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Bound-state signatures in quenched Bose-Einstein condensates
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We investigate the dynamics of a homogenous Bose-Einstein condensate (BEC) following a sudden quench of
the scattering length. Our focus is the time evolution of short-range correlations via the dynamical contact. We
compute the dynamics using a combination of two- and many-body models and we propose an intuitive connection
between them that unifies their short-time, short-range predictions. Our two-body models are exactly solvable
and, when properly calibrated, lead to analytic formulas for the contact dynamics. Immediately after the quench,
the contact exhibits strong oscillations at the frequency of the two-body bound state. These oscillations are large
in amplitude and their time average is typically much larger than the Bogoliubov prediction. The condensate
fraction shows similar oscillations, whose amplitude we are able to estimate. These results demonstrate the
importance of including the bound state in descriptions of diabatically quenched BEC experiments.
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I. INTRODUCTION

Recent advances in the tunability of ultracold atomic gases
have created opportunities for studying interesting many-body
systems. At low energies, two-body scattering is determined
by the scattering length a and this can be tuned to arbitrary
values near a broad Fano-Feshbach resonance [1–5]. Control
in the interaction is then limited only by the stability of the
external magnetic field relative to the width of the broadest
available resonance.

Experimental frontiers are also expanding to consider
nonequilibrium scenarios. A conceptually simple setup for
observing nonequilibrium dynamics is to quench a system
parameter, such as the scattering length, and then observe
the response of the system. This can be accomplished by a
single fast ramp of the magnetic field near a Fano-Feshbach
resonance. Experiments have shown that a quenched Bose-
Einstein condensate (BEC) can exhibit Sakharov oscilla-
tions [6], as well as nontrivial decay dynamics [7]. Most
recently, Ref. [8] demonstrated that, if a BEC is quenched
suddenly to unitarity (a → ∞), the three-body loss is not as
catastrophic as one would expect. This was later argued to be
a consequence of the projective nature of the experiment: The
initial condition projects mainly onto long-lived states, thereby
limiting inelastic loss [9]. Diabatic quenches thus represent a
possible pathway to exotic many-body states.

The topic of quenched BECs has received considerable
theoretical interest in the literature as of late. The dynam-
ics of correlation functions at small na3 was computed
recently within the Bogoliubov approximation [10]. Two
other studies used a saturating effective interaction within a
self-consistent Bogoliubov approximation [11,12] to enforce
universal density scaling in their theory. References [13,14]
investigated the effects of phenomenological damping on the
eventual equilibration of quenched BECs within the Bogoli-
ubov approximation. Another study described BEC quench
dynamics using a regularized pseudopotential and a variational
many-body wave function, combined with exactly solvable
few-body models [9]. A recent quantum-kinetic-theory study
has employed a short-range Morse potential in its description
of quenched BECs [15,16].

A fact that has been underappreciated lately is that the
Feshbach molecular bound state may play a dominant role in
BEC quench dynamics. This state exists only on the repulsive
side of a resonance (a > 0) and its energy is EB = −�

2/ma2.
Bound-state physics was responsible for the pronounced
Ramsey oscillations described in Refs. [17,18], as well as
the nontrivial expansion [19,20] and spin-propagation [21,22]
dynamics observed recently in one-dimensional lattice gases.
We expect it to be of similar importance in diabatic quench
experiments, where pairs of atoms may project nontrivially
onto the postquench bound state. Such a projection can
qualitatively change the short-range correlation dynamics of
the system. One way to account for this is to use a two-channel
model, as was common a decade ago [23–35]. Single-channel
descriptions must use a regularized pseudopotential (or a
short-ranged variant thereof) that admits a bound state [36].

In this paper, we examine the effect of the bound state
on the short-time, short-range correlations of a BEC that is
quenched suddenly between two scattering lengths. We use a
properly regularized contact interaction within two- and many-
body models, as done in Ref. [9]. We introduce an intuitive
calibration scheme that unambiguously links the few-body
models to many-body physics; our prescription unifies the
few-body predictions across a broad class of exactly-solvable
models, while yielding analytic formulas that agree with
less transparent, many-body numerics. Our focus is the time
evolution of Tan’s contact, defined by C(t) ≡ limk→∞k4nk(t)
for momentum distributions that are normalized to the density
n via n = ∫

d3k nk(t)/(2π )3. The contact is a measure of the
short-range correlations of a system, such that the two-particle
correlation function of a homogenous single-component Bose
gas behaves as

g(2)(r,t) ≡ 〈ψ̂†(r,t)ψ̂†(0,t)ψ̂(0,t)ψ̂(r,t)〉/n2

→ C(t)

16π2n2r2
(1)

for small r [37–39]. The dynamical contact has received recent
experimental attention in Ref. [40], wherein rf pulses were
used to probe the short-range correlations of a spin-diffusing
Fermi gas. For the case of a BEC that undergoes a diabatic
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quench of the scattering length, we find that the contact
exhibits strong oscillations at the frequency of the postquench
bound state ωB = |EB |/�. If the quench is diabatic, both
the oscillation amplitude and its time average may be large
compared to the contact predicted by Bogoliubov theory.
Strikingly, even a downward quench of the scattering length
(where af < ai) may increase the short-range correlations of
the system. These interesting results are a direct consequence
of bound-state physics.

Section II reviews our many-body variational formalism
and demonstrates its relation to previous treatments of BEC
near resonance. We then introduce the basic phenomenon
of interest in this paper: bound-state oscillations. Next, we
discuss a class of two-body models in Sec. III, presenting a
calibration scheme that unifies their predictions for short-time,
short-range dynamics. We derive an analytic formula for the
contact dynamics following a diabatic quench and we describe
the physical origin of the observed oscillations. Finally, Sec. IV
summarizes our analysis.

II. MANY-BODY PHENOMENON

Although the recent experimental work described in Ref. [8]
has drawn attention mainly to the unitary Bose gas, a similar
diabatic-quench apparatus may be used to probe bound-state
dynamics at finite scattering length. We describe such a
quenched system using the many-body-variational approach
used previously in Ref. [9]. Our focus will be the short-time
coherent dynamics of large-momentum observables.

We consider a homogenous BEC in which, after a sud-
den quench to scattering length af , all atoms interact via
regularized contact interactions. Assuming periodic boundary
conditions in a box of volume V , the Hamiltonian that
describes such an interacting system is given by

Ĥ =
�∑
k

εkâ
†
kâk + U�

2V

�∑
k1,k2,q

â
†
k1+qâ

†
k2−qâk1 âk2 , (2)

where âk (â†
k) annihilates (creates) a boson of momentum k,

εk = �
2k2/2m is the single-particle kinetic energy, � is a

momentum cutoff, and

U� = 4π�
2af /m

1 − 2
π
�af

(3)

is the cutoff-dependent interaction strength [41]. In the limit
that � → ∞, the interactions are truly zero range and admit
a single bound state of energy EB = −�

2/ma2
f . Although the

physics of Fano-Feshbach resonances is always multichannel
in nature, entrance-channel-dominated resonances in ultracold
gases are generally well approximated by short-range single-
channel interactions [5], such as the one we use.

Immediately after a quench, pairs of atoms begin to scatter
out of an initially pure BEC. It thus makes sense to describe the
early stages of time evolution using a variational ansatz that
generates pairs of atoms from a coherent state of condensed
atoms. Therefore, we use the time-dependent ansatz introduced
in Ref. [9]:

|�(t)〉 = A(t)exp

(
c0(t)â†

0 +
�∑

k·ẑ>0

gk(t)â†
kâ

†
−k

)
|0〉, (4)

where c0(t) and {gk(t)} are time-dependent variational param-
eters, |0〉 is the particle vacuum, and

A(t) = exp

(
−|c0(t)|2/2 + 1

2

�∑
k·ẑ>0

ln[1 − |gk(t)|2]

)
(5)

is a normalization constant. It is simple to show that the varia-
tional parameters are related to the dynamic momentum popu-
lations via n0(t) = |c0(t)|2 and nk(t) = |gk(t)|2/[1 − |gk(t)|2].
We choose to consider an initial condition representing a
pure BEC of density n: c0(0) = √

nV and gk(0) = 0 for all
k · ẑ > 0. A time-independent version of this ansatz has been
used to compute the constrained ground state of a strongly
interacting Bose gas [42], with precedent from Refs. [43,44].

We derive the equations of motion for the system by
minimizing the action, where the Lagrangian is [45]

L = i�

2
[〈�(t)|�̇(t)〉 − 〈�̇(t)|�(t)〉] − 〈�(t)|Ĥ |�(t)〉. (6)

Given the ansatz (4), it can be shown that the Euler-Lagrange
equations of motion for the system are

i�ċ0 = ∂〈Ĥ 〉
∂c∗

0

= nU�c0 + 2
U�

V

�∑
k·ẑ>0

c∗
0gk + c0|gk|2

1 − |gk|2 .

i�ġk = (1 − |gk|2)
∂〈Ĥ 〉
∂g∗

k
(7)

= 2(εk + nU�)gk + U�

V

[
c2

0 + c∗2
0 g2

k + 2|c0|2gk
]

+ 2
U�

V

�∑
q·ẑ>0

2|gq|2gk + gq + g∗
qg

2
k

1 − |gq|2 .

Assuming spherical symmetry for gk, we integrate these
coupled differential equations numerically. The short-time
dynamics are essentially cutoff independent for length scales
r 	 �−1 as long as � is chosen to be much larger than
the other momentum scales of the problem, such as n1/3 or
a−1

f . As discussed in Ref. [9], we could equivalently simulate
the short-range interactions with attractive square or Gaussian
wells of range r0, whose depths are tuned to give the correct
scattering length af . The results for length scales r 	 r0 are
then independent of r0 as long as the gas is dilute nr3

0 
 1.
It is interesting to note that our equations of motion

(derived from an ansatz for the quantum state) map directly
onto the time-dependent Hartree-Fock-Bogoliubov (HFB)
formulation. In that case, one expands the Heisenberg-picture
field operator as

ψ̂(r,t) ≈ 	0(t) + 1√
V

∑
k �=0

eik·r[uk(t)b̂k + v∗
k(t)b̂†−k], (8)

where 	0 is the condensate component and the uk(t) and vk(t)
are quasiparticle amplitudes. After making certain mean-field
approximations [46], one can write coupled equations of
motion for 	0(t) and {uk(t),vk(t)}. It is then straightforward
to show that our parameter gk(t) and the HFB quantity
v∗

k(t)/u∗
k(t) satisfy exactly the same equations of motion. This
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equivalence between our variational calculation and the HFB
formalism was suggested recently in Ref. [14]. Our variational
treatment thus suffers from the same low-momentum energy
gap as found in the HFB formalism; however, because this
unphysical gap should manifest itself at longer time and
length scales, this should not hinder our study of short-time,
short-distance behavior. This is a motivating reason why
the HFB formalism was able to correctly simulate [25]
the coherent atom-molecule oscillations observed a decade
ago [17], the main results of which can be reproduced by
our single-channel variational model [47]. Our formalism also
reduces to Bogoliubov theory once the usual approximations
are made: replace the operators â0 and â

†
0 by the constant

√
n0,

neglect quartic interaction terms of noncondensed particles in
Eq. (2), and use a coupling constant U� → U0 = 4π�

2af /m.
In our accounting of finite ramp speeds, we allow the

scattering length to be time dependent in the Hamiltonian (2).
Without loss of generality, we model these ramps using the
scattering length profile of the 85Rb Fano-Feshbach resonance
at B0 = 155.04 G:

as(t) = abg

(
1 − 


B(t) − B0

)
, (9)

where the resonance width is 
 = 10.7 G and the background
scattering length is abg = −443a0 [18]. We assume linear
ramps in the magnetic field. At all instants in time, we
find that there is a well-defined k−4 tail, which we use
to extract the dynamical contact. Figure 1 shows the time
evolution of the contact for a noninteracting BEC of density
n = 1012 cm−3 that is quenched at several speeds to a final
scattering length of af = 700a0. We see that the contact
oscillates at approximately the frequency of the bound state
ωB and the contrast of these oscillations is strikingly large

0 10 20
0

5

10

C(t)/C 0

ω tB

FIG. 1. (Color online) Contact dynamics following a quench
from noninteracting to 700a0 for several ramp speeds near the 85Rb
Fano-Feshbach resonance at 155.04 G. We assume a density of
1012 cm−3. As a reference, the red (horizontal) line represents the
prediction from Bogoliubov theory, C0 = 16π 2n2a2

f , which specifies
the units of the vertical axis. The blue (oscillating, solid) line is the
many-body-variational prediction for a quench that is completely
diabatic, the cyan (dashed) line is for the experimental ramp speed
of Ḃexpt = 1.6 G/μs [8], the green (dot-dashed) line is for a ramp
speed of Ḃexpt/10, and the black (dotted) line is for a ramp speed of
Ḃexpt/50. In each case, the time t = 0 defines the end of the magnetic
field ramp.

even when we account for the finite experimental ramp rate
of Ḃexpt = 1.6 G/μs reported in Ref. [8]. The nature of the
interference leading to these oscillations will become apparent
in the careful two-body calculation of Sec. III. We stress that
these dynamics are quite different from those predicted by
Bogoliubov theory.

For the case of an instantaneous quench, it is difficult to
define a contact in Bogoliubov theory because the momentum
distribution does not have a well-defined k−4 tail [10].
However, such a tail exists as long as the ramp time tR
is nonzero and it occurs at momenta such that �k2tR/m 	
1. Large-momentum quasiparticles adiabatically follow the
scattering length in this case and the contact thus saturates
quickly to a new equilibrium value C0 = 16π2n2a2

f over the
arbitrarily small time scale of the quench, regardless of the
initial scattering length. These trivial dynamics are plotted
as the horizontal red line in Fig. 1 and they are in stark
contrast to the strong oscillatory behavior predicted by the
regularized theory. The peak-to-trough oscillation amplitude
remains as large as C0 itself when the experimental ramp speed
is decreased by a factor of 10. Further decreasing the ramp rate
eventually results in a quench that is adiabatic with respect to
the bound state, in which case the variational and Bogoliubov
theories agree and give a nonoscillating contact.

One can sense the limitations of the Bogoliubov description
of diabatic quench experiments by considering momentum
cutoffs. If one uses a coupling constant U� → 4π�

2af /m

in the Hamiltonian given by Eq. (2), as is typically required
in mean-field theories at the Bogoliubov level, then we see
from Eq. (3) that this implies a momentum cutoff � satisfying
�af 
 1 [41,48]. There is no bound state in this limit and any
important physics occurring uniquely on the time scale ω−1

B

and length scale af of the bound state is therefore absent in all
variants of Bogoliubov theory [10–12,14]. When the quench
is adiabatic with respect to the bound state (cf. Ref. [49]),
the ramp time is at least consistent with the shortest time
scale describable by the theory, where tR > (��2/m)−1 	
ω−1

B . That is precisely the regime in which Bogoliubov theory
correctly describes the contact dynamics, as shown in Fig. 1.

These bound-state oscillations also occur in the depletion
of the condensate. Figure 2 shows the time evolution of the
depletion fraction

nex(t)

n
= 1

nV

∑
k �=0

nk(t) (10)

after a diabatic quench, computed with both the variational
and Bogoliubov theories. In Bogoliubov theory, the depletion
grows as

√
t at short times [10], which captures the initial

growth of the depletion except for the large-amplitude oscil-
lations. The nonoscillatory contribution to this growth comes
mainly from momenta that are too small to probe bound-state
effects (kaf 
 1), whereas the oscillating component is due to
the aforementioned contact dynamics (occurring at kaf � 1).
Similar oscillations have been discussed previously in the
theory literature [23,24,30,32] and they received only a brief
mention in the experimental results of Ref. [17]. To date, there
is no published data on the subject, although some preliminary
observations of these condensate oscillations can be found in
Ref. [50].
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FIG. 2. (Color online) Excitation fraction following a diabatic
quench from noninteracting to 700a0 for a BEC of density n =
1012 cm−3. The blue (solid) line is the prediction of our many-body-
variational formulation. The magenta (dashed) line is the prediction
from Bogoliubov theory.

III. TWO-BODY MODELS

Two-body models afford another intuitive description of
BEC quench dynamics. In some cases, they are exactly solv-
able [38,51] and they can paint relatively transparent pictures
of nonequilibrium physics [20,33,52–54] that are sometimes
obscured by the mathematics of more sophisticated, many-
body models. It was recently suggested that such models might
even be made quantitatively accurate in their descriptions
of short-time, large-momentum dynamics in quenched BEC
systems [9], although an unambiguous universal link to the
many-body BEC problem has been absent in the literature.
In this section, we establish such a link and derive analytic
predictions for the contact dynamics following a diabatic
quench of the scattering length near a broad Fano-Feshbach
resonance.

A. Calibration

We consider the quantum dynamics of a pair of free-space
atoms whose scattering length is quenched from an initial value
ai � 0 to some finite value af � 0. Assuming zero momentum
for the center of mass (as is the case for any pair of atoms that
scatter out of a BEC), the postquench dynamics are governed
by the time-dependent Schrödinger equation

i�
∂ψ(r,t)

∂t
= − �

2

2μ
∇2ψ(r,t) + 2π�

2af

μ
δ(r)

∂

∂r
[rψ(r,t)],

(11)

where ψ(r,t) is the wave function for the relative coordinate r,
μ = m/2 is the reduced mass, and we model the short-
range interactions of the system with the Fermi pseudopoten-
tial [55,56]. This pseudopotential is equivalent to the � → ∞
limit of the regularized contact interaction given by Eqs. (2)
and (3).

We can time evolve an arbitrary spherically symmetric ini-
tial condition by expanding in the basis of energy-normalized
s-wave eigenfunctions of the Hamiltonian shown in Eq. (11).

These eigenfunctions are

ψ
(S)
k (r) = sin(kr) − kaf cos(kr)

r

√
4π2�2k

(
k2a2

f + 1
)/

m
, Ek = �

2k2

m
(12)

for the scattering states and

ψB(r) = e−r/af

r
√

2πaf

, EB = − �
2

ma2
f

(13)

for the bound state. Given an initial condition ψ0(r), the
solution to Eq. (11) is [57]

ψ(r,t) =
∫ ∞

0
dEk′e−iEk′ t/�ψ

(S)
k′ (r)

∫
d3r ′ψ (S)

k′ (r ′)ψ0(r ′)

+ e−iEB t/�ψB(r)
∫

d3r ′ψB(r ′)ψ0(r ′). (14)

We then evaluate the momentum distribution by taking the
Fourier transform of Eq. (14):

ψ(k,t) =
∫

d3r e−ik·rψ(r,t). (15)

Following our intuition from mean-field theory, we relate
this two-body problem to the many-body system by consid-
ering the combined effect of a background, dilute BEC on
the momentum distribution of a single particle. Assuming that
this time-dependent, single-particle momentum distribution is
normalized in the continuum via

1 =
∫

d3k

(2π )3
|ψ(k,t)|2, (16)

we compute the full momentum distribution by multiplying
by the total density n [33,52]. The combined effect of the
dilute background gas is modeled by an appropriate choice of
initial condition ψ0(r). Previous calculations of this type have
placed the two-body system in a (fictitious) tight harmonic trap,
whose frequency is chosen to reproduce either the total density
n [53] or the approximate mean interparticle separation 〈r〉 [9].
Both of these prescriptions are limited in the sense that their
quantitative predictions for short-distance dynamics depend
strongly on the harmonic nature of the fictitious trap. In this
sense, they are intrinsically semiquantitative [58].

The prescription that we propose is motivated by the fact
that a quench of zero-range interactions signifies a quench of
a log-derivative boundary condition at r = 0:

lim
r→0

∂r [rψ(r)]

rψ(r)
= −1

a
. (17)

As a result, the contact dynamics immediately following a
quench occurs entirely in the short range. The most important
feature of an initial condition ψ0(r) is therefore its behavior
as r → 0. Our first requirement is that ψ0(r) satisfy Eq. (17)
for the initial scattering length of the system, ai . [All of the
eigenstates in our postquench expansion basis (12) and (13)
satisfy this log-derivative condition for the final scattering
length af .] Importantly, this log-derivative condition does not
fix the absolute magnitude of ψ0(r) for small r; any such
scaling cancels in Eq. (17). We propose that this absolute
scaling of the short-range wave function be fixed by the
many-body problem. The quantity |ψ0(r)|2 represents the
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probability density of finding a background particle a distance
r from the particle of interest, and this is given by ng(2)(r) in the
many-body problem, where g(2)(r) is the two-body correlation
function [60]. For a pure, noninteracting BEC, there are no
correlations and g(2)(r) = 1. If the initial scattering length
is nonzero, however, short-range correlations are determined
exclusively by the contact via Eq. (1). We thus calibrate the
short-range behavior of the two-body wave function as follows:

lim
r→0

|ψ0(r)|2 = n (ai = 0), (18a)

|ψ0(r)|2 → Ci

16π2nr2
+ O

(
1

r

)
(ai > 0), (18b)

where Ci = 16π2n2a2
i is the contact for the initial, dilute

BEC [61,62]. Equation (18b) guarantees that the contact for
the particle of interest (within our simple model) matches
the particle-number-averaged contact of the many-body sys-
tem [63].

We now choose a set of initial two-body wave functions to
test the robustness of our calibration scheme. We have been
able to analytically evaluate the integrals in Eqs. (14) and (15)
for the initial conditions

ψ0(r) = A0(ai,L0)

(
1 − L0ai

(L0 − ai)r

)
e−r/L0

= A1(ai,L1)

(
1 − ai

r

)
e−r/L1

[
1 + r

L1

]

= A2(ai,L2)

(
1 − ai

r

)
e−r/L2

[
1 + r

L2
+ 1

2

(
r

L2

)2]
,

(19)

where Lj is a free parameter for each initial condition and
Aj (ai,Lj ) is a constant chosen to give unit normalization.
The leading factor in parentheses enforces the log-derivative
boundary condition and the bracketed polynomial factors
have been chosen to add variety to our treatment of the
long-range wave function. The calibration given by Eq. (18)
then completely fixes the short-range behavior, along with the
free parameter Lj . The necessary integrations in Eqs. (14)
and (15) can be carried out with a combination of contour
integration and symbolic mathematical software, along with
the useful relation∫ ∞

0
dr sin(k′r)cos(kr) → P k′

k′2 − k2
(20)

when integrated against well-behaved functions, with P
denoting the Cauchy principal value.

A useful figure of merit for short-range nonequilibrium
physics is the slope of the contact growth after a quench
from noninteracting (ai = 0) to unitarity (af = ∞). Using
the many-body variational formulation described in Sec. II,
Ref. [9] found previously that the contact grows as C(t) ≈
26.9n4/3ωF t at short times, where ωF = �k2

F /2m is the
Fermi frequency of the gas and kF = (6π2n)1/3 is the Fermi
momentum. For our two-body models, the formulas for the
exact momentum-space wave functions ψ(k,t) are too lengthy
to reproduce here (see the Appendix for an example); however,
their predicted momentum distributions are plotted in Fig. 3
at a fixed time shortly after the quench and they are compared

10
0

10
1

10
2

10
310

−15

10
−10

10
−5

10
0

k/k

n (t)k

F

FIG. 3. (Color online) Momentum distributions at fixed time
ωF t = 0.01 after a quench from noninteracting to unitarity. The thick
black line is the numerical data from a many-body variational calcu-
lation. The thin lines are the analytically computed two-body results.
The cyan (solid), green (dashed), and magenta (dot-dashed) lines
respectively correspond to the properly calibrated initial conditions
in the order listed in Eq. (19).

with the many-body prediction. With the free parameter of
each initial condition chosen in our prescribed manner, all
results agree favorably at large momentum. Despite the various
functional forms for the initial conditions in Eq. (19), all of
the two-body wave functions predict that

C(t) = 128π

(6π2)2/3
n4/3ωF t (21)

at short times, which agrees with the many-body variational
prediction to within less than 2%. Equation (21) also follows
from applying our prescription to the Gaussian initial condition
of Ref. [9], for which only the contact growth can be calculated
analytically. The contact slope now appears to be independent
of the arbitrary details of the two-body model.

We remark that the model independence of our large-
momentum dynamics is nontrivial. If instead we choose each
free parameter Lj by matching 〈r〉 to the nearest-neighbor
separation, the predicted slope of the contact varies by
almost an order of magnitude, depending on the chosen
initial condition. The approximate agreement between the
two- and many-body models demonstrated in Ref. [9] is
a result of the near equivalence of the requirements that
〈r〉 ≡ (4πn/3)−1/3 and |ψ0(0)|2 ≡ n for normalized Gaussian
functions. As explained above, the latter requirement is more
physically motivated and leads to improved agreement with
the many-body results while unifying the large-momentum
predictions of the various exactly solvable two-body models.
In the remainder of our discussion, we employ this calibration
scheme.

Contact dynamics aside, our models also agree on the sub-
leading oscillatory structure of the large-momentum dynamics,
as shown in Fig. 3. These oscillations have phase Ekt/� and
their amplitude scales as k−5, as found previously [9]. Each
distribution shows distinct low-momentum behavior that is
determined by the long-range characteristics of the initial
conditions. We can infer from Eq. (19) that these long-range
features occur on a length scale that is set by the parameter
Lj , which is of the order of the mean interparticle spacing
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for the gas. At such momentum scales, we expect many-body
effects to determine the physics and this limits the approximate
validity of our two-body models to momenta k 	 kF and times
ωF t 
 1. These limits are implicit in all of the two-body
results that follow.

B. Quenching to finite scattering length

With our two-body models properly calibrated, we are well
equipped to revisit and generalize the bound-state oscillations
addressed in Sec. II. We will see that the simple two-body
approach illustrates the crucial role played by the bound state
after a diabatic quench, while quantitatively describing the
evolution of two-body correlations via the dynamical contact.

As a preliminary matter, our two-body approach leads to an
intuitive understanding of bound-state oscillations. The basic
structure of Eq. (14) suggests that the bound and scattering
states may be compared to the two legs of a simple inter-
ferometer. The diabatic quench essentially projects the initial
condition onto these two legs and a different phase is acquired
over each leg as time progresses, as evidenced by Eq. (14).
The measured momentum distribution is always defined with
respect to free-particle (noninteracting) momentum states,
rather than the scattering states of Eq. (12); it is for this
definition that the k−4 tail is meaningfully related to short-
range density-density correlations via the contact [37,64].
Hence, the two legs of the interferometer are recombined
during a measurement of the momentum distribution, thereby
projecting the quantum state onto the free-particle momentum
basis as in Eq. (15). The phase evolution of the bound-state
component leads to periodically modulated interference that is
most pronounced at the length scale of the bound state r � af .
As a result, the contact oscillates, along with certain other
observables such as the condensate fraction (see Fig. 2).

As discussed previously, the various initial conditions
of Eq. (19) lend themselves to analytical, time-dependent
solutions for arbitrary initial and final scattering lengths. These
formulas are quite complicated in general, but, remarkably,
they each predict the same behavior of the contact

C(t) = 16π2n2a2
f

∣∣∣∣1 +
(

ai

af

− 1

)
eiωB t [1 + erf(

√
iωBt)]

∣∣∣∣
2

(22)

if we take the limits na3
i 
 1 and na3

f 
 1. Figure 4 plots
Eq. (22) against the many-body data for the diabatic quench
considered already in Fig. 1. Apart from a slight offset in the
oscillation frequency, the agreement is excellent. We believe
that this small frequency deviation is due to the fact that our
numerical solution of the many-body model is constrained to a
finite (albeit large) momentum cutoff �, whereas our two-body
models are truly zero range. Any experimental realization of
these oscillations would experience such an offset due to the
finite range of true interatomic interactions. This was certainly
the case in the Ramsey experiment of Ref. [17]. Aside from
the bound-state oscillations of the contact, the momentum
distributions at small scattering length look essentially the
same as in Fig. 3, including the subleading k−5 behavior
mentioned previously.

C(t)/C

ω  t

0

B 

FIG. 4. (Color online) Contact dynamics following a diabatic
quench from noninteracting to 700a0 for a BEC of density n =
1012 cm−3. The circles represent the many-body-variational data
(shown also in Fig. 1). The green (solid) line represents the formula
given in Eq. (22) and the red (dashed) line represents the linear growth
given in Eq. (21).

It is useful to examine the general dynamics given by
Eq. (22). At short times ωBt 
 1, the contact evolves
continuously from its initial value Ci as

C(t) = Ci + 32π2n2ai(ai − af )

√
2

π
ωBt

+ 128π

(6π2)2/3

(
ai

af

− 1

)2

n4/3ωF t + O(t3/2). (23)

In the limit of vanishing initial scattering length, the contact
first grows linearly according to Eq. (21) for all values of
af . This is shown in Fig. 4 for the case of a quench to af =
700a0. However, at nonzero initial scattering length, this linear
growth is superseded by nonanalytic

√
t behavior. At later

times ωBt 	 1, the contact is oscillatory:

C(t) ≈ 16π2n2a2
f

[
1 + 4

(
ai

af

− 1

)2

+ 4

(
ai

af

− 1

)
cos(ωBt)

]
.

(24)

For a diabatic quench upward (af > ai), the time-averaged
contact 〈C(t)〉t may be up to five times larger than the
Bogoliubov prediction of C0 = 16π2n2a2

f and the oscillation
amplitude may be up to four times as large. Of course, in
the limit of no quench (af = ai), the contact is trivially time
independent [65].

The case of a diabatic quench downward (af < ai) reveals
interesting physics. Depending on the ratio of initial and final
scattering lengths, the time-averaged contact may be much
larger than the Bogoliubov prediction C0 and larger even than
the initial contact Ci . Figure 5 shows these dynamics for a
quench to af = ai/3, in which case 〈C(t)〉t is more than an
order of magnitude larger than C0 and almost twice as large as
Ci . The peak-to-trough oscillation amplitude is also larger than
both C0 and Ci . This is in stark contrast to the Bogoliubov case,
in which the contact relaxes to C0 over the fast time scale of the
diabatic quench. At least in the transient dynamics, a diabatic
reduction in the scattering length can evidently increase local
two-body correlations by up to a factor of 4 compared to
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FIG. 5. (Color online) Contact dynamics following a diabatic
quench downward with af = ai/3. For reference, the green (dashed)
line is the equilibrium contact Ci for the BEC at the initial scattering
length ai and the red (dot-dashed) line is the contact C0 for a
ground-state BEC at the final scattering length af .

the initial condition, as evidenced by Eq. (24). An important
limitation, however, is that these dynamical correlations are
most pronounced at and below the length scale of the bound
state.

The heightened short-range correlations contained in
〈C(t)〉t , beyond those already at the Bogoliubov level, come
fundamentally from bound-state physics. For example, if we
ignore the contribution of the bound state to the dynamics in
Eq. (14), we find that the scattering states dephase in such
a way that the dynamical contact asymptotically approaches
C0 without any oscillations, regardless of the initial scattering
length. This is in qualitative agreement with the Bogoliubov
prediction. Once the scattering states dephase, however, the
bound state is left to dominate the short-range wave function
except in the relatively trivial case where af ∼ ai . The excess
short-range correlations, given by the second bracketed term
in Eq. (24), are determined entirely by the original projection
of the initial condition onto the bound state.

We can estimate the amplitude of the depletion oscillations
by simply integrating over the relevant portion of the mo-
mentum distribution. From Eq. (24) and the fact that nk(t) ∼
C(t)/k4 at large k, the part of the momentum distribution
oscillating at the bound-state frequency behaves as

nk,osc(t) ∼ 16π2n2a2
f

k4
4

(
ai

af

− 1

)
cos(ωBt), (25)

aside from the time-independent contribution to the k−4

tail. As mentioned previously, these oscillations occur at
the momentum scale of the bound state, where kaf � 1.
Integrating Eq. (25), we find that the oscillating part of the
depletion fraction is approximately

nex,osc(t)

n
∼ 1

n

∫
kaf >1

d3k

(2π )3
nk,osc(t)

∼ 32
(
na3

f

)( ai

af

− 1

)
cos(ωBt). (26)

The oscillation amplitude given here agrees with the many-
body data shown in Fig. 2 to within a factor of order unity,

and we expect it to be a reasonable estimate as long as the
diluteness parameter na3 is small before and after the diabatic
quench.

As a final aside, we note that our two-body analysis is able
to generalize the short-time dynamics following a quench to
unitarity. If we calibrate our initial wave function for ai � 0
and then quench to unitarity, the initial contact dynamics are

C(t) = Ci − 32π2n2ai

√
2�

πm
t + 128π

(6π2)2/3
n4/3ωF t (27)

to leading order in na3
i and ωF t . This represents a general-

ization of Eq. (21) for diabatic quenches from small initial
scattering length. It is interesting that Eq. (27) is equal to the
af → ∞ limit of Eq. (23), despite the fact that Eq. (23) was
derived for small final scattering length (na3

f 
 1).

IV. CONCLUSION

We have elucidated the important role of the bound
state in determining the contact dynamics of a diabatically
quenched BEC. We first computed these dynamics using
a variational many-body model, demonstrating that large-
amplitude oscillations of the contact can be observed even with
existing magnetic-field-ramp technology. Our calculations
reinforce the idea that coherent short-range physics can lead
to measurable signatures even in the BEC fraction. This is the
dominant physics of the quenched gas on short time scales,
before many-body effects and loss become important.

We also developed a calibration scheme for two-body
models that leads to an unambiguous quantitative description
of BEC contact dynamics following a sudden quench. Our
prescription fixes both the log-derivative and absolute mag-
nitude of the initial short-range, two-body wave function by
matching to the many-body problem, and we are able to derive
analytic formulas for the short-time evolution of the contact
in the weakly interacting and unitarity limits. Our computed
dynamics are shown to be independent of the arbitrary features
of the models and agree with many-body predictions. This
two-body picture indicates that bound-state oscillations of the
contact are analogous to interferometry. We expect that one
can account for finite ramp speeds by numerically solving
the two-body Schrödinger equation for a properly calibrated
model [66].

The dynamical contact can be measured using time-
resolved rf spectroscopy, as done in Ref. [40]. Our analysis
shows that even the time-averaged contact 〈C(t)〉t may be
greatly magnified relative to the Bogoliubov prediction due
to bound-state physics and this could be observed with an
rf pulse that is long compared to the bound-state oscillation
period. Measuring the oscillations themselves necessarily
requires using shorter pulses and that may lead to inconvenient
broadening of the central rf peak. In any event, the temporal
constraints on time-resolved rf spectroscopy depend both on
the atomic species and on the transition under consideration
and they are beyond the scope of the present study.

We reiterate that the bound-state dynamics that we have
considered are a coherent, transient effect. They encapsulate
the response of a short-range wave function to an abrupt
change in the scattering length or, equivalently, a log-derivative

013616-7



JOHN P. CORSON AND JOHN L. BOHN PHYSICAL REVIEW A 91, 013616 (2015)

boundary condition. At longer time scales, we expect the oscil-
lations to damp out as the system equilibrates. Similar damping
was observed in the Ramsey experiment of Refs. [17,18] and
it was believed to be due to a combination of incoherent three-
body loss and dephasing from magnetic-field inhomogeneities.
Still, the coherence of large-momentum dynamics persisted for
many oscillation periods before damping became significant.
The engineering of quench apparatus has improved over the
years, especially in creating ramps that are diabatic with
respect to the bound state [8]. This creates the opportunity
for systematic experimental studies of bound-state signatures
in quenched BECs.
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APPENDIX: SAMPLE MOMENTUM DISTRIBUTION

The time-dependent, two-body momentum distribution can
be calculated analytically for each of the initial conditions
listed in Eq. (19) and for arbitrary initial and final scattering

lengths. Except in certain limits (discussed in the main text),
these formulas are generally too lengthy to usefully write
down. We include here the simplest example, which is the
distribution for the bare exponential of Eq. (19) after a quench
from noninteracting (ai = 0) to unitarity (af = ∞). After
evaluating the integrals in Eqs. (14) and (15), we find that

ψ(k,t) = 8
√

L0

k
(
1 + k2L2

0

)2

[(
1 − k2L2

0

)
D

(√
i
�k2t

m

)

+ (
1 + k2L2

0

)√
i
�k2t

m
+ ei(�t/mL2

0)

×√
π

(
kL0 − i

(
1 + k2L2

0

) �kt

mL0

)
erfc

(√
i

�t

mL2
0

)]
,

(A1)

where the Dawson function is defined by

D(z) ≡ e−z2
∫ z

0
dy ey2

. (A2)

This wave function evolves continuously from its initial
condition.
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