum h̄q.

We solve the modified BdG equations by discretizing them on a numeric grid and using the
iterative Arnoldi diagonalization method, solving for σ(x, t) in equation (19) at each iteration
via Gaussian elimination. We take χ(z) to be a Gaussian normalized to unity with width lz, and
find no qualitative and little quantitative difference between this Gaussian ansatz and solving for
χ(z) exactly in the NLSE (equation (9)). The solutions are characterized by the quasi-particle
dispersion relation, relating the energy h̄ω of a quasi-particle and its corresponding polarization
mode to its momentum h̄q. As is clear from the ansatz (20), any ω with a non-zero imaginary
part signifies a dynamic instability of the in-plane homogeneous ground state.

To execute the Gaussian elimination algorithm, we represent the integral in equation (19)
as a matrix operator on the basis of grid points. This procedure is stable for the momenta
that are relevant for characterizing the stability/phase diagram of the system. However, for a
given n2Dα|χ(0)|2, we find larger wave number(s) for which this matrix is singular and the
Gaussian elimination fails. This singularity corresponds to an unphysical divergence in σ(x, t)
and is beyond the scope of our model, in which the dipole moments are limited by a physical
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Figure 2. Stability/phase diagram for (a) the RbCs system and (b) the ThO
system in the q2D geometry as a function of applied field Eapp and integrated
2D density n2D. In the RbCs diagram, the blue region (i) signifies roton
instability and the purple and red (ii and iii) shaded regions signify long-
wavelength phonon-like instability. In the red region (iii) there is an instability
at all small but non-zero momenta, while in the purple region there is an
instability at small momenta, but a gap of stability near zero momentum
(a long-wavelength instability with roton character). The red region (iii) persists
for all log10n2Dα|χ(0)|2 > 0. The black dashed lines are interpolations of the
stability/phase boundaries, and the black circles indicate the applied field above
which the q2D dipolar BEC has a roton instability when the effect of P(x)
is ignored, i.e. when d(x)= αEapp. In the ThO system, the roton instability is
completely suppressed and only the phonon-like instabilities are present in the
range of applied fields that are permitted in the linearly polarizable regime.

cut-off dmax. The renormalization of this singularity is under active investigation [18]. It does
not, however, affect our present conclusions.

To proceed in characterizing this stability/phase diagram, we consider two bosonic
molecular species, RbCs and ThO. The relevant microscopic parameters for these molecules
are given in table 1. While RbCs has a relatively small rotational splitting in its ground state
(1= 7.6 × 10−8 a.u.), ThO has a very small 3-doublet splitting in its metastable H 311 state
(1= 4.6 × 10−12 a.u.). This results in a very large polarizability for the ThO molecule, and
thus enhanced dielectric effects. These molecules remain in the linearly polarizable regime for
applied fields Eapp . dmax/(2α), corresponding a maximum applied field of about 200 V cm−1

for RbCs and 12 mV cm−1 for ThO. We note that both of these species have been produced in
experiments [23–25], although not yet as quantum degenerate gases.

Figures 2(a) and (b) characterize the stability/phase of the RbCs system and the ThO
system, respectively, as a function of applied field and integrated density. In figure 2(a), the
blue region (i) shows where the RbCs system has a roton instability due to excitations of
finite wavelength ∼2πlz [8]. For dipoles of fixed dipole moment, the instability would occur
at smaller dipole moment for increasing density, i.e. the boundary of the blue region would be
a strictly decreasing function of n2Dα (shown by the black circles). However, in the dielectric
BEC, this trend reverses beyond a critical point and the rotons become more stable, owing to the
diminishing dipole moment in the center of the gas (as anticipated in equation (16)). Whereas
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Figure 3. The imaginary parts of the dispersions for the parameters that
are labeled in figure 2. The roton instability (i) occurs at larger, finite
momentum while the phonon-like dielectric instabilities (ii and iii) occur at small
momentum.

the roton instability is suppressed in the stability/phase diagram for the RbCs system, it is
completely absent from the linearly polarizable ThO system because the large polarizabilities
of this molecule serve to suppress the dipole moment in the center of the condensate more
rapidly as a function of applied field.

By contrast, the purple and red (ii and iii) regions, present in figures 2(a) and (b), signify
long-wavelength instabilities. In the purple region (ii), the long-wavelength instability occurs
at small but finite momenta, leaving an interval of dynamically stable modes near q = 0. As
n2Dα|χ(0)|2 becomes greater than unity (red region), the instability occurs at all small, non-
zero momenta, and looks like a phonon instability. The imaginary parts of these dispersions
are given by purple dot-dashed (ii) and the red dashed (iii) lines in figure 3, respectively. This
behavior, being independent of Eapp and occurring at a critical value of nα, is reminiscent of the
long-wavelength instability of a homogeneous dielectric with negative static dielectric constant.
Indeed, this instability signifies the transition to a negative static dielectric function in the q2D
geometry, wherein novel physical behavior, such as the attraction of like electric charges, is
expected to occur [4].

We find that the emergence of the dielectric instability is universal, and occurs at
n2Dα|χ(0)|2 = 1 for any linearly polarizable molecule at zero temperature. For RbCs in a trap
with axial frequency ωz = 2π × 20 kHz, this corresponds to a large critical integrated density
of n2D = 4.02 × 1012 cm−2, while for ThO, the critical density is just 7.85 × 106 cm−2 because
these molecules have much larger polarizabilities. Indeed, the stability/phase diagram of the
ThO system in figure 2(b) is identical to that of RbCs in figure 2(a), but with a much smaller
cut-off in Eapp (necessary to remain in the linearly polarizable regime). Thus, the onset of
the dielectric instability occurs at n2Dα|χ(0)|2 = 1 for both species, but the region of roton
instability is far suppressed from the ThO diagram due to this molecule’s large polarizability.

For the mean-field theory presented in this work to hold, we require that the gas
be sufficiently dilute. In the process of mapping these stability/phase diagrams shown in
figure 2, we check that the diluteness criteria are satisfied by calculating the ratio of the
characteristic interaction length to the average interparticle spacing across the density profile
of the condensate, which is characterized by the 2D gas parameter n2Da2

dd(z), where add(z)=

Md2(z)/3h̄2 is the z-dependent characteristic dipole length of a molecule in the system [8],
varying with the condensate density profile. We find that this gas parameter is sufficiently small

New Journal of Physics 14 (2012) 043018 (http://www.njp.org/)

http://www.njp.org/


11

(.10−2) near the stability/phase boundaries in figure 2 to justify our use of a condensate mean-
field, while it can become larger (>1) for larger densities and applied fields. In this case, two-
body correlations may become important in characterizing the ground state of the gas; however,
the dielectric properties of the system should share the qualitative features of the mean field
ground state. Similarly, we expect the qualitative dielectric properties to persist if the molecules
possess large Van der Waals lengths [26], which can approach the mean intermolecular spacing
at sufficiently high density.

In a realistic experimental setup, a radial harmonic trap is present in addition to the tight
axial trap. Here, long-wavelength quasi-particles manifest as breathing or quadrupole modes.
For the ThO condensate, we consider occupations of N = 500, 1000, 2000 molecules in a trap
with radial frequency ωρ = 2π × 200 Hz and the same axial frequency as the q2D system. We
employ the local-density approximation (LDA) to solve the NLSE and calculate the breathing
and quadrupole mode frequencies. This approximation works well to describe these long-
wavelength modes in the dipolar system. We find that, at critical applied fields similar to
those in the q2D regime, the breathing and quadrupole modes develop imaginary frequencies,
showing that the phonon-like dielectric instability persists in the trapped system, that is, the
decay proceeds via the longest wavelength modes available, with a decay time of the order of
milliseconds.

To summarize, we have considered a BEC of polar molecules in an applied electric
field that is sufficiently weak to keep the dipoles in the linearly polarizable regime. In this
regime, the system develops dielectric character, resulting in a suppressed roton instability
and the emergence of a dielectric instability due to the development of a negative static
dielectric function. While this physics is essential to consider for any weak-field studies of
molecular BECs, it also introduces new physics that is accessible due to the possibly very large
polarizabilities of heteronuclear molecules. The molecular BEC gives us access to the regime
of the negative static dielectric function, wherein the physics of a superfluid with such novel
dielectric properties can be explored for the first time.
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