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Frustration in a dipolar Bose-Einstein condensate introduced by an optical lattice
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We study the application of a square perturbing lattice to the naturally forming hexagonal arrays of dipolar
droplets in a dipolar Bose-Einstein condensate. We find that the application of the lattice causes spontaneous
pattern formation and leads to frustration in some regimes. For certain parameters, the ground state has neither
the symmetry of the intrinsic hexagonal supersolid nor the symmetry of the square lattice. These results may give
another axis on which to explore dipolar Bose-Einstein condensates and to probe the nature of supersolidity.
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Geometric frustration is important throughout nature and
is particularly relevant to the study of many-body interact-
ing systems such as spin liquids and spin glasses. One of
the hallmarks of frustration is the inability of the system to
find a unique and fully periodic ground-state configuration
[1]. Frustration occurs when conflicting interactions between
discrete constituents each favor some specific configuration,
and yet no regular configuration is found. A famous example
is antiferromagnetic order on a triangular lattice, where pairs
of neighboring spins cannot all be anti-aligned simultaneously
[2]. For frustrated Ising spins on a square lattice [3], fer-
romagnetism suddenly vanishes below a certain interaction
strength. Part of the ongoing interest in quantum simulation
is to generate frustrated systems under carefully controlled
conditions, such as in ion crystals [4] or optical lattices [5],
which mimic the properties of frustrated magnetic systems, in
order to glean some of their elusive properties.

Here we consider a system that is already self-organizing in
interesting ways, namely, a Bose-Einstein condensate (BEC)
whose constituent atoms are magnetic and hence interact via
dipolar interactions, as is relevant in dysprosium [6], erbium
[7], or chromium [8]. Such a BEC can be coaxed into a super-
solid state [9–12], exhibiting periodic ordering while retaining
the coherence properties of the superfluid. The observation
of this state was a major experimental milestone [9,12–14],
realizing predictions going back to speculations in superfluid
helium [15]. Under other circumstances, other novel configu-
rations of density are predicted [16,17].

We return to the supersolid state for inspiration, noting that
not all solids are crystalline in nature. Density modulations
may be aperiodic, as in a glassy state, or they may have
spatially distinct regions of differing symmetries, indicating
frustration. Here we place uncomfortable stress on the dipolar
BEC’s (DBEC’s) native sixfold structure by subjecting it to
an optical lattice of fourfold symmetry, as shown schemati-
cally in Fig. 1. In the process, a rich variety of states occurs,
including some that are frustrated by this competition.

In typical treatments of DBECs, such as the approach we
apply here, one considers only a single order parameter to
represent the many-body wave function, where each atom
in the DBEC has the same wave function. The long-range

phase coherence between spatially distinct droplets has been
experimentally verified in one-dimensional systems [9], and
is seen here numerically in two-dimensional states. Frustra-
tion, on the other hand, relies on distinct components having
competing interactions with one another, where no such phase
coherence is required. Here, we describe a distinctly quantum
mechanical version of frustration in a single coherent field,
where different spatial regions of the field organize according
to different governing principles.

The depth of individual lattice sites and the spacing be-
tween them become essential for determining the ground state.
Frustration may occur due to the difference, or competition,
between the optimal geometry of the system without the lat-
tice and the geometry of the lattice. For certain lattice depths
and spacings, the ground-state energetic manifold may be-
come highly degenerate due to the application of the lattice.
We examine ground-state morphologies as a function of the
lattice spacing and lattice depth. We map out several different
phases in this regime, where, in particular, the density forms
checkerboard, stripe, and frustrated patterns.

Model. DBECs can be described by the extended Gross-
Pitaevskii equation (EGPE) [18], where the ground-state
condensate order parameter ψ obeys

μψ (�r) =
[
− h̄2

2m
∇ + V + g|ψ (�r)|2

+
∫

Udd (�r − �r′)|ψ (�r′)|2 + γQF |ψ (�r)|3
]
ψ (�r).

(1)

Here, μ is the chemical potential and V = Vext + Vlat is the
external potential, which may include both a harmonic trap
Vext and an applied lattice Vlat,

Vext = 1

2
m

(
ω2

x x2 + ω2
y y2 + ω2

z z2), (2)

Vlat = V0

4
(cos kx + cos ky), (3)

where ωx,y,z gives the trap frequency along the corresponding
direction. 2π/k gives the lattice spacing and V0 the peak-to-
trough lattice depth. In the above equations, g = 4π h̄2a/m is

2469-9926/2023/107(4)/L041301(5) L041301-1 ©2023 American Physical Society

https://orcid.org/0000-0001-5373-2035
https://orcid.org/0000-0002-4657-0880
http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevA.107.L041301&domain=pdf&date_stamp=2023-04-17
https://doi.org/10.1103/PhysRevA.107.L041301


HALPERIN, RONEN, AND BOHN PHYSICAL REVIEW A 107, L041301 (2023)

FIG. 1. A schematic illustration of the unperturbed droplet
ground state, shown by blue isodensity surfaces, with the applied
perturbing lattice, shown in purple. The lattice has an incommensu-
rate symmetry with the natural ground state, and thus the droplets
struggle to simultaneously fulfill the constraints of their interactions
and of the lattice.

the contact interaction strength, with a the s-wave scattering
length. Udd accounts for the long-range dipole-dipole interac-
tion and is given by

Udd (�r) = 3h̄2add

mr3
[1 − 3 cos2(θ )], (4)

where add = mμ0μ
2/12π h̄2 is the dipole length, r the dis-

tance between two interacting dipoles, and θ the angle
between �r and the dipole alignment axis, here taken to be ẑ.
γQF arises from the local-density approximation to quantum
fluctuations [19–22] and is

γQF = 32

3
g

√
a3

π

(
1 + 3a2

dd

2a2

)
. (5)

For time-dependent calculations, we simply replace μψ by
ih̄ ∂ψ/∂t in Eq. (1). The EGPE energy functional is

E [ψ] =
∫ [

h̄2

2m
|∇ψ |2 + V |ψ0|2 + 1

2
g|ψ (�r)|4

+ 1

2

∫
Udd (�r − �r′)|ψ (�r′)|2|ψ (�r)|2d�r′

+ 2

5
γQF|ψ (�r)|5

]
d�r. (6)

We numerically minimize this functional using a limited-
memory Broyden-Fletcher-Goldfarb-Shanno (LBFGS) algo-
rithm [23] optimized on a graphics processing unit (GPU). We
use the PYTORCH LBFGS algorithm, taking advantage of auto-
matic differentiation. We solve for the ground state on a cubic
grid of 128 × 128 × 96 grid points of size 28 × 28 × 28 aho,
with aho the oscillator length. A large enough grid is used
along with a cutoff in the maximum size of the dipolar in-
teraction, i.e., Udd (�r) = 0 for |�r| > 14 aho. As long as the grid
is twice as large as the cutoff, and the ground-state density all
lies within a sphere of radius 14 aho, this ensures that “phan-
tom condensates” are not considered [24] while introducing
no other effects.

Due to the elaborate energy landscape, there are some-
times many metastable states where the energy functional
has zero gradient. Moreover, some of these metastable states
appear highly attractive to initial conditions with added Perlin
[16,25] and uniform noise, where the minimization proce-
dure can find a metastable state instead of the true ground

state. Such states are verified to be metastable by perform-
ing time evolution via a time-splitting pseudospectral method
[26]. In order to address the complicated energy landscapes,
we first perform a minimization with over 50 random ini-
tial conditions for each set of parameters. Then, we identify
the prominent morphologies seen over all lattice depths and
spacings. The wave functions of these distinct morphologies
are then used to reseed the minimization at all of the consid-
ered sets of parameters. Procedures which do not follow such
an iterative method may misidentify some phase boundaries.
Henceforth, we consider 162Dy atoms in a (ωx, ωy, ωz )/2π =
125 × 125 × 250 Hz trap. The dipole length of 162Dy is add =
131a0 and we use a scattering length a = 85a0. The atom
number crucially determines the density profiles of the DBEC,
and we choose the total atom numbers of N = 105. For this
system, aho = √

h̄/mω = 0.71 μm and h̄ωx/kB = 6 nK.
Lattice. We consider the effect of applying a weak lat-

tice with fourfold symmetry to the supersolid ground state.
Figure 2 shows the resulting phase diagram as well as select
states that occur under the conditions indicated by the red
lines. This diagram is based on a grid with 100 values of lattice
depth from top to bottom, and 10 values of lattice spacing
from left to right. Within this resolution, the different col-
ored regions represent different phases of organization of the
DBEC, which are labeled to indicate their general character.
On the left and right of this figure, selected density profiles
along two-dimensional (2D) slices through the center of the
trap are shown. The central figure shows the four distinct
phases of this state as the lattice depth and spacings are varied.

Along the top of the diagram, the blue section labeled SSD
shows the parameters for which the DBEC is in a sixfold
symmetric state, closely resembling the unperturbed ground
state. This occurs when the lattice is fairly weak or when the
lattice is so tightly spaced the the energetic cost of dipolar
droplets sitting in the lattice minima would be quite large, as
is true for a lattice spacing of 1.6 aho up to a depth of 1.31 h̄ω.
An unperturbed SSD density profile is shown in Fig. 2(a).

In the opposite limit, of deep lattices (lower right corner),
the lattice dominates the physics. When the lattice spacing
becomes comparable to the intrinsic spacing of 3.2aho, the
DBEC transitions abruptly to the fourfold symmetric state,
with each lattice minima occupied by a dipolar droplet (lat-
tice, orange). Density slices of two such states are shown in
Fig. 2(e) and Fig. 2(h), the first at a lattice spacing of 3.2 aho

and depth of 0.71 h̄ω, and the second at a lattice spacing of
2.31 aho and depth of 3.18 h̄ω. Here, either 9 or 13 droplets
form. Similar states were seen to be metastable in the absence
of a lattice potential [27]. The SSD and lattice phases indi-
cate no frustration; the density profiles entirely satisfy one
of the constraints placed on them. Between these regimes,
the DBEC cannot ignore the lattice, nor is it completely in
thrall to it.

In this intermediate regime, one finds a class of states
that has a checkerboard density pattern, prominently featured
in the diagram (checkerboard, pink). Here, the lattice spac-
ing is somewhat smaller than the SSD spacing of around
3.2 aho. Thus, the DBEC can maintain a larger spacing be-
tween droplets by simply filling every-other lattice site while
partially satisfying the constraints of the lattice. An exam-
ple checkerboard density profile is shown in Fig. 2(g), for a
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FIG. 2. The supersolid droplet phase diagram for N = 100 000 162Dy atoms in a 125 × 125 × 250 Hz trap, when a square perturbing lattice
potential is applied. Sample phases are shown on the left and right, showing density slices in the xy plane through the center of the trap. The
lattice parameters used to generate these phases are given by the tail of the red arrows, and the patterns formed are colored accordingly.

lattice depth of 1.06 h̄ω and spacing of 2.13 h̄ω. Here, there
are four unoccupied lattice sites within the trap, which, for
comparison, are seen to be filled in Fig. 2(h), at the same
spacing but at a depth of 3.18 h̄ω. Here, the repulsion be-
tween droplets is strong enough at this short range that the
energetic cost of occupying adjacent lattice sites would be too
high. The checkerboard state belies a competition between the
interatomic forces and the applied lattice; however, there are
not distinct regions of space with different density patterns, as
one might expect from a frustrated system.

The SSD, lattice, and checkerboard phases all retain some
symmetry, but in the regime between these, anomalous phases
appear. As the lattice depth increases from 0.2 h̄ω to 0.3 h̄ω at
spacings around 2 aho, the DBEC transitions between the SSD
and checkerboard state. In this regime, the DBEC becomes
frustrated, forming the density pattern shown in Fig. 2(f). In
the top half of this density profile, the density closely resem-
bles that of the SSD state, as shown in Fig. 2(a), while in the
bottom half of this density profile, the density resembles the
checkerboard, as in Fig. 2(g). The energy of this frustrated
state is lower than either the checkerboard or the SSD at this
lattice depth. Here, the interdroplet repulsion is so strong that
several lattice sites being empty between droplets may be
energetically favorable. Different spatial regions form distinct
density patterns, one preferred by the SSD morphology and
the other by the checkerboard. The typical densities between

droplets are 0.1–10% of the peak density, which acts as evi-
dence of the phase coherence in these systems.

The detailed transition from the SSD to checkerboard
phase is traced in the high-resolution slice of the data in
Fig. 3, for fixed lattice spacing of 2.31 aho. This includes
states similar to the three shown in Figs. 2(a), 2(f), and 2(g).
By seeding, the minimization can be forced to find any of

FIG. 3. The energies as a function of increasing lattice depth, at
the fixed lattice spacing of 2.31 aho, with the minimization seeding
by the three dominant morphologies in that region: the SSD, the
frustrated state, and the checkerboard state.
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the three shown states, one of which is always the ground
state. Thus, we can extract the energy of these three states,
where the details of the state are reoptimized for the specific
system parameters, yet the overall morphology is unchanged.
We indeed find a region where the frustrated state is the lowest
energy, with the SSD being lower energy at smaller depths
and the checkerboard being lower energy at large depths.
Between these different regimes, we find discontinuities in
the derivative of the ground-state energies, indicating second-
order phase transitions. Such phase transitions as a function
of lattice depth appear throughout the diagram.

At smaller lattice spacing (left side of Fig. 2), the DBEC
forms states with one or more stripes (brown, stripe), which,
again, have neither four- nor sixfold symmetry. Stripe states
were also seen at slightly higher atom number in an unper-
turbed DBEC [16]. Two such states are shown in Fig. 2(b)
and Fig. 2(d), where there are large gaps between sometimes
connected filled lattice sites.

Between the stripe and checkerboard regime, we find an-
other frustrated ground state, indicated by the green region in
Fig. 2. This frustrated state is shown in Fig. 2(c), where the
bottom portion of the density profile, below the dotted white
line, closely matches that of Fig. 2(d), while the top portion,
above the dotted white line, matches the density of both a
checkerboard state at this smaller lattice spacing and the stripe
phase seen in Fig. 2(b), with alternating filled lattice minima.
Here, the boundary between these two morphologies does not
pass through the center of the trap, but instead is slightly above
it. Given that we seed the entire phase diagram with all stripe
states, this frustrated intermediate state is lower energy than
either of the two halves which comprise it.

The stripe regime is emblematic of the complicated en-
ergy manifold that arises when the lattice is applied. In the
SSD regime, without a lattice, the ground state is energeti-
cally well separated from metastable states. However, in the
stripe regime, there is a plethora of metastable states with
small energy spacings from the ground state. This is shown
in Fig. 4, where a histogram of energies found by the min-
imization is shown, along with three example states, at a
lattice spacing of 1.6 aho and depth of 1.94 h̄ω. Here, the
ground state finds a different stripe phase than shown in either
Fig. 2(b) or Fig. 2(d). The nearest distinct state has a spacing
of 7 × 10−4 h̄ω from the ground state. In some cases, nearby

FIG. 4. A histogram of different energies found by the minimiza-
tion procedure showing a subset of 100 different initial conditions, at
a lattice depth of 1.94 h̄ω and spacing of 1.6 aho. Three example den-
sities are shown as insets, with the corresponding energies indicated
by red arrows.

states are similar to the ground state, while in others, they are
entirely unrelated, as shown by the inset density profiles. The
shape of the histogram belies that the lowest-energy state may
not always be the most energetically attractive local minimum
to a random initial state, and in this case the ground state is
not the most likely state for the minimizer to find.

Outlook. We have investigated the effect of a perturbing lat-
tice on the supersolid ground state of a DBEC. In some cases,
the DBEC has neither the symmetry of its natural ground
state nor the symmetry of the lattice. Undiscovered states
may yet exist outside of the boundaries of our phase diagram,
between points in the scan, or in isolated regions of the energy
landscape. This sets off the exploration of a vast phase space,
where different lattices or other perturbing potentials could be
applied to the self-organizing patterns of a DBEC. One could
begin from the labyrinthine superglass or honeycomb pattern
[16] and consider the effects of a lattice on that system. The
application of a time-dependent lattice, either adiabatically or
via a quench, additionally remains largely unexplored.

This material is based upon work supported by the National
Science Foundation under Grant No. PHY 1734006.
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