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The probability distribution of the real and imaginary parts of atomic scattering lengths
a are derived, in a two-channel model that allows for inelastic scattering to occur. While
the real part of a remains Cauchy-distributed, as predicted for single channel scattering
in the classic work of Gribakin and Flambaum, the imaginary part of a is seen to be
strongly peaked near zero. Two-body inelastic scattering rates may therefore be smaller
in general than a naive estimate would suggest.

I. INTRODUCTION

This note serves as both a greeting to Ravi Rau and a
dispatch from the world of dilute, ultracold gases, where
neutral atoms and molecules collide at typically sub-
microKelvin temperatures. Even though Ravi never ex-
plicitly published in this area, nevertheless his influence
is strongly felt.

The atoms and molecules in these gases collide at suf-
ficiently low energy that they are in the Wigner thresh-
old limit, hence their scattering is strongly dominated
by the familiar threshold laws. Ravi has been a tire-
less champion of threshold physics, summarized in his
famous work with Fano (Fano and Rau, 1986), and in an
influential review article (Sadeghpour et al., 2000). His
classic treatment of the Wannier threshold law for double
ionization highlights the ability of a single quantity, the
exponent characterizing the energy dependence Eα of the
process, to reveal information on detailed correlations of
the charged particles (Rau, 1971).

In the somewhat more pedestrian world of ultracold
collisions of neutral atoms, the relevant Wigner thresh-
old laws are well known. Very typically, the collision is
dominated by the lowest, s partial wave, and the elastic
scattering phase shift is linear in wave number, δ0 = −ak.
This k-dependence is standard; what varies from atom to
atom, and what matters most in the context of ultracold
gases, is the value of the prefactor, the scattering length
a.

At stake is the nature of the scattering cross section,
which is responsible for bringing the gas to thermal equi-
librium, and which therefore determines the ability to
make an ultracold gas at all. Famously, the scattering
length of 87Rb is approximately a = 100a0, a0 being the
Bohr radius. This value is sufficiently large that evapora-
tive cooling of this atom successfully led to the first Bose-
Einstein condensate (Anderson et al., 1995). By con-
trast, the isotope 85Rb has a negative naturally-occurring
scattering length (Boesten et al., 1997). This leads to
an unfortunately-placed Ramsauer-Townsend minimum

in its cross section, limiting evaporative cooling (Burke
et al., 1998). (By various devices, scattering lengths can
be altered to necessary values, but that is a different story
for another Fetschrift.)

Scattering lengths tend to be extremely sensitive func-
tions of the potential energy surface, meaning that even
for alkali atoms, they cannot be predicted from ab ini-
tio theory (with the exception of one heroic recent result
in (Gronowski et al., 2020)). Generally, they are deter-
mined by thoughtful iterations of theory and experiment.
In this way, scattering lengths for most combinations of
alkali atoms are now known, some to high precision. To
do so requires the evaluation of two scattering lengths, for
the singlet and triplet Born-Oppenheimer potentials ex-
isting between these atoms. By extension, three scatter-
ing lengths of higher-spin chromium atoms have also been
extracted (Werner et al., 2005; Pavlović et al., 2005), and
have proven adequate for describing data.

Beyond this, the situation quickly becomes untenable.
Certain lanthanide atoms are perfectly amenable to laser
cooling, yet their interactions are quite complex. For
example, interactions of open-shell dysprosium atoms
would require 81 distinct Born-Oppenheimer potentials,
each with its own scattering length that presumably con-
tributes to observed scattering (Kotochigova and Petrov,
2011). Extracting a quantitative model from data is, at
present, considered inconceivable. Even more challenging
will be the equivalent procedure in collisions of ultracold
molecules, which represents a rapidly growing area of en-
deavor.

Faced with the difficulties of detailed analysis, it may
prove useful to consider instead trends that one could
follow over the breadth of possibilities among many col-
lision partners. In the present note we will consider a
statistical overview. Statistics in ultracold collisions was
introduced by Gribakin and Flambaum (Gribakin and
Flambaum, 1993), who derived, from semiclassical the-
ory, the most likely value of the scattering length for
long-range potentials that fall off as a power law, −1/rn,
of the distance r between to atoms. The true scattering
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lengths of various species should vary around this most-
likely value, in such a way that, according to Gribakin
and Flambaum, three-quarters of all naturally occurring
scattering lengths should be positive, for an ordinary van
der Waals potential with n = 6. What these authors did
not quite do (but surely could have) is to describe the
full distribution function of scattering lengths. In Sec. II
we will complete this derivation, in preparation for the
remainder of the article.

In addition to elastic scattering, it is extremely impor-
tant to track inelastic scattering in the ultracold envi-
ronment. Even the smallest of atomic energy spacings,
say hyperfine energies, are orders of magnitude larger
than the translational temperature of the gas. Thus an
inelastic collision that releases this energy is a disaster:
the products either leave the trap, or, perhaps worse,
heat the remaining gas. The atoms are like waiters in a
busy restaurant, delicately balancing trays full of cock-
tails. Should they collide, there will be a real mess.

In the argot of cold collisions, these disruptive events
are denoted by the technical term “bad.” Generally, it
is accepted that any bad collisions that are allowed by
energy conservation and symmetry considerations tend
to happen at high collision rates, and should therefore
be avoided if possible. (Much ingenuity has gone to-
ward finding ways to mitigate bad collisions, but again,
this is not our story here.) Exceptions of course ex-
ist. In a serendipitous experiment at JILA, it was found
that a mixture of 87Rb atoms in two distinct hyperfine
states not only survived evaporative cooling, but could
be simultaneously Bose-condensed (Myatt et al., 1997).
The anomalously low inelastic spin-exchange rate that al-
lowed this miracle was quickly understood to rely on an
interference between singlet and triplet scattering, that
is, on the near-coincidence of singlet and triplet scat-
tering lengths for this isotope (Kokkelmans et al., 1997;
Julienne et al., 1997; Burke et al., 1997). Here was a
statistical outlier.

In the context of ultracold atoms, it is worthwhile to
know how likely it is that such a calamitous event will oc-
cur. That is, the question is one of probabilities. To this
end, in Sec. III we extend the Gribakin-Flambaum model
to a two-channel case that allows for inelastic scattering.
We will cast the inelastic loss in terms of the imaginary
part of the scattering length, and determine an approxi-
mate probability distribution for this quantity.

To do so requires welding together the long-range
physics that determines the threshold law, with the short-
range physics that governs the change in state. Here Ravi
has also paved the way, stressing that multichannel quan-
tum defect theory (MQDT) is an extremely versatile tool,
far beyond its initial application to Rydberg atoms (Fano
and Rau, 1986). The ideas and notations that ground our
theory in the following are rooted in the seminal work of
Greene, Rau, and Fano (Greene et al., 1982).

II. SINGLE CHANNEL SCATTERING LENGTHS

We first consider s-wave scattering in a single channel
with potential V (r), governed by the Schrödinger equa-
tion (

− ℏ2

2mr

d2

dr2
+ V

)
ψ = Eψ, (1)

where mr is the reduced mass of the collision partners.
For purposes of statistics, we envision an assembly of po-
tentials V , collected from an ensemble of potential colli-
sion partners across the periodic table. This variety can
also include various Born-Oppenheimer curves for given
partners, for example, the singlet and triplet curves of
the alkalis, assumed to give scattering phase shifts in-
dependent of each other. Different isotopes of the same
element are not considered to have independent phase
shifts as they are, to a good approximation, related by
simple mass scaling (Kitagawa et al., 2008).
To include this variety of potentials as our ensemble,

it is essential to reduce them to a common system of
reduced units. For threshold scattering, a relevant set of
natural units is obtained from the long-range behavior.
In this note we restrict attention to those potentials with
long-range van der Waals behavior characterized by the
form V (r) ≈ −C6/r

6. The corresponding natural unit of
length is

r6 =

(
2mrC6

ℏ2

)1/4

. (2)

This scale tends to be of the order ≈ 100a0 for many
atoms; for Rb it is 165a0. The short-range physics is not
necessarily amenable to a simple scaling between species;
indeed, this is where the joy of variety comes from. Such
a scaling will not be necessary in the QDT picture we
employ.
In the spirit of quantum defect theory, we identify stan-

dard solutions for the long-range potential, denoted f̂
and ĝ. These are given a useful standardized form in the
magnum opus of Ruzic et al. (Ruzic et al., 2013), which
we follow throughout. The functions are chosen so that
the irregular function ĝ → 0 as r → ∞ in the zero-energy
limit, a choice that maximizes the linear independence of
f̂ and ĝ in numerical applications. With this choice, the
reference function f̂ has phase shift η = −āk defined by
the scattering length

ā = r6

(
π

23/2Γ(5/4)Γ(1/2)

)2

≈ 0.4780 r6, (3)

which coincides exactly with the Gribakin-Flambaum
most-likely scattering length (Gribakin and Flambaum,
1993).

The reference functions f̂ and ĝ are related to the
energy-normalized reference functions f and g in the
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usual way (Greene et al., 1982):(
f
g

)
=

(
A1/2 0
A−1/2G A−1/2

)(
f̂
ĝ

)
. (4)

This defines two more QDT parameters, which Ruzic
works out explicitly in the s-wave threshold limit:

A1/2 = −(āk)1/2, (5a)

G = (āk)2
[
−1 +

1

3

(r6
ā

)2]
. (5b)

The statistical model is derived in QDT as follows.
For a given potential V , one would solve the Schrödinger
equation, matching its solution ψ to the reference func-
tions at a convenient radius r = r0,

ψ = f̂ − K̃ĝ. (6)

This would define the short-range K-matrix

K̃ = tan(πµ) (7)

in terms of a quantum defect µ. In the statistical
model we do not consider any explicit potential V , but
rather assume that the quantum defects from such a
process would be uniformly distributed on the interval
µ ∈ [−1/2, 1/2]. In this way the vast differences in depth
and shape of the potentials for many different atoms are
rendered irrelevant. Whatever the atoms are actually do-
ing down there, the net result is always encapsulated in
the quantum defect µ.

By the rules of QDT, one then constructs the short-
range phase shift δsr via

tan δsr =
A1/2K̃A1/2

1 + GK̃
≈ K̃āk, (8)

here ignoring GK̃ as small compared to unity. This quan-
tity will become relevant if and when we consider the ef-
fective range. The physical scattering phase shift is given
by the sum of long- and short-range contributions,

δ0 = η + δsr ≈ (−1 + K̃)āk, (9)

whereby the scattering length in units of ā is given by

a

ā
= − 1

āk
δ0 = 1− K̃. (10)

To find the distribution of scattering lengths, we begin
with the distribution of quantum defects,

P (µ) =

{
1, − 1

2 ≤ µ ≤ 1
2

0, otherwise
. (11)

This assumption along with Eq. (7) implies a distribution
of short-range K-matrices related to the former by

P (K̃) =
1

π

1

K̃
2
+ 1

. (12)

Thus the short-range K-matrix is distributed as a
Lorentzian or, in the language of probability theory, a
Cauchy distribution. (That the tangent of a uniform
distribution yields a Cauchy distribution is well-known.
Nevertheless, this result and all the others that we use
below are derived in the Appendix.)
Restoring the units, the distribution of scattering

lengths is given by

P (a) =
1

π

ā

(a− ā)2 + ā2
. (13)

Significantly, the Cauchy distribution has neither a well-
defined mean nor a well-defined standard deviation. It is,
rather, characterized by its mode (most likely value) and
its full-width at half-maximum (FWHM), both of which
are ā in this case. From this distribution we evaluate the
fraction of scattering lengths that are positive,∫ ∞

0

daP (a) =
3

4
, (14)

just as prophesied by Gribakin and Flambaum. Having
this distribution, we can say other things, for example,
half of all scattering lengths should lie within ā/2 of the
mode ā.

III. TWO CHANNELS: SCATTERING AND LOSS

Inelastic collisions that lead to bad outcomes are some-
what less universal than potential scattering, and in prin-
ciple depend on the mechanism by which channel cou-
pling occurs. Nevertheless, for the kinds of collisions en-
visioned here, this mechanism may be assumed to lie at
short range and to be subsumed in the short-range K-
matrix, regarded as a set of parameters of the theory. We
therefore disregard, e.g., collisions of dipolar molecules,
where torques exerted by the dipoles when they are far
apart can drive inelastic scattering at large r (Avdeenkov
and Bohn, 2002)

A. Model and QDT

For the sake of simplicity, we consider a two-channel
system, where the incident channel 1 is at threshold,
while the other channel 2 is exothermic by some en-
ergy much greater than the collision energy; in partic-
ular it is not at threshold. The long-range potentials in
both channels are assumed to scale as −C6/r

6, whereby
the QDT functions are computed for each channel as
above. In the incident channel near threshold, η1 = −āk,
A

1/2
1 = −(āk)1/2, and as above we will not concern our-

selves with G1. In the outgoing channel which is far from

threshold, A
1/2
2 = 1 and the values of η2 and G2 are ir-

relevant.
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These two asymptotic channels are presumed to be-
come coupled at short range, in a way that is well-
approximated by a frame transformation. It is assumed
that the short-range physics is described by two alterna-
tive channels, each with its own quantum defect µλ. In
this approximation the short-range K-matrix is diagonal
in the short-range basis and has the form

K̃
sr

=

(
tan(πµ1) 0

0 tan(πµ2)

)
. (15)

Significantly, we do not perform the usual MQDT step
of eliminating closed channels, as there are none in this
example. It should be remembered that we seek here the

statistics of scattering lengths away from resonances.

In this 2×2 example the transformation between basis
sets is a simple rotation through an angle θ. For any given
collision, the value of θ will be determined by exactly
what the short-range and asymptotic channels are, in-
cluding the spin structure of the atoms and the mixing of
channels by ambient electromagnetic fields. To simplify
the treatment we do not consider these details and as-
sume that, across the ensemble of species and conditions
considered, θ is uniformly distributed in θ ∈ [−π/2, π/2].

Expressed in the asymptotic basis, the short-range K-
matrix in this notation then becomes

K̃ =

(
cos2 θ tan(πµ1) + sin2 θ tan(πµ2) cos θ sin θ[tan(πµ2)− tan(πµ1)]
cos θ sin θ[tan(πµ2)− tan(πµ1)] sin2 θ tan(πµ1) + cos2 θ tan(πµ2)

)
. (16)

This leads to the asymptotic K-matrix

K = A1/2K̃A1/2

=

(
ākK̃11 −(āk)1/2K̃12

−(āk)1/2K̃21 K̃22

)
, (17)

followed by the S-matrix,

S =

(
e−iāk 0
0 eiη2

)
(I + iK) (I − iK)

−1

(
e−iāk 0
0 eiη2

)
.

(18)

Writing the resulting phase shift in channel 1 as S11 =
exp(2iδ1), we define the complex scattering length in this
channel via

a = ā(α− iβ) = −1

k
δ1. (19)

This defines the dimensionless quantities α and β, re-
garded as real and imaginary parts of the scattering
length in units of ā. Expanding S11 to linear order in
k, these quantities are given by

α = 1− K̃11 +
K̃

2

12

K̃
2

22 + 1
K̃22, (20a)

β =
K̃

2

12

K̃
2

22 + 1
. (20b)

B. Probability Distributions

The scattering observables α and β are functions of the
fundamental parameters of the model, µ1, µ2, θ, which

are treated as random variables. By the standard formal-
ism for transforming and composing random variables,
one can then find the probability distributions for α and
β. These transformations are carried out in detail in the
Appendix. Here we present and explore the results. For
purposes of illustration, we have run a simulation choos-
ing 10, 000 triples (µ1, µ2, θ) from their uniform distribu-
tions. The subsequent quantities of the theory can then
be calculated and displayed as histograms.
We begin with the distribution of elements of the short-

range K-matrix, K̃. The model predicts that these are
distributed according to

P (K̃11) =
1

π

1

K̃
2

11 + 1
, (21a)

P (K̃12) =
2

π2

1√
(K̃12)2 + 1

sinh−1

(
1

|K̃12|

)
. (21b)

Histograms of the numerical simulations of these quan-
tities are plotted in Fig. 1, along with (red lines) the
formulas in (21). In the upper panel we see that the
distribution of the diagonal matrix element K̃11 is very
well-described by the ordinary Cauchy distribution from
the one-channel case. While not shown, the distribution
of K̃22 is the same. Each diagonal matrix element is
the weighted sum of variables tan(πµλ) that are Cauchy-
distributed. The weights add to unity, whereby the av-
erage is also Cauchy distributed. This is shown in detail
in the Appendix.
More interesting, and somewhat unexpected, is the

distribution of off-diagonal elements shown in the lower
panel. This distribution is far more strongly peaked near
zero than the Cauchy distribution, a result captured in
the analytical formula (21b). The most likely value of
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FIG. 1 Probability distributions of the diagonal (upper) and
off-diagonal (lower) elements of the short-range K-matrix. In
each case, the histogram is numerically sampled from the
model in the text. The red curves are the analytical formulas
for the distributions, given in (21). The analytical curves are
re-normalized to give the same integral as the histogram over
the range shown.

K̃12 is zero, but a FWHM is not possible to define here,
as the distribution suffers a logarithmic divergence:

lim
K̃12→0

P (K̃12) =
2

π2
ln

(
2

K̃12

)
. (22)

One can, however, make the following comparison. For
the Cauchy distribution that defines P (K̃11), half the
distribution lies within ±ā of zero; for the distribution
P (K̃12), half the distribution is within ±0.55ā. Thus in
spite of the divergence, ā is still a relevant scale on which
to consider the distribution.

We now turn to the final results, the distributions of
dimensionless real and imaginary parts of the scattering
length. These are displayed in Fig. 2, with α in the up-
per panel and β in the lower, and are compared to the
approximate analytical formulas

P (α) =
1

π

1

(α− 1)2 + 1
(23a)

P (β) =
1

π2

1√
β

[
sinh−1

(
1√
β

)]2
, (23b)

These two formulas are the main result of this note.
The real part, α is well-described by the same Cauchy

distribution (13) as for the single channel case. The rea-
son for this is clear from the formula (21a). The main
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FIG. 2 Probability distributions of the real (upper) and
imaginary (lower) parts of the normalized scattering length
a/ā = α − iβ. In each case, the histogram is numerically
sampled from the model in the text. The red curves are the
analytical formulas for the distributions, given in (23). The
inset in the lower panel represents the same data, but with
the vertical axis on a logarithmic scale, to better show the tail
of the distribution.

contribution to α is given simply by 1 − K̃11, whereby
the result follows trivially just as in the one-channel case.
The correction to this result, the second term of (20a), is

proportional to K̃
2

12, hence is heavily peaked around zero
and changes the scattering length but little. In practice,
this works out so that (23a) is an excellent approxima-
tion. We conclude that, away from resonances, the two-
channel elastic scattering length is distributed the same
as a single-channel scattering length.

As for the imaginary part β, it is by its nature strictly
non-negative, and is distributed sharply near zero, an
expected behavior it inherits from K̃12. The analytical
formula for the distribution is approximate, but seems
to describe the peak at zero quite well. The inset in the
lower panel of Fig. 2 is the same histogram, but plotted
with counts on a logarithmic scale, to better emphasize
the tail of the distribution. As can be seen, the formula
somewhat underestimates the true distribution at large
values of β, but we will not concern ourselves with this
detail.
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IV. DISCUSSION

Within the model presented, a message stands out.
In the case of scattering in a single potential, we know
that the real part of the scattering length is Cauchy dis-
tributed as given above, and that the imaginary part is
rigorously zero. The present results note that, if an addi-
tional channel is added into which scattering can occur,
the real part of the scattering length remains Cauchy dis-
tributed, while the imaginary part still tries very hard to
remain close to zero.

It is not hard to imagine that the result for elas-
tic scattering generalizes. Consider scattering in some
asymptotic channel i in a multichannel system. Within
the frame transformation approximation assumed in this
model, the non-resonant K-matrix in this channel will be
given by the weighted average of diagonal K-matrices in
each of the short-range channels λ:

K̃ii =
∑
λ

⟨i|λ⟩ tan(πµλ)⟨λ|i⟩. (24)

And since the sum of squares of the coefficients of trans-
formation is unity, we again recollect the Cauchy distri-
bution from the single-channel case. Thus the Gribakin-
Flambaum result is generalized to non-resonant multi-
channel scattering.

Finally, let us put the result for the imaginary part of
the scattering length into practical terms. The role of β
is to track the flux that enters in channel 1 but departs
in channel 2. Using the unitarity of the S-matrix,

|S12|2 = 1− |S11|2 = 1− | exp(−2ākβ)|2 ≈ 4ākβ, (25)

giving the collision rate constant for inelastic collisions
(regarded as bad),

Kbad = gv
π

k2
|S12|2 = g

(
ℏk
mr

)
π

k2
(4ākβ) = g

4πℏ
mr

āβ.

(26)

Here v = ℏk/mr is the collision velocity, and g is a factor
that accounts for symmetrization: g = 1 unless the initial
channel contains two identical atoms in identical internal
states, in which case g = 2. In the event that these bad
collisions lead to loss from the trap, their number density
n diminishes in time according to

dn

dt
= −Kbadn

2, (27)

assuming that the loss is dominated by two-body scat-
tering events.

To put the result into perspective, consider the follow-
ing. Suppose you are building a new laboratory to cool
and trap an atomic or molecular species that has not been
trapped before, so that nothing is known about its colli-
sion properties. (I do not think this is something Ravi is
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FIG. 3 Cumulative probability distribution for the rate con-
stant Kbad for “bad” collisions, normalized by the reference
rate Kref = g(4πℏ/mr)ā.

likely to do, but one never knows!) Suppose, further, that
some kind of bad collision process is possible, and that it
occurs at short range. This may include spin-exchange
for atoms, chemical reactions for molecules, or perhaps
light-assisted collisions for either. In the context of col-
lisions, all you know are the reduced mass and the C6

coefficient, which can often be estimated in perturbation
theory.
From this, you would like some sense of the size of the

rate constant for bad collisions. You can construct a typ-
ical scale for this quantity by disregarding the influence
of β, thus defining a reference rate constant

Kref = g
4πℏ
mr

ā. (28)

In terms of this reference value, the true rate constant
will be given by

Kbad = Kref β. (29)

That is, the values of Kbad, in units of the reference
value Kref , are distributed just as the value of β is in
Eqn. (23b).
In this spirit, we present in Fig. 3 the cumulative prob-

ability distribution for the normalized bad rate constant.
From this figure we read that there is an approximately
80% probability that the actual rate constant is smaller
than Kref ; the easiest estimate is likely an over-estimate.
Even better: the odds are about 34% that the actual rate
constant is 100 times smaller than Kref , thus bad scatter-
ing has at least a fighting chance of not being as bad as
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feared. This is the ultimate consequence of the peaking
of β around zero.

To return to the context of the mixed-BEC experi-
ment in (Myatt et al., 1997), for rubidium we expect a
reference rate constant of Kref,Rb = 7.7 × 10−11 cm3/s.
The observed value, K = 2.2×10−14 cm3/s, is 3500 times
smaller. From our simple theory, finding a rate this small
or smaller is an event with probability ≈ 12%.

The simple distributions presented here are of course
subject to assumptions of the model. For example, they
refer to scattering with only a single loss channel. More
significantly, the result assumes that the rotation angle θ
is uniformly distributed. Nonetheless, the results are em-
blematic of future possibilities, where statistical under-
standing of ultracold collisions can be explored through
the lens of MQDT.

This work is supported by the National Science Foun-
dation under Grant No. PHY2110327. JLB gratefully
acknowledges advice and encouragement from Ravi Rau
over the years, particularly in graduate school when
things may have gone off the rails.

Appendix A: Transformation of Probability Distributions

Given certain variables with defined probability distri-
butions functions (pdfs), it is a standard matter to find
the pdfs of combinations of these variables. The results
used here are as follows. Suppose X is a random vari-
able with probability distribution PX(x). We now change
variables to a new random variable Y = Y (X), given as
a function of the original. Then the new pdf is

PY (y) = PX(x)
∣∣∣dy
dx

∣∣∣−1

, (A1)

where on the right the inversion x = x(y) is implied.
Given two pdfs, PX(x), PY (y), assumed to by inde-

pendent, the pdf of their sum Z = X + Y is given by

PZ(z) =

∫
dx

∫
dyPX(x)PY (y)δ(x+ y − z) (A2)

=

∫
dxPX(x)PY (z − x), (A3)

while the pdf of their product W = XY is given by

PW (w) =

∫
dx

∫
dyPX(x)PY (y)δ(w − xy) (A4)

=

∫
dxPX(x)PY

(w
x

) 1

|x|
. (A5)

In both cases the limits of integration are those appro-
priate to the ranges of the original pdfs. In practice,
we evaluate these integrals in Mathematica, at least up
to the point where the resulting expression, even if in
principle analytic, is no longer useful to look at. In the
following we will omit the subscript on P , the random
variable being assumed identified by the argument.

For example, we have a quantum defect distributed
according to P (µ) = 1, for µ ∈ [−1/2, 1/2], the corre-
sponding K-matrix K̃ = tan(πµ) has pdf

P (K̃) = P
(
µ(K̃)

) ∣∣∣∣∣dK̃dµ
∣∣∣∣∣
−1

=
1

π

 1√
1 + K̃

2

2

=
1

π

1

K̃
2
+ 1

. (A6)

Next we construct the pdf for the short-range K-
matrix. For example,

K̃11 = cos2 θ tan(πµ1) + sin2 θ tan(πµ2). (A7)

Each random variable ti = tanπµi is Cauchy distributed.
Scaling these variables to, for example, ta = at yields the
distribution

P (ta) =
1

π

|a|
t2a + a2

, (A8)

with FWHM |a|. Thus, if ta = a tan(πµ1) and tb =
b tan(πµ2) are two such scaled variables, their sum tab =
ta + tb has distribution

P (tab) =

∫ ∞

−∞
dta

1

π

|a|
t2a + a2

1

π

|b|
(tab − ta)2 + b2

=
1

π

|a|+ |b|
z2 + (|a|+ |b|)2

. (A9)

From this it follows that, for our matrix element K̃11,
with a = cos2 θ, b = sin2 θ, we have

P (K̃11) =
1

π

1

K̃
2

11 + 1
. (A10)

The same is true for K̃22.
The off-diagonal element of the short-range K-matrix

is distributed quite differently.

K̃12 =
1

2
sin(2θ)(t2 − t1), (A11)

with θ distributed uniformly through θ ∈ [−π/2, π/2].
The pdf for u = sin(2θ)/2 (u ∈ [−1/2, 1/2]) is given by

P (u) =
1

π
×
∣∣∣ cos 2θ∣∣∣−1

=
1

π

1√
1− sin2 2θ

=
1

π

1√
1− 4u2

. (A12)
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Meanwhile, the pdf of the difference t = t2 − t1 is

P (t) =

∫ −∞

−∞
dt1

1

π

1

t21 + 1

1

π

1

(t− t1)2 + 1

=
2

π

1

t2 + 4
. (A13)

This is another Cauchy distribution, but one with twice
the FWHM; this is a special case of A9. Finally, the
product is composed to give

P (K̃12) ∝
∫ 1/2

−1/2

du
1√

1− 4u2
1

(u/K̃12)2 + 4

1

|u|
, (A14)

P (K̃12) =
2

π2

1√
(K̃12)2 + 1

sinh−1

(
1

|K̃12|

)
. (A15)

Here the argument of the inverse hyperbolic sine function
makes the distribution divergent at K̃12 = 0, emphasiz-
ing small values of this parameter. Yet, the divergence is
logarithmic, thus maintaining normalizability.

To get to the distributions for the imaginary part of
the scattering length requires yet a few more steps. Given
that x = K̃22 is Cauchy distributed as above, define v =
1/(x2 + 1). Well,

dv

dx
=

2x

x2 + 1
= 2xv2, (A16)

P (v) ∝ v
1

xv2
(A17)

=
1

π

1√
v(1− v)

, (A18)

where v ∈ [0, 1]. Similarly, setting y = K̃12 and w = y2,
we have

P (w) =
2

π2

1√
w(w + 1)

sinh−1

(
1√
w

)
. (A19)

In this notation, we have

β =
1

K̃
2

22 + 1
K̃

2

12 = vw. (A20)

Then the distribution of β is given formally by

P (β) =

∫ 1

0

dv
1

π

1√
v(1− v)

2

π2

1√
(β/v)(β/v + 1)

× sinh−1

(
1√
β/v

)
1

v
(A21)

=
1√
β

2

π3

∫ 1

0

dv
1√

v(1− v)

1√
v + β

sinh−1

(√
v

β

)
.

this expression is somewhat intractable, or at least,
Mathematica could not seem to tract it.

We therefore make an approximation. We regard β as

fundamentally determined by the factor K̃
2

12, as modified

somewhat by v = 1/(K̃
2

22 +1). The probability distribu-
tion for v is seen to be strongly peaked around v = 0 and

v = 1. For values of v near unity, K̃
2

22 is hardly changed,

whereas when v ≈ 0, the value of K̃
2

22 is dramatically
reduced. the influence of v is therefore approximately
accounted for by the simplified distribution

P ′(v) =
1

2

1√
v
, v ∈ [0, 1]. (A22)

With this approximation, the probability distribution for
β becomes relatively simple:

P (β) ≈ 1√
β

1

π2

∫ 1

0

dv
1√
v

1√
v + β

sinh−1

(√
v

β

)
.

=
1

π2

1√
β

[
sinh−1

(
1√
β

)]2
. (A23)

This formula does a reasonable job of focusing the prob-
ability heavily toward β = 0.
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