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Roton immiscibility in a two-component dipolar Bose gas
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We characterize the immiscibility-miscibility transition (IMT) of a two-component Bose-Einstein condensate
(BEC) with dipole-dipole interactions. In particular, we consider the quasi-two-dimensional geometry, where
a strong trapping potential admits only zero-point motion in the trap direction, while the atoms are more free
to move in the transverse directions. We employ the Bogoliubov treatment of the two-component system to
identify both the well-known long-wavelength IMT in addition to a rotonlike IMT, where the transition occurs at
finite-wave number and is reminiscent of the roton softening in the single-component dipolar BEC. Additionally,
we verify the existence of the roton IMT in the fully trapped, finite systems by direct numerical simulation of the
two-component coupled nonlocal Gross-Pitaevskii equations.
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I. INTRODUCTION

The phenomenon of Bose-Einstein condensation is char-
acterized by the presence of long-range phase coherence.
Interestingly, phase coherence can persist in a two-component
Bose-Einstein condensate (BEC), resulting in an overlapping
or miscible mixture of distinguishable components. This
miscible state, however, is only stable for a certain range
of interaction parameters and densities. Indeed, the system
can be driven to immiscibility by modulating the density of
the two-component BEC, by tuning the relative strengths of
the interspecies and intraspecies interactions, by altering the
geometry of the trap in which the system is held, or by periodic
modulation of the trap frequencies [1–7].

To date, most of the experimental work on such systems
has been performed using alkali-metal atoms that interact
predominantly via short-range potentials [8–10]. For such
interactions, the transition to immiscibility is characterized by
the parameter � = g11g22/g

2
12 − 1, where g11 and g22 are the

intraspecies interaction couplings and g12 is the interspecies
interaction coupling. Having � > 0 implies the stability of
the miscible state and � < 0 implies an unstable miscible
state. Thus, the transition to immiscibility can be seen to
originate from the competing strengths of the interspecies
and intraspecies contact interactions. The immiscible-miscible
transition (IMT) is characterized by � = 0, where the inter-
species and intraspecies interactions are balanced [11,12]. The
presence of an external trapping potential, however, relaxes
this criterion, as the trap introduces an additional energy cost
for the components to spatially separate [2,13,14].

Recently, much effort is being directed towards creating
quantum degenerate gases of atoms and molecules that possess
non-negligible dipole moments and thus can interact via both
short-range and dipole-dipole interactions, which are long-
range (∝1/r3, where r is the distance between the dipoles)
and anisotropic in nature. Already, experimentalists have
succeeded in Bose-condensing atomic 52Cr with a magnetic
dipole moment of d = 6μB [15,16], atomic 164Dy with a
magnetic dipole moment of d = 10μB [17], and atomic 168Er
with a magnetic dipole moment of d = 7μB [18], where μB

is the Bohr magneton. Additionally, progress is being made,
for example, towards the condensation molecular RbCs [19],

where the dipolar effects should be considerably larger than in
the atomic 52Cr, 164Dy, and 168Er BECs. Clear dipolar effects
have been observed in the 52Cr, 164Dy, and 168Er BECs, though,
in spite of relatively weak dipole-dipole interactions [20,21].

For polarized dipoles, the anisotropic nature of the in-
teraction leads to attraction when the dipoles are aligned
head-to-tail (in the direction of polarization) and thus to
an energetic instability in the homogeneous dipolar BEC
(DBEC) [22]. However, confinement in the direction of po-
larization can significantly stabilize the dipolar system against
instabilities due to inelastic collisions [23] and three-body loss
processes [24]. To this end, the quasi-two-dimensional (q2D)
geometry is sought after to suppress the attractive part of the
dipole-dipole interaction (ddi). Interestingly, a roton-maxon
character is predicted to exist in the quasiparticle dispersion of
the single-component DBEC in this q2D geometry [25–27],
similar to that in superfluid 4He, though from a different
microscopic origin. In the q2D dipolar BEC, the roton-maxon
dispersion can exist in the dilute, uncorrelated state, while it
is precisely the correlations that give rise to the roton in the
superfluid 4He system [28].

In this article, we consider a two-component BEC with
both short-range and dipole-dipole interactions in the q2D
geometry. Such a system can be realized by dual-condensing
different atomic or molecular species, or by using different
magnetic sublevels of the same atomic species [29]. Indeed,
we find that roton physics manifests itself in a unique way in
this two-component dipolar system, resulting in a first-order
phase transition from the miscible to the immiscible state
due to unstable rotonlike quasiparticle fluctuations of the
two-component BEC. In practice, this corresponds to a critical
length scale at the IMT threshold that is set by the roton
wavelength, being on the order of the length scale of the tight
trapping potential. This is in stark contrast to the threshold
transition length scale of the nondipolar condensate, being the
phonon length scale, which is typically the longest available
length scale in the system.

Whereas other studies have characterized the IMT of
dipolar Bose gases via full mean-field simulations in one
dimension [30] and Monte Carlo simulations in two di-
mensions [31], we perform full mean-field simulations in
addition to an analytic Bogoliubov treatment, allowing us
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to characterize the IMT very efficiently in a large parameter
space. Additionally, we note that other theoretical works on
nondipolar binary BECs have predicted finite wavelength phe-
nomenon regarding, for example, the boundaries of immiscible
systems [32–35] and quenches deep into immiscible parameter
space [36]. These phenomena, however, are not rotonlike
in that the threshold defining the transition parameters is
determined by long-wavelength, or phononlike excitations in
each case. The q2D binary DBEC is unique in that the IMT has
finite wavelength character, or roton character, at the threshold,
which is tunable as a function of many system parameters,
including the tilt of the polarization field.

This paper is organized as follows. In Sec. II we introduce
the mean-field formalism for the interacting two-component
BEC, discussing the three-dimensional homogenous case in
Sec. II A and the quasi-two-dimensional homogeneous case
in Sec. II B. In Sec. II C we derive the two-component
quasiparticle dispersion, which we use to identify both the
familiar long-wavelength and the roton IMT in the large
parameter space of the system. We present our results in
Sec. III, including numerical solutions to the coupled Gross-
Pitaevskii equations, describing the condensate wave functions
of the two-component BEC, for free and radially trapped
geometries. We conclude in Sec. IV.

II. MEAN-FIELD THEORY

We consider an ultracold, dilute two-component Bose
gas in the presence of two-body s-wave and dipole-dipole
interactions, labeling the components by the indices j and
k. The contact interactions between components j and k are
characterized by the s-wave scattering lengths ajk through the
pseudopotential,

V c
jk(r − r′) = gjkδ(r − r′), (1)

where gjk = 2πh̄2ajk/Mjk is the contact interaction coupling
matrix, Mjk = MjMk/(Mj + Mk) is the reduced mass matrix
of the two-body system, and Mj denotes the mass of a boson
of component j . Note that the intraspecies (diagonal) reduced
mass is just Mjj = Mj/2. Here, a12 = a21 is the interspecies
s-wave scattering length, and a11 and a22 are the intraspecies s-
wave scattering lengths. The ddi potential for polarized dipoles
is given by the potential

V d
jk(r) = djdk

1 − 3(d̂ · r̂)2

r3
, (2)

where dj is the magnitude of the dipole moment of component
j , d̂ is the direction of the dipole polarization (assumed the
same for both components), and r is the vector separating the
two dipoles. The full two-body interaction potential is given by
Vjk(r) = V c

jk(r) + V d
jk(r). We can write the energy functional

for the fully condensed system in terms of the condensate order
parameters, or wave functions, �j (r):

E[{�j }]

=
∫

dr

[ ∑
j=1,2

��
j (r)ĥj (r)�j (r)

+1

2

∫
dr′ ∑

j,k=1,2

��
j (r)��

k (r′)Vjk(r−r′)�k(r′)�j (r)

]
. (3)

Here, ĥj (r) is the single-particle Hamiltonian

ĥj (r) = − h̄2

2Mj

∇2 + Uj (r), (4)

and Uj (r) is the trapping potential of component j . We
normalize each �j (r) to

∫
dr|�j (r)|2 = Nj , where Nj is the

number of particles in component j and the total number
of particles is given by N = ∑

j=1,2 Nj . In the energy
functional (3), the sum over j,k = 1,2 implies summing over
all four combinations of these indices taking on these values.
The factor of 1/2 in front of this sum takes care of the double
counting in the intraspecies interaction terms j = k and of the
double counting produced by summing both {j,k} = {1,2} and
{j,k} = {2,1} for the interspecies interactions.

The coupled Gross-Pitaevskii equations (GPEs) for this
two-component system are derived by requiring that small
variations of E[{�j }] with respect to �j vanish, giving

ih̄∂t�j (r,t)

=
[
− h̄2

2Mj

∇2 + Uj (r) +
∑
k=1,2

gjk|�k(r,t)|2

+
∑
k=1,2

∫
dr′V d

jk(r − r′)|�k(r′,t)|2
]

�j (r,t). (5)

Here, we have generalized to the time-dependent form of
these equations. The time-independent forms are recovered by
asserting the time dependence �j (r,t) = �j (r)e−iμj t , where
μj is the chemical potential of component j . Solutions
�j (r), corresponding to the fully condensed ground state,
are found by minimization of the corresponding energy
functional (3), and the dynamics can be studied by direct
numerical integration of (5). In practice, as we explain in
more detail later, we minimize (3) by evolving (5) in imaginary
time [37].

A. Homogenous three-dimensional system

In the homogeneous three-dimensional (3D) geometry,
there is no trapping potential and the miscible ground state
of the two-component system can be described simply by
the condensate order parameters �j (x) =

√
n3D

j , where n3D
j

is the 3D condensate number density of component j . For
the nondipolar case, the IMT of the homogeneous system
is characterized simply by the parameter �, introduced in
Sec. I. This characterization can be made more rigorously by
a linear stability study of the miscible state. Such a study
is performed within the Bogoliubov approximation, which
results in a quasiparticle description of the two-component
BEC. In this case, a pair of quasiparticles describes in-phase
and out-of-phase two-component modes. The out-of-phase
modes play an important role in characterizing the stability
of the miscible state. We save a detailed discussion of such
a theory for the case of dipolar interactions in the q2D
geometry for the following Sec. II B, where the physics of
the IMT is more complicated than for the nondipolar case or
homogeneous 3D cases.

When one or both of the components in the homogeneous
3D geometry possesses a non-negligible dipole moment, the
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polarization breaks the angular symmetry of the mean-field
interaction potentials. In the one-component DBEC, this
results in a quasiparticle dispersion that is phononlike (linear
in the long-wavelength limit) but anisotropic. In this case, the
speed of sound c depends on the angle θq between the wave
vector q and the dipole moment, c → c(θq). Similarly, the
dispersions of the two-component DBEC depend on θq and
are characterized by a � parameter that depends on θq [22],

�(θq) = G11(θq)G22(θq)

G2
12(θq)

− 1, (6)

which determines the IMT threshold. If �(θq) < 0 for any
angle θq, the components of the 3D two-component DBEC
are immiscible. In the above equation, the Gjk(θq) matrices
characterize both the short-range s-wave interactions and the
ddi between components j and k,

Gjk(θq) = gjk

{
1 + εdd

jk [3 cos2 θq − 1]
}
, (7)

and εdd
jk characterizes the strength of the ddi between compo-

nents j and k, εdd
jk = bjk/ajk , where bjk = 2Mjkdjdk/3h̄2 is

the dipole length characterizing the ddi between components
j and k. With M1 = M2, the interspecies dipole length (j �= k)
becomes the geometric mean of the intraspecies dipole lengths,
b21 = b12 = √

b11b22, and is thus uniquely determined by the
intraspecies dipole lengths. These dipole lengths are defined
so that a single-component polarized DBEC in a homogeneous
3D geometry requires a positive s-wave scattering length
ajj > bjj in order to energetically stabilize the system.

It is interesting to consider the case where one component
possesses a dipole moment and the other is nondipolar, say,
b22 = 0. In this case, �(θq) is always maximized when
θq = π/2, corresponding to two-component quasiparticle
propagation in the direction perpendicular to the dipolar
polarization. In this system, the IMT threshold, �(θq) = 0,
is first crossed in the direction perpendicular to the dipole
polarization, θq = π/2. With the exception of the angular
dependence, the stability condition resembles that of the
nondipolar two-component BEC system.

B. Homogeneous quasi-two-dimensional system

Recently, much effort has been directed towards real-
izing trapping geometries with very strong confinement in
one direction. Indeed, such geometries significantly stabilize
dipolar gases that are polarized in the direction of the
strong confinement by suppressing the attractive part of their
interactions. When the characteristic interaction lengths of
the trapped atoms or molecules are much larger than the
harmonic oscillator length, this system is effectively two-
dimensional (2D). However, when the interaction lengths are
sufficiently smaller than the harmonic oscillator length, the
system develops q2D character where the zero-point motion
in the trapped direction is important in characterizing the
interactions [26,27] and pure condensation occurs at finite,
as opposed to zero temperature [38]. A possible realization
of this geometry uses a retroreflected laser to create a one-
dimensional (1D) optical lattice potential [39].

We model the two-component Bose system in the q2D
geometry with the trapping potential Uj (z) = 1

2Mjω
2
z (z2 +

ρ2/λ2), where λ = ωz/ωρ � 1 is the trap aspect ratio. When
λ � 1 and the interactions are relatively weak compared to the
trapping energy h̄ωz, we use the single mode approximation
(SMA), where the condensate wave functions are assumed to
have the separable form

�j (x) = ϕj (ρ)χj (z), (8)

where ϕj (ρ) is the in-plane wave function normalized to Nj ,∫
dρ|ϕj (ρ)|2 = Nj , and χj (z) is the axial wave function. We

take χj (z) to be a Gaussian normalized to unity with width
lj = √

h̄/Mjωz,

χj (z) = 1√
ljπ

1
4

exp

[
− z2

2l2
j

]
. (9)

We assume that both components are trapped in a harmonic
trap with the same frequency ωz but allow for different masses
so the axial wave functions χj (z) can have different widths.

Even in highly oblate traps, the separable ansatz (8) is
not exact, except in the case of a noninteracting system.
The interactions, even when weak, also drive the axial wave
functions χj (z) away from the Gaussian form. However, the
SMA that we use here significantly simplifies the problem
at hand, allowing us to explore a larger region in parameter
space, and captures the relevant physics of the system [40]. The
SMA is particularly beneficial in that it allows us to reduce the
problem to a set of 2D equations by analytically integrating out
the z dependence in the coupled set of GPEs. For the dipolar
mean-field terms, this amounts to calculating an effective q2D
interaction potential, given by

vd
jk(ρ − ρ ′) =

∫
dz

∫
dz′χ2

k (z′)V d
jk(r − r′)χ2

j (z). (10)

We handle this expression by transforming into momentum
space, and thus need the Fourier transforms of V d

jk(r) and
χ2

k (z). Without loss of generality, we consider a polarizing
field d̂ = cos αẑ + sin αx̂, which describes dipoles that are
all tilted by an angle α off of the z axis into the x

direction. The momentum space interaction for dipoles with
this configuration is given by [22]

Ṽ d
jk(k) = 4π

3
djdk

{
(kz cos α + kx sin α)2

k2
− 1

}
, (11)

and the transform of the axial density is given by

F1D
[
χ2

j (z)
] = exp

[
−1

4
k2
z l

2
j

]
, (12)

where F1D is the 1D Fourier transform operator. Thus, the
effective q2D momentum space ddi is given by [27,41]

ṽd
jk(kρ) = DjkF

[
kρljk√

2

]
, (13)

where ljk =
√

(l2
j + l2

k )/2, Djk = 2
√

2πh̄2bjk

Mjkljk
is the ddi coupling

matrix, and F (q) = cos2 αF⊥(q) + sin2(α)F‖(q), where

F⊥(q) = 2 − 3
√

πqeq2
erfc(q) (14)

and

F‖(q) = −1 + 3
√

π
q2

x

q
eq2

erfc(q), (15)
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and erfc(q) is the complementary error function of q [41]. This
result (15) can be generalized to describe a polarization field
that is rotated by an angle η off of the x axis, by taking qx →
qd , where qd = √

qx cos2 η + qy sin2 η is the wave number in
the direction of the polarization tilt.

Similar calculations can be carried out for the kinetic,
potential, and contact interaction terms to yield a coupled set
of GPEs that govern the in-plane wave functions ϕj (ρ) of the
q2D system,

ih̄∂tϕj (ρ,t)

=
{

− h̄2

2Mj

∇2
ρ + 1

2λ2
Mjω

2
zρ

2 +
∑
k=1,2

[
gjk√
2πljk

|ϕk(ρ,t)|2

+
∫

dρ ′ vd
jk(ρ − ρ ′)|ϕk(ρ ′,t)|2

]}
ϕj (ρ,t). (16)

We calculate the dipolar interaction in the last term in Eq. (16)
by employing the convolution theorem,∫

dρ ′vd
jk(ρ − ρ ′)|ϕk(ρ ′,t)|2 = F−1

2D

[
ṽd

jk(kρ)ñk(kρ,t)
]
,

(17)

whereF2D is the 2D Fourier transform operator and ñk(kρ,t) =
F2D[|ϕk(ρ,t)|2]. Equation (16) fully describes the two-
component DBEC in the q2D geometry (in the mean-field
framework), where the components can have different masses
and interaction character. It is interesting to note that the
off-diagonal elements of the ddi coupling matrix Djk are deter-
mined uniquely by its diagonal elements while the off-diagonal
elements of the s-wave contact interaction coupling matrix gjk

are, in principle, independent of the diagonal elements. Physi-
cally, the latter are determined by the microscopic structure of
the components and are tunable via magnetic Fano-Feshbach
resonance [42,43].

C. Linear stability: Bogoliubov theory

An instructive case to consider is the pure q2D case, or
the case with no radial trapping potential (λ → ∞) so the
system is homogeneous in the x-y plane. In the miscible state
away from any instabilities, the condensate wave functions
can be written as ϕj (ρ,t) = √

nje
−iμj t , where nj is the

integrated 2D density of the j th component. In the immiscible
state, however, the continuous translational symmetry of the
system is broken. We can study this immiscibility-miscibility
transition (IMT) by considering small deviations from the
ground-condensed miscible states in the form of Bogoliubov
quasiparticles, ϕj (ρ,t) → √

nj [1 + δψj (ρ,t)]e−iμj t , where
δ � 1 and

ψj (ρ,t) = uje
iqρ ·ρe−iωt + v�

j e
−iqρ ·ρeiωt , (18)

where uj and vj are the Bogoliubov particle and hole
amplitudes, respectively, and obey the normalization |uj |2 −
|vj |2 = 1 [44]. We derive a set of equations for the frequencies
ω, the Bogoliubov de Gennes (BdG) equations, by linearizing
the Bogoliubov ansatz about the small parameter δ in the
GPEs (16). The same equations can be derived from a second
quantized theory, by diagonalizing the full two-component
Hamiltonian in the Bogoliubov approximation [45]. These

equations can be written in matrix form as [46]

Hu = ωu, (19)

where uT = [u1,v1,u2,v2] and the two-component BdG
Hamiltonian H is given by the 4 × 4 matrix

H =
(
B11 B12

B21 B22

)
, (20)

and the Bjk are 2 × 2 submatrices, and are given by

Bjk =
(

h̄2q2

2Mj
δjk + hjk hjk

−hjk − h̄2q2

2Mj
δjk − hjk

)
, (21)

where hjk = hjk(q) is a function of the quasiparticle momen-
tum,

hjk(q) = nk

(
gjk√
2πljk

+ DjkF

[
qljk√

2

])
. (22)

An algebraic diagonalization of the BdG equations (19) yields
the two-branch dispersion of the miscible q2D system,

ω2
±(q) = 1

2

{
ω2

1(q) + ω2
2(q)

±
√[

ω2
1(q) − ω2

2(q)
]2 + 4q4

M1M2
h12(q)h21(q)

}
,

(23)

where ωj (q) are the single-component Bogoliubov
dispersions

ω2
j (q) = q2

2Mj

(
q2

2Mj

+ 2hjj (q)

)
. (24)

The two-component dispersion (23) is identical to that of the
homogeneous system with contact interactions [45] but with
full momentum-dependent interaction coupling. We solve for
the BdG eigenvectors u numerically. From these eigenvector
solutions, we identify the upper (+) and lower (−) branches
of the two-component dispersion (23) as corresponding to
in-phase and out-of-phase modes, respectively. As is clear from
the form of the dispersion, ω− will always be lower in energy
than ω+ and is thus the relevant branch regarding stability
of the miscible state. In this work, we consider only positive
intraspecies and interspecies s-wave scattering lengths. In this
case, and in the absence of the ddi, the single components are
always stable and any instability, corresponding to Im[ω−] �=
0, signifies a transition to an immiscible state. When the ddi
is present, however, the single particle dispersions can present
dynamical roton instabilities when the effective dipole length
is sufficiently larger than the positive s-wave scattering length,
due to the momentum dependence of the ddi in the q2D geom-
etry [26,27]. As a result, imaginary parts of the lower branch of
the two-component dispersion could correspond to transitions
to immiscible states or to collapse of the miscible system,
much like the roton collapse seen in the single-component
DBEC.

Before proceeding, we consider the most radical deviation
from the simple Gaussian z dependence expressed by Eq. (9),
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being phase separation in the trap (z) direction. In the absence
of the trap, miscibility in this (z) direction corresponds to stable
two-component quasiparticle propagation in this direction,
which corresponds to stable quasiparticle propagation at an
angle α off of the z axis, where α is the polarization angle,
for the homogeneous 3D case discussed in Sec. II A. Thus, for
the system to be miscible in the trap direction, the parameters
must satisfy [from Eq. (6)]

�(α) > 0. (25)

Indeed, all of the examples we consider here satisfy this
criterion, so the assumption that there is no spatial separation or
immiscibility in the z direction is a good one. Even if Eq. (25)
is not satisfied, however, the system is likely still miscible in
the trap direction due to the tendency of the strong trapping
potential to force a system to miscibility. In this case, the
criteria for miscibility in the trap direction in the homogeneous
q2D geometry follows directly from previous studies of the
IMT in a two-component BEC in a trap, as the ddi can be
treated by using a modified s-wave scattering length in this
case [26]. This was recently considered for specific dipolar
species in Ref. [47].

III. RESULTS

For simplicity, we proceed by considering a two-component
system with equal integrated densities n1 = n2 = n and
masses M1 = M2 = M , which we refer to as the “balanced”
system. Having such a balanced system results in the two
components sharing an axial wave function, χ1(z) = χ2(z). In
the homogeneous 3D geometry, the stability of the mixture
does not depend on the direction of the dipole moment.
Such is not the case, however, in the q2D geometry. If the
dipoles are polarized in-plane, corresponding to α = π/2,
the system acquires the same energetic stability criterion as
the homogeneous 3D case. If the dipoles are polarized in
the trap direction, corresponding to α = 0, the criterion for
energetic instability becomes ajj > −2bjj [26]. For now, we
consider the α = 0 case. Additionally, from here forward we
set nl2

z = 1, so that the interactions are characterized solely
by the ratio of the interaction lengths to the axial harmonic
oscillator length lz.

A. Roton immiscibility for α = 0

For the short-range s-wave interactions, we consider scat-
tering lengths that would result in a slightly immiscible system
in the absence of the ddi. For now, we take a11/lz = a22/lz =
1.0 and a12/lz = 1.05. Additionally, we fix b11/lz = 2/3 and
explore the stability of the miscible system as a function of
b22/lz using the Bogoliubov theory laid out in the previous
section.

It is straightforward to predict the behavior of the two-
component system when b11 = b22, that is, when both com-
ponents are equally dipolar. In this case, the intra- and
interspecies dipolar interactions are equally repulsive and their
effects cancel in the dispersion ω−(q). As a consequence, the
ddi plays no role in the IMT of the system. The IMT is instead
solely determined by the short-range parameters. Indeed, this
is seen in Fig. 1, where the imaginary part of the lower branch

FIG. 1. (Color online) The phase diagram of the balanced two-
component system in the q2D geometry with dipole lengths b11/lz =
2/3 and scattering lengths a11 = a22 = 1 and a12 = 1.05 as a function
of the dipole length of component 2, b22/lz, and quasiparticle wave
number qlz. The familiar long-wavelength immiscible region and the
roton-immiscible region are labeled and colored, and the white region
signifies the existence of a stable miscible state. The roton-immiscible
region extends down to b22/lz = 0. The contours in the shaded region
mark increments of 0.1ωz.

of the two-component Bogoliubov dispersion, ω−(q) from
Eq. (23) is shown as a function of the wave number qlz. For
a range of b22/lz 
 b11/lz = 2/3, there is a long-wavelength
immiscibility, labeled and shown by the shaded region in this
figure. For b22 �= b11, however, the difference in the dipole
moments of the two components plays an important role in
characterizing the stability of the miscible state. For example,
reducing b22 relative to b11 stabilizes the long-wavelength
instability of the miscible state, as seen in the stable gap for a
range of b22/lz in Fig. 1.

Another important example of this, and indeed, a key
result in this paper, occurs for smaller values of b22. For
the parameters given above, and for b22/lz � 0.1, there exists
another region where Im[ω−(q)] �= 0. This region occurs at
finite, nonzero wave number and is characterized by the
softening of a rotonlike feature in the ω− quasiparticle
dispersion. As in the case of a single-component DBEC,
the softening of the roton dispersion signals an instability of
the q2D-homogeneous system. Unlike the single-component
DBEC, however, the instability does not lead to collapse but
instead results in an immiscible density pattern. The features in
the density pattern have a length scale that is the inverse of the
momentum at which the the roton dispersion touches the axis.
We term this kind of phase separation “roton immiscibility.”
While the case b22/lz = 0 is not shown in this figure (due
to the logarithmic scaling), the region of roton immiscibility
extends down to this limit.

The limit of b22/lz = 0 is, in fact, useful in revealing the
nature of the roton immiscibility. In this case, the only dipolar
interactions in the system occur within component 1. The
dispersion of component 1, ω1(q), does not possess a roton
minimum but is not purely phononlike, either, due to the
momentum dependence of the interaction h11(q), Eq. (22).
This dispersion is shown by the dash-dotted line in Fig. 2,
along with the dispersion of component 2, ω2(q) (dashed
line), which is purely phononlike due to the purely short-range
nature of these interactions. The a12/lz ratio that characterizes
the interspecies repulsion is then sufficiently strong to drive
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FIG. 2. (Color online) Dispersions of the balanced, miscible,
two-component q2D DBEC with a11/lz = a22/lz = 1, a12/lz =
1.05, b11/lz = 2/3, and b22/lz = 0. The lower branch of the two-
component dispersion ω−(q), corresponding to out-of-phase quasi-
particle excitations, exhibits a rotonlike instability corresponding to
a transition to immiscibility. The imaginary part of the dispersion is
shaded in teal.

the system to immiscibility, but on a length scale set by the
emerging roton in component 1. The lower branch of the
two-component dispersion, ω−(q), is shown in Fig. 2, as
well, where its imaginary part, signifying the transition to
immiscibility, is labeled and shaded.

We map the roton immiscibility phase boundary for the
balanced system with a11/lz = a22/lz = 1 and b22/lz = 0 in
Fig. 3(a). This figure shows the IMT threshold as a function of
the interspecies scattering length a12/lz and the dipole length
of component 1, b11/lz. Interestingly, the roton immiscibility
persists for all nonzero values of b11 when the intraspecies
scattering length is larger than a critical interspecies scattering
length. This is shown in Fig. 3(a), where we plot the threshold
intraspecies scattering length as a function of b11/lz, above
which the system is immiscible (shaded) and below which the
system is miscible. Interestingly, for b11/lz � 0.6 the threshold

FIG. 3. (Color online) Critical interspecies s-wave scattering
length a12/lz (top panel) and wave number (bottom panel) for the
balanced two-component q2D DBEC as a function of the dipole
length of component 1, b11/lz, with a11/lz = a22/lz = 1 and b22/lz =
0. The parameters for which the system is immiscible are shaded
teal in the top panel. The nondipolar IMT is seen for b11/lz = 0,
where the IMT threshold occurs at a12/lz = 1 (� = 0) and qcritlz = 0.
The roton immiscibility emerges for nonzero b11/lz and decreases in
characteristic wavelength as b11/lz is increased. The black “x” in the
top panel marks b11/lz = 2/3 and a12/lz = 1.05, the parameters for
the example roton IMT used in Figs. 2 and 5.

for roton immiscibility occurs at a12/lz < 1. In the absence of
any ddi, the transition to miscibility occurs when a12/lz � 1,
which is shown by the black dotted line in this figure.

The onset of instability at a finite momentum is a roton-
specific feature that signals a first-order (zero-temperature)
phase transition. The inverse of the critical momentum qcrit

at which the roton in the ω− dispersion softens indicates the
length scale at which immiscible (single-condensate) density
features nucleate if the system evolves from a homogeneous
ground state. Figure 3(b) shows the critical wave number
qcritlz at which the dispersion ω−(q) first develops a nonzero
imaginary part with increasing a12/lz as a function of b11/lz.
For b11/lz = 0, corresponding to a completely nondipolar
system, the immiscibility transition occurs at qcritlz = 0, which
is the familiar long-wavelength immiscibility found in BECs
with only short-range interactions. As b11/lz is increased,
however, the critical wave number for immiscibility increases,
corresponding to a transition to immiscibility with roton,
or finite wavelength character. Indeed, when b11/lz = 1, the
transition to immiscibility occurs at the large wave number
qlz ∼ 2, corresponding to a transition wavelength λcrit ∼ πlz.

We proceed to further identify the roton instability of the
miscible state as a transition to immiscibility, and not an
instability to a collapsed state, by directly solving the coupled
GPEs [Eq. (16)], in the absence of a radial trap, corresponding
to λ → ∞. To find the stationary ground state, we sample
the condensate wave functions of the two components on
a numeric grid and employ the imaginary-time evolution
algorithm, stopping when the total energy is converged to a
part in 108. We choose a grid of size 512 × 512 with the
spatial extent x ∈ [−xmax,xmax] and y ∈ [−ymax,ymax]. These
real-space limits xmax and ymax are chosen so that the spatial
resolution of the numeric grid is sufficiently smaller than
both the healing length of the system and the axial harmonic
oscillator length lz. To initiate the algorithm, we break the
symmetry of the system by seeding the initial homogeneous
guesses for the condensate wave functions with numeric noise
in the form of two-component quasiparticles. That is, we take
for component j [48],

ϕj (ρ,t = 0)

→ √
n

{
1 +

∑
l

√
νl e

2πiαl

[
uj,le

−iql ·ρ + v�
j,le

iql ·ρ
]}

,

(26)

where {αl} are random numbers such that αl ∈ [0,1] for all l

and νl = Nl/N0, N0 = nl2
z , and Nl is the number occupation

of the quasiparticle state of component j with energy ω−,l ,
given by the Bose-Einstein distribution,

Nl = {eω−,l /kBT − 1}−1, (27)

where T is the temperature of the system. While we choose
T = 100 nK, this does not carry strong physical meaning when
evolving Eq. (16) in imaginary time, as this equation is dissipa-
tive. We calculate the uj,l and v�

j,l quasiparticle amplitudes via
numeric diagonalization of (21). Additionally, we choose ql

such that an integer number of quasiparticle wavelengths fit in
the grid, so that the periodic boundary conditions of the system
are satisfied. Such a restriction, however, is not important when
evolving the system in imaginary time, as any unphysical,
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FIG. 4. (Color online) Densities n1(ρ) = |ϕ1(ρ)|2 (left panel) and
n2(ρ) = |ϕ2(ρ)|2 (right panel) corresponding to stationary solutions
of the coupled GPEs (16) (converged in energy to a part in 108 in
imaginary time evolution) for the nondipolar balanced system, with
a11/lz = a22/lz = 1, a12/lz = 1.05, and b11/lz = b22/lz = 0. Here,
the immiscibility is phononlike and occurs on the longest length scale
available in the system.

high-momentum components of the initial wave functions that
are rooted in relaxing this restriction will quickly dissipate.
Indeed, we choose a random direction for each ql to introduce
noise that does not share the symmetry of the numeric grid.
Finally, we sample ω−,l from the dispersion ω−(ql), noting
that these energies are the same for both components.

Using this algorithm to find stationary solutions of the
coupled GPEs [Eq. (16)], we first explore the case when
b11/lz = b22/lz = 2/3. As mentioned above, this case is
immiscible but the dispersion is phononlike and does not
result from the softening of the roton dispersion feature. In
accordance, the ground-state solution to the coupled GPEs,
shown in Fig. 4, exhibits immiscibility at the longest available
wavelength.

The case where b22/lz = 0 and b11/lz = 2/3, however, is
in stark contrast to the case where both components possess
equal dipole moments. The two-component Bogoliubov theory
predicts a roton instability of the miscible mixture in the ω−(q)
dispersion. Indeed, we find that the ground state of this system
exhibits immiscibility on a much shorter length scale, being
the length scale of the roton. The condensate densities of the
two components are shown for this case in Fig. 5.

For the cases shown in Figs. 4 and 5, the ground-state
solutions depend on the numeric noise, in this case the occupa-

FIG. 5. (Color online) Densities n1(ρ) = |ϕ1(ρ)|2 (left panel) and
n2(ρ) = |ϕ2(ρ)|2 (right panel) corresponding to stationary solutions
of the coupled GPEs (16) (converged in energy to a part in 108 in
imaginary time evolution) for the balanced system, with a11/lz =
a22/lz = 1, a12/lz = 1.05, b22/lz = 0, and b11/lz = 2/3. Here the
immiscibility is rotonlike and occurs on the length scale ∼2 2πlz.

tion of single quasiparticles with well-defined, albeit random,
standing wave orientations, that is used to seed the condensate
at the beginning of the imaginary time evolution. For example,
if wave vectors are chosen such that q = qx̂, we find that
the immiscible ground states possess density fluctuations only
in the x direction. Similarly, we performed simulations with
random noise in the form of small-amplitude random numbers
sampled at each grid point. The immiscible ground state for
the case with one dipolar and one nondipolar component (the
roton immiscible ground state) shows a speckle, or bubblelike
pattern, fluctuating on a length scale ∼ lz. In the cases
discussed here, the origin of the sensitivity to the symmetry of
the initial seeding of the wave functions is the fact that there
is no internal system bias for the direction of the immiscibility
(α = 0). However, the anisotropy of the ddi can be exploited to
introduce an anisotropic momentum dependence in the system
interactions (α �= 0), thus breaking the azimuthal symmetry of
the system and creating a directional bias.

B. Roton immiscibility for α > 0

The behavior of the quasiparticle dispersion of the single-
component q2D DBEC was found to exhibit interesting
quasiparticle dispersion character as a function of polarization
direction [41]. More specifically, an anisotropic roton emerges
as a function of polarization angle α for certain interaction
strengths and densities, at wave vectors perpendicular to the
direction of the polarization tilt. Here we find an analogous
phenomenon in the two-component system.

For now, consider a two-component BEC with the parame-
ters used above, but with a smaller dipole length in component
1, b11/lz = 1/4, and no dipolar character in component 2,
b22/lz = 0. If the polarization axis is perpendicular to the
trapping direction, corresponding to α = 0, the ground state
of this system is a miscible mixture of the two components.
As the polarization axis is tilted, however, an instability
to a miscible state emerges as the character of the ddi in
component 1 becomes more attractive in this direction. We
plot the imaginary part of the lower branch of the two-
component dispersion relation ω−(q) for the component of
the quasiparticle wave vector that is perpendicular to the
polarization tilt as a function of the tilt angle α and the
quasiparticle momentum in Fig. 6. The miscible ground state
is reflected in the purely real dispersion at α = 0. A nonzero
imaginary part emerges at α/π ∼ 0.05 at finite, nonzero
wave number, corresponding to a roton immiscibility that is
emergent with polarization tilt. This roton immiscibility has
the same origin as that discussed earlier, being the momentum
dependence of the ddi in the q2D geometry, though this
momentum dependence is anisotropic and possesses angular
dependence for α �= 0. Indeed, no immiscibilities are predicted
in the direction of the polarization tilt for any α, suggesting that
the striped structure of the immiscible state can be controlled
by the proper adjustment of the polarization field.

In Fig. 7, we extend this result to characterize the onset
of roton immiscibility as a function of tilt angle α and
interspecies scattering lengths for various b11/lz. In Fig. 7(a),
the critical scattering length for the transition to immiscibility
is shown as a function of the interspecies scattering length for
various dipole lengths of component 1, b11/lz = 1/4,1/2,2/3.
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FIG. 6. (Color online) The shaded region shows the nonzero
imaginary part of the two-component dispersion ω−(q) in the
direction perpendicular to the polarization tilt for a11/lz = a22/lz =
1, a12/lz = 1.05, b11/lz = 1/4, and b22/lz = 0 as a function of
polarization angle α and quasiparticle wave number qlz. The
miscibility of the system for α = 0 is reflected in the purely real
character of the dispersion at this polarization angle, and the roton
immiscibility is seen as the emergence of a nonzero imaginary part
of ω−(q) at finite wave number qlz ∼ 1 at α/π ∼ 0.05. The contours
in the shaded region mark increments of 0.1ωz.

Again, we emphasize that component 2 is nondipolar, so
b22/lz = 0 here. In Fig. 7(b), the corresponding critical wave
number qcritlz is shown. For all dipole lengths, the onset of
immiscibility as a function of a12/lz occurs at qcritlz = 0
for a critical polarization angle αcrit = π/2, corresponding
to the dipoles being polarized in the plane of symmetry.
This is expected, though, as the interaction (22) exhibits
no momentum dependence for α = π/2 in the direction
perpendicular to the polarization tilt and the criteria for
miscibility can thus be extracted from that of the homogeneous
two-component DBEC, given in Eq. (6). Indeed, the values of
a12/lz for the long-wavelength IMT thresholds at qcritlz = 0
can be found by setting �(π/2) = 0 and solving for a12/lz. As
a12/lz is increased beyond these long-wavelength threshold
values, however, the critical polarization angle decreases

FIG. 7. (Color online) The critical polarization angle α (top
panel) and the critical wave number qcritlz (bottom panel) for the
balanced two-component q2D DBEC with a11/lz = a22/lz = 1 and
b22/lz = 0 for various dipole lengths of component 1, b11/lz, as
a function of the interspecies s-wave scattering length a12/lz. The
immiscible parameters are shaded in the top panel. Here, the roton
immiscibility emerges as a function of polarization angle for qcrit

perpendicular to the direction of tilt.

and eventually approaches αcrit = 0, which characterizes
the roton immiscibility discussed earlier. In this parameter
range, qcritlz > 0, and the critical wave number approaches
characteristic roton wave numbers for larger a12/lz.

To further demonstrate the role that the polarization direc-
tion plays in the roton immiscibility of the two-component
q2D DBEC, we model a time-dependent process (perhaps an
experimental scenario) in which the polarization field α is tilted
as a function of time, driving the system to an immiscible state
through manipulating the anisotropy of the ddi in component 1.
We model this scenario via direct time-dependent integration
of the coupled GPEs [Eq. (16)]. We take the parameters for the
balanced system introduced earlier, with a11/lz = a22/lz = 1,
a12/lz = 1.05, b11/lz = 1/4, and b22/lz = 0. To begin, we
consider α = 0 at time tωz = 0, corresponding to a miscible
system. To break the symmetry of this homogeneous ground
state, we seed the condensates with quasiparticles as given
in Eqs. (26) and (27), taking T = 100 nK. Then, we linearly
ramp the polarization angle to a final value αhold = π/4 over
a time tramp, we hold the polarization angle at αhold for a time
thold, and we ramp the polarization angle back to α = 0 over
the time tramp. For this simulation, we take trampωz = 200 and
tholdωz = 400, so that the time scales of the polarization tilt are
much greater than the other time scales in the system, being
the inverse quasiparticle energies, and the transition is thus to
a good approximation adiabatic.

Because the real-time evolution of the coupled GPEs
preserves total energy and is nondissipative, we seed the
condensate with quasiparticles with wave vectors in the x or
y directions only. This ensures that the periodic boundary
conditions of our numeric grid are satisfied and there are no
unphysical high-momentum fluctuations at the edges of the
system. As a result, the initial quasiparticles propagate only
in the x and y directions. Thus, choosing a tilt direction of
η = 0 or η = π/2 (where η is the tilt angle relative to the
x axis) would share the symmetry of the initial quasiparticle
noise. Instead, we choose η = π/5. According to the Bogoli-
ubov theory presented above, the corresponding immiscibility
should result in density stripes along the direction η = π/5.

We present results from this simulation in Fig. 8, where
we plot the densities of components 1 and 2 as a function of
time. Column (a) shows the densities at time tωz = 0, where
the densities are approximately equal, aside from the initial
seeding that is not visually noticeable in the given contour
scaling. Column (b) shows the densities at time tωz = 120,
when the polarization angle just exceeds αcrit and the system
begins to exhibit immiscible character. Column (c) shows the
densities at time tωz = 200, at the end of the polarization angle
ramp, and when the system exhibits full immiscibility. The
immiscibility clearly has roton character, and as anticipated,
the direction of the immiscible stripes coincides with the tilt
direction, at η = π/5. Columns (d) and (e) show the densities
at times tωz = 760 and tωz = 1200, respectively. These
columns demonstrate the mechanism for symmetry breaking
of the striped roton immiscible state, as the polarization angle
tilts back to α = 0. While the system remains immiscible, the
stripe character is completely lost by tωz = 1200. Here, the
introduction of strong phase fluctuations during the transition
to immiscibility prevents the system from returning to the
miscible state over the time scales considered here.
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FIG. 8. (Color online) Condensate densities n1(ρ,t) = |ϕ1(ρ,t)|2 (top row) and n2(ρ,t) = |ϕ2(ρ,t)|2 (bottom row) as a function of time,
where the polarization angle is tilted from a value where the system is miscible [α = 0 at t = 0, column (a)] to a value where the system is roton
immiscible (αhold = π/4) at an angle η = π/5 off of the x axis. In (a), the system is clearly miscible. Over a time trampωz = 200, α is linearly
ramped from α = 0 to αhold = π/4. It is held at αhold for tholdωz = 400, then is linearly ramped back to α = 0 over trampωz = 200. In column
(b), the densities are shown at time tωz = 120, where the system is just starting to exhibit immiscible character. The densities are shown at time
tωz = 200 in column (c), where the system is fully immiscible on the roton length scale. The densities are shown for tωz = 760 in column (d),
as the angle has returned to a value corresponding to miscibility, and column (e) shows the densities at time tωz = 1200, where the polarization
angle has returned to α = 0 but the system is not rethermalized due to the introduction of strong phase fluctuations in the process of spatial
separation en route to miscibility.

The issue of thermalization in multicomponent BECs is
of increasing interest with the finite temperature studies of
F = 1 spinor condensates, such as the 87Rb system [49–51].
Recently, it was shown that such systems also do not thermalize
over even very long time scales, following a quench from the
polar to the ferromagnetic state [52].

C. Radially trapped case

Until now, we have considered only the case where the
q2D system is homogeneous in the x-y plane. In a realistic
experimental scenario, the trapping potential will have a finite
radial extent. For the roton immiscibility to persist in this
geometry, we expect that the trapped system must be such
that the density of the components is sufficiently large over
a transverse length scale that is sufficiently greater than the
roton length scale. To investigate such a claim, we solve the
coupled GPEs (16) numerically in the presence of a radial trap
with aspect ratio λ = 10, where λ = ωz/ωρ . While this trap
aspect ratio is seemingly small, it serves to model a larger trap
aspect ratio, as our solutions are free to extend in the radial
direction but are Gaussians with a fixed width in the axial (z)
direction.

Much like the nondipolar system, we find that a larger inter-
species repulsion (corresponding to a smaller �) is necessary
for the immiscibility to occur in a radial trap [2]. Thus, we
take a11/lz = a22/lz = 1 and a12/lz = 1.1 with, as before,
b22/lz = 0, and investigate solutions for varying b11/lz. We
solve the coupled GPEs via imaginary time propagation,
where we take the initial wave functions to be Gaussians with
small-amplitude random noise sampled on the numeric grid.
We converge the energy of each component to a part in 106.

We present some results in Fig. 9 for (a) b11/lz = 0,
(b) b11/lz = 1/4, (c) b11/lz = 1/2, and (d) b11/lz = 2/3.

For b11/lz = 0, the system is nondipolar and the IMT is
characterized by the contact interaction strengths alone. In
this case, the immiscibility is seen as the splitting of the
components at the largest available length scale, being the
radial extent of the system. For b11/lz = 1/4, the system is still
immiscible, but the ddi is not sufficiently strong to induce roton
immiscibility. Instead, the system exhibits a long wavelength
immiscibility, but now the density of component 1 is pushed
to the outside of the trap due to the intraspecies interactions
of component 1 being greater than those of component 2.
The roton immiscibility emerges near b11/lz = 1/2, as we see
in row (c) of Fig. 9. Because we initiate the imaginary time
evolution with randomly sampled noise on the numeric grid,
the system does not prefer a direction to break the symmetry
of the miscible state, as is shown for the homogeneous q2D
system in Fig. 5. Here, the roton immiscibility manifests as the
dipolar component forms “bubbles” with spacings on the order
of 10lz, just larger than the characteristic roton wavelength
λroton = 2πlz. For b11/lz = 2/3, shown in row (d), however,
the mean spacing between clumps is on the order of λroton.

Because of the effectively stronger self-repulsion of com-
ponent 1 (due to the ddi), it possesses a finite density at
radial extents greater than component 2. This is seen in all
cases where b11/lz > 0, in rows (b), (c), and (d) of Fig. 9.
Interestingly, for smaller condensate densities, we find that
increasing b11/lz can result in the majority of component
1 being pushed to the outside of the trap, suppressing the
roton immiscibility. For intermediate b11/lz, however, the
roton immiscibility persists near the boundary of the two
components. We find that such a phenomenon exists in more
oblate traps as well, where the radial trapping potential does
not force the components to overlap in high-density regions.

It is interesting to note that the results in Fig. 9 are
very similar to those presented in Ref. [29], where a dipolar
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FIG. 9. (Color online) Stationary densities n1(ρ) = |ϕ1(ρ)|2 (left
column) and n2(ρ) = |ϕ2(ρ)|2 (right column) of the balanced two-
component DBEC in a trap with aspect ratio λ = 10 for a11/lz =
a22/lz = 1, a12/lz = 1.1, and b22/lz = 0. The rows show solutions
for various dipole lengths of component 1, being (a) b11/lz = 0,
(b) b11/lz = 1/4, (c) b11/lz = 1/2, and (d) b11/lz = 2/3. In row
(a), the system is nondipolar and the interactions are thus balanced,
resulting in an immiscibility on the length scale of the trap. In row
(b), the presence of the relatively small dipole moment in component
1 breaks this symmetry, but the immiscibility is still long-wavelength
and component 1 thus engulfs component 2 due to its greater self-
repulsion. The roton immiscibility emerges for b11/lz � 1/2, as is
seen in rows (c) and (d). While both immiscible states exhibit ordering
near the roton length scale, the length scale is smaller in (d) where the
dipole length is larger, as suggested by the results shown in Fig. 3.

component and a nondipolar component are separated in the
direction of polarization by an external magnetic field gradient,
forcing immiscibility in this direction. For a sampling of
interaction strengths and field gradients, pattern formations
on finite length scales, reminiscent of a classical magnetic
ferrofluid, are predicted by direct solutions to the coupled
GPEs that describe the system. These patterns are similar to
those seen in Fig. 9, though perhaps from a different physical
origin, and depend strongly on noise that is used to break
the symmetry of the initial guess for the condensate wave
functions.

As is clear from our preceding discussion, the roton
immiscibility depends strongly on the interaction parameters

in the system under consideration, and special care must
be taken in proposing a candidate species with which to
investigate such a phenomenon. One such candidate is the
ground 7S3 state of atomic 52Cr prepared in the mJ = 0 spin
projection for the nondipolar component and the mJ = −3
spin projection for the dipolar component, which has a
magnetic dipole moment of d = 6μB , where μB is the Bohr
magneton. While the relaxation lifetimes of the mJ > −3
projections of the 7S3 state of 52Cr were measured to be
relatively long [53], spin-exchange collisions, occurring on
a time scale ∼0.1 s, may limit the experimental feasibility of
using 52Cr. Nevertheless, for a trap with an axial frequency
of ωz = 2π × 2 kHz, the lifetime of the roton immiscibility,
for the maximum imaginary part of ω−(q) being ∼0.1ωz, is
characteristically ∼0.80 ms. The critical integrated density
for roton immiscibility in this case is n2D ∼ 4.0 × 1011 cm−2,
corresponding to a maximum 3D density of n3D ∼ 7.2 ×
1015 cm−3. The immiscibility for the case seen in Fig. 9(c)
with trap with axial frequency ωz = 2π × 2 kHz would require
a total number of 52Cr atoms on the order N ∼ 6.2 × 106,
with scattering lengths a11 = a22 = 30.4 a0 and a12 = 33.4 a0,
where a0 is the Bohr radius. This is a case that is possibly
achievable by sufficient manipulation of the Fano-Feshbach
resonances [43].

For more strongly interacting species, however, the roton
immiscibility emerges for a smaller critical density or particle
number. Other possible dipolar species include atomic Dy,
which has been recently Bose-condensed [17], and polar
molecules, which can possess relatively large electric dipole
moments. For the trap discussed above, the roton immiscibility
emerges for a total number of 164Dy atoms of N ∼ 400 × 103,
or a critical maximum density of n3D ∼ 2.6 × 1015 cm−3. An
experimental study of the magnetic Fano-Feshbach resonances
in atomic Dy, however, has yet to be performed. For polar
molecules of, say, RbCs [19] with an electric dipole moment
of d = 0.5 Db, a critical density of n3D ∼ 9.0 × 1013 cm−3 or a
critical particle number of N ∼ 8900 molecules is needed. The
realization of one dipolar and one nondipolar component for
the molecular case is unclear; however, a mixture of, say, RbCs
and Rb may be possible in the near future. Additionally, we
have checked that roton immiscibility exists for an appropriate
set of s-wave scattering lengths in alkali atoms (with ∼1 μB

magnetic dipole moments) and Cr or Dy mixtures.

IV. CONCLUSION

The long-range and anisotropic nature of the ddi plays
an interesting, nontrivial role in the physics of many-body
systems. Here, we focus on the case of a two-component
Bose-Einstein condensate and show that, for a set of specific
interaction parameters and trap geometries, the system exhibits
immiscibility with roton character, where the immiscibility in
a nondipolar system or a homogeneous 3D dipolar system is
strictly phononlike. In particular, we find that the roton im-
miscibility occurs in the q2D geometry when the interspecies
and intraspecies s-wave scattering lengths have comparable
values, while one component is not (or negligibly) dipolar
and the other component possesses a dipolar length that is
comparable to the s-wave scattering lengths. By employing the
Bogoliubov theory to the q2D homogeneous two-component
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system, we calculated a two-component dispersion to
efficiently characterize the stability of the miscible state and
the parameters that define the IMT threshold for the familiar
phononlike and the roton immiscibilities. Direct simulations
of the coupled GPEs verify these results and reveal interesting
dynamic and symmetry-breaking features of the immiscible
phase. Recent experimental progress inspires confidence that
the roton immiscibility may be observable in the near future.
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T. Pfau, Nat. Phys. 4, 218 (2008).

[21] T. Lahaye, J. Metz, B. Fröhlich, T. Koch, M. Meister, A.
Griesmaier, T. Pfau, H. Saito, Y. Kawaguchi, and M. Ueda,
Phys. Rev. Lett. 101, 080401 (2008).
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