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ABSTRACT 

Ultracold polar molecules possess long-range, anisotropic, and tunable dipolar 

interactions, providing unique opportunities to probe novel quantum phenomena1-4. 

However, experimental progress has been hindered by excessive two-body loss, which 

also limits further cooling via evaporation. Recent work shows the loss can be mitigated 

by confining molecules in a two-dimensional geometry5,6. However, a general approach 

for tuning molecular interactions in a full three-dimensional (3D) stable system has been 

lacking. Here, we demonstrate the use of an electric field-induced shielding resonance6–

8 to suppress the reactive loss by a factor of 30 while preserving elastic, long-range dipolar 

interactions in a bulk gas of ultracold 40K87Rb molecules in 3D. The favorable ratio of 

elastic to inelastic collisions enables direct thermalization, the rate of which depends on 

the angle between the collisional axis and the dipole orientation controlled by an external 

electric field. This is a direct manifestation of the anisotropic dipolar interaction. We further 

achieve dipolar-interaction-mediated evaporative cooling in 3D. This work demonstrates 

control of a long-lived bulk quantum gas system with tunable long-range interactions, 

paving the way for the study of collective quantum many-body physics. 

 

INTRODUCTION 

The study of atomic quantum gases has benefited from precise control over interactions 

between their constituents. By tuning the interactions with convenient tools such as 

external fields9,10, one can vary the properties of a quantum system and explore its 

dynamics and phase transitions.  Compared to atoms, polar molecules possess large 
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electric dipole moments and rich energy level structures, making them a unique platform 

for studying a range of topics such as quantum magnetism11–14, exotic superfluidity15–17, 

precision measurement18,19 and quantum sensing20, and quantum information 

processing21,22. However, the realization of tunable-interaction quantum systems based 

on polar molecules has been impeded by their propensity to undergo rapid collisional 

losses23–27, even for molecules without exothermic chemical reactions25–27.  So far, the 

loss rate across many species has been found to follow the same universal value23,28–30, 

although the responsible mechanisms are still under investigation31–35.  

 

The recent production of a degenerate Fermi gas of 40K87Rb (KRb) molecules led to the 

surprising discovery of suppressed reaction rates upon entering deep degeneracy36,37. 

Proposed mechanisms for this effect include many-body correlations38 and higher-order 

complex-molecule dynamics39. This suppression from degeneracy has been observed at 

zero field. Turning on the dipolar interaction by applying an external electric field E to 

polarize the molecules led to vastly enhanced losses owing to dipolar attraction24,40. 

Inspired by earlier theory41,42 and experimental work43, we recently demonstrated that in 

a quasi-two-dimensional (quasi-2D) geometry5, where repulsive dipolar collisions 

predominate, the two-body loss can be suppressed by more than a factor of 2.   

 

Compared to gases in quasi-2D, a full three-dimensional (3D) gas of polar molecules 

provides the most general staging platform for studying dipolar gases. Moreover, the long-

range nature of the dipolar interaction is more prominent in 3D44, leading to unique 
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collective dynamics in bulk dipolar gases45–49. Therefore, mitigating the strong two-body 

loss and tuning the dipolar interactions in a 3D geometry are of great experimental interest. 

In quasi-2D, we recently demonstrated the suppression of two-body loss by an order of 

magnitude via resonant shielding arising from modified intermolecular potentials due to 

dipolar coupling between degenerate collision channels6.  

 

In this work, we explore the full properties of the resonant collisional shielding in 3D, 

including the elastic interaction. We show that elastic dipolar collisions are appreciable at 

the shielding field, thus achieving a long lifetime and controlled dipolar interactions 

simultaneously in 3D. In our optical trap, we first show that the two-body loss rate between 

reactive molecules in the first excited rotational state is suppressed by a factor of 30 from 

the background value at the shielding field of |ES| = 12.72 kV/cm, allowing a lifetime of 

~10 s at typical densities of 2.5 × 1011 cm−3. At |ES|, molecules have an induced dipole 

moment d of −0.08 D and therefore collide elastically via dipolar interactions. We 

quantitatively characterize these elastic collisions by performing cross-dimensional 

relaxation experiments after selectively heating along one direction of the molecular gas. 

An elastic to inelastic collision ratio γ of 12 is measured. We further show that the rate of 

the relaxation depends on the orientation of the induced dipoles relative to the direction 

of heating, a signature of the anisotropy of dipolar scattering. As we vary the orientation 

of the dipoles, we observe a change of the relaxation rate by a factor of 2.5. Leveraging 

the large γ at ES, we perform efficient evaporative cooling in 3D. Since the shielding 
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mechanism is predicted to work for a broad class of molecular species50, our strategy 

provides a general method for preparing low-entropy molecular samples. 

 

 

LONG-LIVED GASES OF POLAR MOLECULES IN 3D 

KRb suffers from strong reactive two-body losses. While the collision cross section of 

dipolar elastic collisions increases with d as d4 (Ref.51), reactive losses increase more 

strongly  as d6 (Ref.24,40), preventing the observation of any dynamics related to the elastic 

dipolar collisions with large dipoles. However, reactive loss of KRb in |N = 1, mN = 0!is 

suppressed at certain electric fields. Here, N is the field-dressed rotational quantum 

number and mN is its projection onto E. The suppression mechanism arises from tuning 

the collisional channels into degeneracy with E, where they are mixed by the resonant 

dipolar coupling6–8 . At the center of the resonance, |E0| "12.67 kV/cm, the energy of the 

collision channel |1,0!|1,0!is degenerate with that of |0,0!|2,0!, where the two kets 

represent the symmetrized rotational states of the pair of colliding molecules. The two 

collision channels are mixed by dipolar coupling, the strength of which depends on the 

spatial separation R between the two molecules. The resultant avoided crossing modifies 

the energy of the coupled channels and manifests as an effective intermolecular potential 

(see Supplementary Section 1). In the vicinity of |E0|, for |E| > |E0|, the mixing results in a 

repulsive energy barrier for |1,0!|1,0!, preventing the molecules from getting close 

enough to undergo a chemical reaction. In contrast to the barrier formed by the direct 

dipolar interaction5,24,40,42,43, the barrier formed by resonant shielding exists for both 
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“head-to-tail” and “side-by-side” collisions, shown in Fig. 1a, enabling the suppression of 

two-body loss in 3D. For |E| < |E0|, the effective potential is mainly attractive, resulting in 

enhanced loss (Fig. 1b).  

 

We measure the shielding effect by monitoring the decay rate of the average molecular 

density n at different |E|. Molecular gases are prepared following the procedure described 

in Ref.36. Briefly, we start with a degenerate mixture of 40K and 87Rb in an optical dipole 

trap (ODT). Molecules in |0,0!are created via magnetoassociation around 546.62 G 

followed by stimulated Raman adiabatic passage (STIRAP) at an electric field of ESTIRAP 

= 4.5 kV/cm. A microwave Rabi π−pulse then transfers the molecules to |1,0!before E 

is ramped from ESTIRAP to its target value in 60 ms. We typically have 1.5×104 molecules 

in |1,0!at T = 300 nK with a density of 2.5×1011 cm−3 after the field ramp. After a variable 

hold time t, E is ramped back to ESTIRAP where the molecules are transferred back to |0,0!, 

dissociated to the Feshbach state, and imaged after time-of-flight expansion. The ODT 

has trapping frequencies of (ωx, ωy, ωz) = 2π " (45, 250, 40) Hz for |1,0!at ESTIRAP, with 

weak dependence on E (Methods). In contrast to Ref.5,6 where only the lowest harmonic 

level along the tightly confined direction is dominantly populated, here we have kBT >> 

ħω i for all three directions, fulfilling the criterion of a 3D geometry (ħ is the reduced Planck 

constant and kB is the Boltzmann constant). 

 

The reactive two-body loss rate β is extracted by fitting the decay of n with !" # $%&!' $

()!*+,-,"  , where the first term is the reactive loss and the second term accounts for the 
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density change due to “anti-evaporation”24. The resonant shielding effect is manifested 

as two sharp features in β around |E| = 11.5 kV/cm and 12.5 kV/cm, as shown in Fig. 2a. 

The two resonant features correspond to the coupled open channels |1,0!|1,0! " |0,0!

|2,#1!and |1,0!|1,0! " |0,0!|2,0!, respectively. The width of each feature is around 

100 V/cm, determined by the differential dipole moments of the involved rotational states 

and the strength of the dipolar coupling (see Supplementary Section 1). Near the 

resonances, β varies by 3 orders of magnitude within a change of |E| of 0.25 kV/cm. Two 

decay curves exemplifying this contrast are displayed in Fig. 2b and Fig. 2c. At |ES|= 

12.72 kV/cm, we observe long-lived (~10s) molecular gases in 3D (Fig. 2b). When |E| is 

tuned far from the resonances, β increases with the increasing d, similar to KRb in |0,0!

(Ref.24). At |E| = 4.5 kV/cm, where the molecules have a similar dipole moment as at |ES|, 

the lifetime is much shorter (~1s), highlighting the prominent effect of resonant dipolar 

shielding of the two-body loss.  

 

ANISOTROPIC DIPOLAR THERMALIZATION 

This long-lived molecular gas offers a practical platform to explore the effect of dipolar 

elastic collisions between reactive molecules. The elastic collisions have a rate of nσelv, 

where σel is the elastic cross section and v is the ensemble-averaged relative collisional 

velocity of two molecules (see Methods). In general, the cross section for dipolar collisions 

depends on the relative kinetic energy of the two colliders. However, in the ultracold 

regime, σel  approaches a universal value σel = (32π /15) ad
2 for indistinguishable fermionic 

scatterers51, which is independent of the collision energy. Here, ad= (m/2)d2/(4πε0ħ2) and 



! "!

m is the mass of the molecule. Near |ES|, the resonant dipolar coupling modifies the 

intermolecular potential and hence could also affect the properties of the elastic collisions. 

However, the low-energy collisions are to a large extent determined by the long-range tail 

of the intermolecular potential51. This is not strongly affected by the shielding potential 

barrier, which occurs at a Van der Waals length scale !102 Bohr radius. We therefore 

expect that the universal result for the dipolar cross section is valid at ES, giving σel = 

2.8×10−12 cm2, with d ! −0.08 D for |1,0"at ES. Calculations7 predict γ = 17.8 for a 

molecular gas of T = 330 nK at the shielding field (Fig. 1c), large enough for thermalization 

within the ensemble lifetime.  

 

We experimentally demonstrate and characterize the dipolar elastic collisions through 

cross-dimensional thermalization, with a geometry shown in Fig. 3c. The molecular gas 

is heated along the more tightly confining y-direction. Elastic collisions redistribute the 

excess kinetic energy from y to x and z. The rate Γth of this relaxation process is 

proportional to the elastic cross collision rate as 

.       (1) 

Here the factor Ncoll is physically interpreted as the number of collisions required to 

thermalize. Ncoll has been calculated to be 2.7 and 4.1 for s-wave52 and p-wave53 

collisions, respectively. For dipolar elastic collisions, theoretical calculations54 and 

experiments with magnetic atoms55,56 have shown that Ncoll depends on the angle 

θ  between the dipole and the direction of heating y. This is a direct result of the 

anisotropic dipolar collisions.  

Γ
th

=
nσ

el
v

Ncoll
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We observe the anisotropic elastic relaxation process using the following experimental 

procedure. The molecules are initially prepared in thermal equilibrium in |1,0!at |ES| = 

12.72 kV/cm with θ = 0
◦
. The field is then rotated to the target angle θ in 60 ms. Next, a 

temperature imbalance between the trap axes is introduced by parametrically heating the 

molecular cloud along y for 50–100 ms (inset of Fig. 3c), which is much shorter than the 

time scale of thermalization. We create an initial condition of Ty " 2.5 Tx. The relaxation 

process is observed by monitoring the time evolution of Ty and Tx as the sample 

thermalizes in the trap. 

 

As the gas equilibrates, the temperatures approach each other. The temperature 

evolution for θ = 45◦ and θ = 90◦ is shown in Fig. 3a and 3b, respectively. A clear difference 

in the thermalization rates for the two orientation angles is observed. We quantitatively 

study the relaxation by fitting the trajectories of Tx, Ty, and n with a set of coupled 

differential equations (Methods). The equations capture two physical processes 

contributing to the temperature change: the elastic dipolar collisions associated with Ncoll, 

and the reactive loss, associated with the loss coefficient KL, which preferentially removes 

two colliders with high relative kinetic energy24. Here, KL is related to β as KL= (1/3) β /T 

for a thermally-equilibrated gas at temperature T.  

 

For each θ, we extract Ncoll and KL from the fits. We observe a clear angular dependence 

of the number of collisions required for thermalization, summarized in Fig. 3c. At 45◦, only  
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!"#$%"&
'%"(  collisions are required for thermalization while )"!$%"*

'%"+ collisions are required for θ 

= 90◦. In the limit of small parametric excitation and using the scattering cross section of 

point dipoles, Ncoll can be calculated analytically within the Enskog formalism. Adopting 

the computational techniques used in Ref.57 permits the concise analytic expression: 

       (2) 

for a gas heated along y, and rethermalization measured along x. More details of the 

derivation are provided in the Supplementary Section 2. Equation (2) (gray solid curve, 

Fig. 3c) describes the measured angular dependence quite well, despite the 

approximations above. From the measured KL, we calculate γ = σel v/(3KLT) as high as 

12(1), confirming the dominant role of the elastic collisions in the observed temperature 

evolution. 

 

EVAPORATIVE COOLING OF MOLECULES IN 3D 

A large γ enables direct evaporative cooling of KRb in 3D. Moreover, the Wigner threshold 

law23,58 suggests γ will increase further at lower temperatures for fermionic molecules 

as , - !./0 , which facilitates the evaporative cooling processes. We perform 

evaporation by lowering the depth of the optical trap at θ = 0◦. During evaporation, we 

observe that the x and y directions remain in equilibrium and the temperature T drops 

along with the number of molecules NKRb remaining in the trap. Efficient evaporation, 

where the phase-space density (PSD) increases over the trajectory, requires the slope 

Sevap= ∂ lnNKRb / ∂ lnT  to be smaller than 3 in 3D. We measure Sevap= 1.84(9), significantly 

below this threshold (Fig. 4). Over the trajectory, the PSD increases from 0.014(1) to 

N
coll

(θ) =
56

33 − 17 cos 4θ
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0.06(2), corresponding to a decrease of T/TF from 2.3(1) to 1.4(2) (TF is the Fermi 

temperature). Compared with the procedure in Ref.36  that produced a degenerate Fermi 

gas at T/TF = 0.3 with NKRb = 2.5×104, the present approach requires preparing molecules 

in |1,0!at |ES|. This requires a ramp of the electric field that causes molecular loss and 

heating, limiting the highest PSD achieved in this work. Future technical improvements, 

such as direct creation of molecules at |ES|, will enable evaporation of molecular gases 

to deep quantum degeneracy.  

 

CONCLUSIONS 

Employing an electric-field tuned shielding resonance, we have demonstrated 

anisotropic thermalization via dipolar elastic collisions and performed efficient 

evaporative cooling of reactive polar molecules in 3D. The two-body loss is greatly 

suppressed by resonant dipolar shielding, giving a ratio of elastic to reactive collision 

rates as high as 12. Our work highlights a general approach for controlling the 

interaction properties of polar molecules in 3D. The same mechanism has been 

predicted to be effective for other molecules, for which even higher ratios 50 and even 

more efficient evaporation may be achievable. Our findings demonstrate a promising 

strategy for producing low-entropy molecular gases in bulk systems and open the door 

for a broad range of applications in molecule-based quantum platforms. 

 

Note: During the preparation of this manuscript we became aware of a recent work (Ref.59) 

reporting microwave shielding in a molecular tweezer. 
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METHODS 

Thermalization Model 

We fit the temperature and density evolution with a set of differential equations24: ̇ 

.   (3) 

Γth is defined in equation (1) with ! " #$%&'()* + ,)-./(012.. KL describes the two-body 

loss and cy and cx are background heating rates. The model captures the two main 

contributions to the observed temperature evolution: the elastic dipolar collisions 

described by the term proportional to Γth, and the effects on the temperature from the 

reactive loss described by the first term related to KL.  

 

The model has two assumptions for simplicity. First, we assume a similar reaction 

coefficient KL for molecules colliding along different directions with respect to the dipole, 

which is valid in the vicinity of |ES|6. Second, the temperatures of the two unmodulated 

directions x and z remain identical during the thermalization process. Systematic error 

introduced by this assumption is maximized at the angle of 45◦ where the thermalization 

speed between y, x and y, z differs by the most. Since the thermalization between y, z is 

much slower, adopting this assumption leads us to underestimate the thermalization rate 

around 45◦. 

·n = − KL(Ty + 2Tx)n
2 +

n

2Ty

·
Ty +

n

Tx

·
Tx

·
Ty =

n

4
KL(−Ty + 2Tx)Ty −

2Γth

3
(Ty − Tx) + cy

·
Tx =

n

4
KLTyTx +

Γth

3
(Ty − Tx) + cx .
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Data Analysis  

For each θ, we image the molecules at several hold times between 0.05 and 10 s, at 

several times-of-flight between 1.5 and 8.2 ms, and with and without parametric heating. 

To minimize the systematic effects from slow drift in experimental conditions, we 

randomize the order in which the data is taken. For each hold time and heating condition, 

we fit the temperatures Tx and Ty and average density n, assuming free expansion of the 

cloud. Estimated values and their covariance matrix are obtained via bootstrapping. We 

fit the temperature and density decay curves to equation (3), treating KL, Ncoll, cx, cy, and 

the initial temperatures and densities as fit parameters. To estimate confidence intervals 

on the fit parameters, we generate 100 synthetic datasets by independently drawing new 

temperatures and densities at each time point from a multivariate normal distribution. The 

reported parameters and confidence intervals represent the median and the intervals 

containing 68% of the trials. This approach lets us examine correlations between the 

different fit parameters. An example fit is shown in Extended Data Fig.1a for θ = 45◦. The 

fit yields Ncoll = 1.57(14), KL = 3.8(3) × 10−7 cm3s−1K−1.  

 

Extended Data Fig. 1b shows the fitted result for 100 synthetic datasets. The small 

correlation of -0.26 between Ncoll and KL indicates that the fitting distinguishes between 

the thermalization and two-body loss well.  

 

Extended Data Fig. 1c shows the extracted loss rate KL vs. θ. Though the measured KL 

seems to be anti-correlated with Ncoll, we find that the observed variation of KL is not 
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drastic enough to cause a significant change to the extracted Ncoll. This weak modulation 

of KL could be caused by daily technical drifts on the electric field strength or residual field 

gradient, or contributions of the higher partial wave in the two-body collisions which may 

cause a higher KL around θ ! 54◦ where the shielding barrier is weak. 

Temperature Measurement 

Temperatures are measured by fitting the Gaussian width of the cloud after time-of-flight 

expansion. To image the molecules, the electric field E is ramped from ES back to ESTIRAP 

after the hold time. The molecules are then transferred to |0,0"and dissociated for 

imaging. The changes in the bias field and molecular rotational state result in changes to 

the molecular polarizability and, consequently, the trapping potential. To obtain accurate 

temperatures of the molecular gas during the thermalization process, we correct for such 

systematics as detailed below.  

 

Transferring from |1,0"to |0,0"while the molecules are still in the trap causes an 

instantaneous change of the trapping potential and thus breathing of the cloud, which 

would introduce errors in the measured temperatures. We avoid this issue by performing 

the rotational state transfer and STIRAP during time-of-flight.  

 

The ramp down of the electric field from the measurement condition to ESTIRAP modifies 

the trapping potential due to the polarizability change of |1,0"molecules with the bias 

field. Since this ramp is adiabatic with respect to the single particle trapping periods along 

all the spatial direction, the resultant adiabatic compression/decompression modifies the 
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molecular temperature. We calculate the actual temperatures Ti during the thermalization 

process from the measured temperature Ti
m by  

.     (4) 

Here, ω i
S

 and ω i
STIRAP

  are the trapping frequencies along i at ES and ESTIRAP , respectively. 

The trapping frequencies are calibrated by measuring the parametric heating resonances 

at each theta. The temperatures reported in the manuscript are Ti. 

Data Availability 

The data that support the findings of this study are available from the corresponding 

author upon reasonable request. Source data are provided with this paper. 
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Figure 1. Effective intermolecular potential and molecular scattering near the 

shielding resonance. a and b, Calculated effective intermolecular potential for KRb in 

|1,0!at |E| = 12.72 kV/cm and |E| = 12.50 kV/cm respectively (see Supplementary 

Section 1). The resonant dipolar coupling mixes two degenerate collisional channels. 

The strong mixing between the channels modifies the intermolecular potential and 

results in either suppression or enhancement of the two-body loss rate depending on 

|E|. a0 is the Bohr radius. c, Calculated ratio γ  of the elastic rate to reactive rate for KRb 

in |1,0!at T = 330 nK7. Our experiment is carried out at |ES| = 12.72 kV/cm (indicated 

by the gray point) where γ of 17.8 is calculated. The gray dashed line indicates γ = 1. 
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Figure 2. Resonant shielding of the reactive loss in 3D. a, Measured two-body loss 

rate versus electric field strength. The solid line is the theoretical calculation for the 

experimental condition T = 330 nK with no free parameters. The green diamond and 

orange circle identify the fields for which decay curves are plotted in insets b and c, 

respectively. Insets: Molecule loss measurements at |E| = 12.50 kV/cm (b) and 12.72 

kV/cm (c) where the loss is enhanced and suppressed respectively. Solid lines are fits 

to the two-body loss rate equation. 
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Figure 3. Anisotropic cross-dimensional thermalization of molecules via dipolar 

elastic collisions. a and b, Time evolution of the temperature for θ = 45◦ and θ = 90◦ 

after parametric heating along y. The solid lines are fits to our model (Methods). The 

thermalization is faster at θ = 45◦. Tz is not directly measured and is assumed to be the 

same as Tx during the entire process. Error bars are 1 SE. c, Angle-dependent number 

of collisions required for the rethermalization of dipolar Fermi gases. Ncoll is extracted 

by fitting the time evolution of the temperature (Methods). The gray solid line 

represents the calculated analytical expression, equation (2). Inset: Geometry of the 

experiment. Molecules are polarized with a bias field E whose orientation angle θ is 

varied between 0◦ and 90◦ within the x−y plane. The molecular gases are heated 

parametrically along the y direction to create an initial condition of Ty!2.5 Tx, Tx = Tz. 
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Figure 4. Efficient evaporative cooling of reactive polar molecules in 3D. Evolution 

of NKRb and T at different stages of the evaporation trajectory at |ES| and with θ = 0◦. 

The power-law fits (black line) yields Sevap = 1.84(9), indicating efficient evaporation. 

The dashed line represents a constant PSD. Error bars are 1 SE. Inset: PSD 

(NKRb(ħ!" /kBT)3) versus NKRb during evaporation, displaying a clear gain. Here, !" is the 

geometric mean of the trapping frequencies.!!" 
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Extended Data Figure 1. Fitting experimental data with the model. The figure shows 

the fit results for θ = 45◦. a, Fitting of the unheated and heated data. b, Fitted KL and 

Ncoll for 100 synthetic datasets.  We extract a correlation of -0.26 between the two fitted 

parameters, indicating that the fitting can distinguish between two-body loss and 

thermalization. The black solid lines are the median of all the fitted results from the 

synthetic datasets for Ncoll and KL, while the gray lines on the axis represent 68% 

confidence interval of the fitted results. This median and 68% confidence are reported 

in the main text. c, Extracted loss coefficient KL versus θ.  The line and shaded region 

indicate the mean value of KL and its standard error. 
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SIMPLIFIED THEORY OF RESONANT SHIELDING

The section presents a simplified theory to demonstrate how resonant dipolar coupling

modifies the intermolecular potential and gives rise to the suppressed two-body loss. Dis-

cussions in this section implement several assumptions that are not exact, but nevertheless

capture the essential ingredients required for the resonant shielding mechanism. More com-

plete and detailed discussions can be found in Ref. [1, 2].

The total wavefuction of two colliding polar molecules can be written as

|L,mL〉|N,mN〉|N ′,mN′〉, (S1)

where L and mL is the orbital angular momentum of the relative motion and mL is its

projection onto a quantization axis. N,N ′,mN ,mN ′ are each molecule’s rotational quantum

numbers and their projection onto the polarization axis set by an external electric field.

With non-zero electric field, |N,mN〉, |N ′,mN′〉 refer to the properly dressed state.

Dipolar interaction couples different collisional channels by allowing the exchange of the

internal rotations of the two colliders, and exchange of the angular momentum between the

internal rotation and the orbit. Taking the resonant shielding at |Es| = 12.72 kV/cm for

example, the relevant term of this dipolar coupling reads

V̂ =
1− 3 cos2 θ

4πǫ0R3
d̂zd̂

′

z
, (S2)

where d̂z,d̂
′

z
are the dipole operator acting on the internal rotational states of the two

molecules 〈N,mN|d̂z|N
′,mN′〉 respectively. θ is the angle between the direction of rela-

tive motion and the polarized dipoles. In this specific case, this coupling describes a process

where the rotation is transferred from one molecule to the other.

Identical fermionic molecules like KRb collide dominantly with L = 1 in the ultracold

regime. We further take the mL = 1 channel for example. The resonant shielding at $Es

arises from the dipolar coupling between these two channels:

|φ1〉 = |L = 1,mL = 1〉|1, 0〉|1, 0〉

|φ2〉 = |L = 1,mL = 1〉|0, 0〉|2, 0〉,
(S3)

To keep the notations light, we used |0, 0〉|2, 0〉 as a short-hand notation for the properly

symmetrized wavefunction 1/
√
2(|0, 0〉|2, 0〉 + |2, 0〉|0, 0〉) of the properly dressed states in

2



the electric field. The effects of the dipolar coupling can be shown by writing down the

system’s Hamiltonian in the basis |φ1〉, |φ2〉. The diagonal terms, which are the energy of

each channel in the absence of the dipolar coupling, read

E1(R) = 〈φ1|Ĥ|φ1〉 = −
C6

R6
+Θ(R)d21 +

C2

R2
+∆1(ǫ)

E2(R) = 〈φ2|Ĥ|φ2〉 = −
C6

R6
+Θ(R)(d0d2 + d202) +

C2

R2
+∆2(ǫ)

(S4)

where

Θ(R) = 〈L = 1,mL = 1|
1− 3 cos2 θ

4πǫ0R3
|L = 1,mL = 1〉.

The C6/R
6 is the Van der Waals term which arises from the dipolar coupling between these

two states and all the other possible collisional states out of this Hilbert space. These

states are far-detuned from either |φ1〉 or |φ2〉. As a result, their contributions reduce to

a potential energy term proportional to 1/R6 as a second-order perturbation. We use the

same C6 for |φ1〉 and |φ2〉. This is justified by the fact that the dominant contributions

to the C6 is from the couplings to the electronic excited states of the molecules which are

independent of the molecular rotation [3]. The C2/R
2 term is the centrifugal potential where

C2 = L(L + 1)!2/m, which is the same for both the channels. The ∝ 1/R3 term describes

the direct dipolar interaction between the two colliders with induced dipole moments of

d1 = 〈1, 0|d̂z|1, 0〉, d0 = 〈0, 0|d̂z|0, 0〉, d2 = 〈2, 0|d̂z|2, 0〉,d02 = 〈0, 0|d̂z|2, 0〉 [4]. This term

corresponds to the classical dipole-dipole interactions. The last term is the DC Stark shift

in an electric field ǫ. By varying the strength of ǫ, the relative energy between the two

channels can be changed.

The coupling between the two channels arising from the dipolar interaction can be written

as

Ω(R) = 〈φ1|V̂ |φ2〉 = Θ(R)d01d12. (S5)

Here d01 = 〈0, 0|d̂z|1, 0〉, d12 = 〈1, 0|d̂z|2, 0〉.

The full Hamiltonian including the dipolar coupling in this basis {|φ1〉, |φ2〉} is then

simplified to be

HmL=+1(R) =





E1(R) Ω(R)

Ω(R) E2(R)



 (S6)

The effective intermolecular potential that molecules experience at R is the eigenvalue of

HmL=+1(R) at that position, which does not necessarily agree with E1(R) or E2(R) when
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the off-diagonal coupling presents. A standard avoided-crossing picture suggests that the

energy of one channel is pushed up, effectively as a repulsive potential, while the energy of

the other is pushed down, effectively as an attractive potential. Depending on the detuning

between the two channels, the effective potential can be either repulsive or attractive for

each of the channels. The strength of the coupling is proportional to 1/R3, therefore the

closer the two molecules get, the stronger this effect is. For the channel experiencing an

effective repulsion, this R dependence effectively leads to an repulsive barrier.

The detuning between the two channels δ(R) = E2(R)−E1(R) depends on R and can be

tuned by ǫ. The resonant field strength ǫ is defined as the field at which ∆1(ǫ) = ∆2(ǫ). For

the two channels considered in this work for KRb, the resonant field sits around 12.6 kV/cm.

At a slightly higher field, |1, 0〉|1, 0〉 has higher energy, and the dipolar coupling creates a

repulsive barrier on this channel. The barrier suppresses the two-body loss, as in the case

of 12.72 kV/cm in this work. At a lower field, the effective potential is attractive, as for

12.50 kV/cm, enhancing the loss.

Fig. S1 displays E1(R), E2(R) and the effective potentials with the coupling for different

ǫ. The potential zero reference is chosen such that E1(R) → 0 at infinity. We use realistic

parameters for KRb at 12.72 kV/cm: C6 = 12636 Eha
6

0
[3] with Eh being the Hartree energy,

d0 = 0.33 D, d2 = −0.1 D, d1 = −0.08 D, d01 = 0.2 D, d12 = 0.29 D, d02 = −0.06 D. We

simply assume that Ω(R) = 1/(4πǫ0)R
3, which would not change the picture qualitatively.

Fig. S1 shows a potential barrier height of ∼ 550 µK for the parameter chosen.

The simplified Hamiltonian Eq. S6 immediately reveals several features of the shielding

mechanism. The height of the barrier is expected to be on the order of Ω(R0) where R0 ∼

170a0 is the intermolecular separation the two channels become degenerate. The height is

therefore V ∼ Ω(R0) ≈ 700 µK. The width of the shielding resonance WE can be estimated

by calculating the range of ǫ over which ∆1 −∆2 changed by Ω(R0)

WE ∼
Ω(R0)

|(d2 + d0 − 2d1)|
≈ 166 V/cm, (S7)

which depends on the differential dipole between the two channels.

Similarly, we can calculate the effective potential for the |L = 1,mL = 0〉 collisions. It

can also be translated directly to calculate the effect between collisional channels that are

coupled with similar mechanism such the |1, 0〉|1, 0〉 → |0, 0〉|2,±1〉, though for this case

the coupling requires a transfer of angular momentum between the orbits and the internal

4
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FIG. S1. Effective intermolecular potentials with the resonant dipolar coupling. Black

and gray curves are the potential for |1, 0〉|1, 0〉 and |0, 0〉|2, 0〉 respectively. Solid and dashed lines

are the potential with and without the resonant dipolar coupling. a, When internal energy of the

∆2 < ∆1, resonant dipolar coupling creates an energy barrier on channel |1, 0〉|1, 0〉 due to the

avoided crossing. This is the scenario for |E| = 12.72 kV/cm. b, When ∆2 > ∆1 has higher

energy, the potential for the |1, 0〉|1, 0〉 channel is pushed down, enhancing the loss.

rotation which is not explicitly written in Eq. S2.

Though the height and the width of the resonance may vary quantitatively between

different species of molecules, the qualitative derivation we demonstrate here is valid for

fermionic molecules. This highlights the generality of the shielding mechanism.

The resonant shielding effect is fundamentally different from the rate suppression due to

the classical dipolar repulsion [5, 6], which is captured by the diagonal terms in Eq. S6. While

the classical repulsion from the direct dipolar interaction creates a barrier for the “side-to-

side” collisions, it exerts an attractive interaction for the “head-to-tail” collisions [7]. In

contrast, in the resonant regime, the barrier exists for both types of the collisions, enabling

3D shielding of the two-body loss.

Figure S1 provide semi-quantitative values of the effective intermolecular potentials of the

colliding system after averaging over the incident partial wave and the orbital angles. This

is convenient to understand the overall picture of the collision in term of the radial motion

only. To get more insights on the anisotropic angular aspect of the shielding mechanism in

three dimensions and before averaging over the partial waves, one can also plot the dipolar
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potential energy which contains explicitly the dependence on θ. In that way, the angular

dependence is kept and illustrates the anisotropic collisional shielding at the microscopic

level. We can then define two potential energy surfaces [8] coming from the diagonalization

of a two-by-two matrix with energies

d21 (1− 3 cos2 θ)

4πε0 R3
+∆1(ǫ) (S8)

(d0 d2 + d202) (1− 3 cos2 θ)

4πε0 R3
+∆2(ǫ) (S9)

and a coupling

√
2
d10 d12 (1− 3 cos2 θ)

4πε0 R3
. (S10)

For a given (R, θ), if Eq. (S8) ≥ Eq. (S9), we define

V±(R, θ) =
1

2

(

(d21 + d0 d2 + d202) (1− 3 cos2 θ)

4πε0 R3
+∆1(ǫ) +∆2(ǫ)

)

±
1

2

√

(

(d21 − d0 d2 − d202) (1− 3 cos2 θ)

4πε0 R3
+∆1(ǫ)−∆2(ǫ)

)2

+ 4

(√
2
d10 d12 (1− 3 cos2 θ)

4πε0 R3

)2

.

(S11)

If Eq. (S8) < Eq. (S9), we similarly define

V±(R, θ) =
1

2

(

(d21 + d0 d2 + d202) (1− 3 cos2 θ)

4πε0 R3
+∆1(ǫ) +∆2(ǫ)

)

±
1

2

√

(

(d0 d2 + d202 − d21) (1− 3 cos2 θ)

4πε0 R3
+∆2(ǫ)−∆1(ǫ)

)2

+ 4

(√
2
d10 d12 (1− 3 cos2 θ)

4πε0 R3

)2

.

(S12)

When ∆1(ǫ) > ∆2(ǫ), the V+(R, θ) surface is the one that correlates to the initial state

|1, 0〉 |1, 0〉 at large distance. This is the case for ǫ = 12.72 kV/cm and we plotted in Fig.

1b the surface

V+(R, θ)− C6

R6
+

C2

R2
(S13)

to also account for the van der Waals interaction and the centrifugal barrier. When ∆1(ǫ) <

∆2(ǫ), the V
−
(R, θ) surface is now the one that correlates to the initial state |1, 0〉 |1, 0〉.

This is the case for ǫ = 12.5 kV/cm and we plotted in Fig. 1a the surface

V
−
(R, θ)− C6

R6
+

C2

R2
. (S14)

6



THERMALIZATION IN DIPOLAR GASES OF FERMIONS

A dipolar gas out of thermal equilibrium comes back to equilibrium by means of colli-

sions, at a rate proportional to the mean elastic cross section, σel [9–12]. However, dipolar

anisotropies can cause the effectiveness of each collision for rethermalization to vary. This

manifests in a dipole-alignment dependence of “the number of collisions required per particle

for thermalization”, Ncoll – a collective measure for the redistribution of energy through a

gas via elastic collisions [12–14].

We derive the quantity Ncoll in the close-to-equilibrium limit, through a method of aver-

ages approach. We envision a Gaussian distributed phase space ensemble in all coordinates,

but initialized with a slightly greater width in the y direction as in the experiment to simu-

late parametric excitation. We then track the Gaussian width in the x direction by having

rethermalization observed over time in the energy differential

〈χ〉 ≡ Ex − kBTeq, (S15)

where Teq is the equilibration temperature (obtainable from the equipartition theorem),

〈. . .〉 denotes a thermal average assuming Gaussian phase space distribution, and Ex =

〈p2
x
〉

2m
+ 1

2
mω2

x〈x
2〉 is the sum of kinetic and potential energy in the x-direction. The Enskog

equations in Ref. [15] dictate that the relaxation of 〈χ〉 follows the differential equation

d〈χ〉

dt
= CF [χ] =

(

4N

315π

)(

a2dm
2ω3

kBT0

)

[

4
(

〈p2x〉 − 〈p2z〉
)

cos(2θ) + 17
(

〈p2x〉 − 〈p2y〉
)

cos(4θ)

− 45〈p2x〉+ 33〈p2y〉+ 12〈p2z〉
]

,

(S16)

where N is the number of molecules, m is the molecular mass, ω is the geometric mean

of trapping frequencies and kBT0 is the pre-excitation thermal energy. The analytic collision

integral CF , is calculated using the techniques developed in Ref. [15], but using the differential

cross sections for fermions as described in Ref. [13]. For small deviations from equilibrium

and at short times, this can be approximated with a decay rate γ, as C[χ] ≈ −γ〈χ〉, which

results in the relation

γ = −
1

(Ex − kBTeq)

dEx

dt
. (S17)

With Ncoll = nσelv/γ, we arrive at the simple expression:

Ncoll(θ) =
56

33− 17 cos(4θ)
. (S18)

7



A more comprehensive discussion of these rethermalization measures for elastic dipoles

is left to an upcoming publication.
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