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Thermal conductivity of an ultracold paramagnetic Bose gas
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We analytically derive the transport tensor of thermal conductivity in an ultracold, but not yet quantum de-
generate, gas of Bosonic lanthanide atoms using the Chapman-Enskog procedure. The tensor coefficients inherit
an anisotropy from the anisotropic collision cross section for these dipolar species, manifest in their dependence
on the dipole moment, dipole orientation, and s-wave scattering length. These functional dependences open up
a pathway for control of macroscopic gas phenomena via tuning of the microscopic atomic interactions. As
an illustrative example, we analyze the time evolution of a temperature hot spot which shows preferential heat
diffusion orthogonal to the dipole orientation, a direct consequence of anisotropic thermal conduction.
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I. INTRODUCTION

Ultracold gases of spin-polarized magnetic atoms, such
as dysprosium and erbium, have led to a wealth of novel
phenomena in the quantum degenerate regime, as reviewed
recently in Ref. [1]. Far less studied is the regime of such
gases just above the temperature of quantum degeneracy. In
this regime, a small magnetic field can ensure that the atoms
remain polarized, whereby the classical fluid equations of mo-
tion inherit anisotropy due to this polarization. In particular,
the transport coefficients—the thermal conductivity and the
viscosity—inherit an anisotropy from the microscopic colli-
sion dynamics of the scattering dipoles.

In certain cases, the results of this collisional anisotropy
are well known. They have already been shown to re-
sult in anisotropic thermalization in normal-phase ultracold
gases and can be used as a tool for measuring scattering
lengths [2–10]. These experiments have been modeled using
perturbation theory around the equilibrium Boltzmann distri-
bution of a gas, an analysis that has proven highly successful.
Following on such success, it seems worthwhile to present
the systematic derivation of the continuum fluid equations of
motion for an ultracold paramagnetic gas. The present paper
takes the first step in this program by deriving the anisotropic
thermal-conductivity tensor from the differential cross sec-
tion in dipolar lanthanide gases [11]. This is done by means
of the Chapman-Enskog formalism [12], leading to density-
independent coefficients valid in the dilute regime [13].

We focus here on Bosonic samples, which also offer a
quantum-mechanical s-wave scattering length as [14], tun-
able via a multitude of Fano-Feshbach resonances. Thus, the
anisotropy of the heat-conduction tensor is under direct ex-
perimental control. We note that our results here are unlike
studies in which anisotropic transport tensors arise due to
internal degrees of freedom or long-range interactions [15],
such as in systems of dilute plasmas [16–19] and ferroflu-
ids [20,21].

The remainder of this paper is organized as follows:
In Secs. II and III, we analytically derive the anisotropic

transport tensor of thermal conductivity emergent from dipo-
lar collisions. The continuum conservation equations are
introduced in Sec. IV, permitting a model for fluid dynamics
studies in ultracold gases. This model is used to study a simple
experimental scenario of thermal diffusion of a temperature
hot spot in Sec. V. Finally, a discussion and concluding
remarks are given in Sec. VI.

II. THE CHAPMAN-ENSKOG PROCEDURE

The study of transport phenomena is mature and extensive,
having applications in all fields of science and engineer-
ing [22–25]. Central to the analysis of transport are the
equations of conservation and constitution, which describe
the dynamics of state variables (e.g., mass, flow velocity, and
energy) and their response to external stimuli. If only weakly
perturbed, the response of a system is completely described
by linear constitutive relations and the associated, medium-
specific transport coefficients.

In the present context, we consider an ultracold, dilute gas
of Bosonic lanthanide atoms in their spin-stretched ground
state and in sufficient magnetic field that they remain in this
ground state in spite of collisions. The gas is then paramag-
netic, with the preferred spatial axis determined by the field
direction. Moreover, we explicitly consider only temperatures
above the critical temperature of Bose-Einstein condensa-
tion, so that the thermodynamics of the gas is governed by
Maxwell-Boltzmann statistics. While we focus on magnetic
atoms here, the results should, of course, be applicable to
ultracold gases of polar molecules.

In such a gas, local equilibrium occurs by means of dipolar
collisions parameterized by the scattering length a and mag-
netic dipole length ad = Cddm/(8π h̄2), where Cdd = μ0μ

2

(μ0 is the vacuum permeability). We take all the dipoles to be
aligned along a dipole-alignment axis Ê by means of a large
external field taken to lie in the x, z plane (illustrated in Fig. 1).
We thus envision experiments conducted in a fixed frame of
reference, with the polarization orientation free to be tuned
relative to this axis.

2469-9926/2022/106(2)/023319(8) 023319-1 ©2022 American Physical Society

https://orcid.org/0000-0002-1069-9746
http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevA.106.023319&domain=pdf&date_stamp=2022-08-25
https://doi.org/10.1103/PhysRevA.106.023319


REUBEN R. W. WANG AND JOHN L. BOHN PHYSICAL REVIEW A 106, 023319 (2022)

FIG. 1. A visualization of dipoles (red) aligned with an external
field along the dipole-alignment axis Ê (blue) in the laboratory coor-
dinate frame.

Close to local thermal equilibrium, reequilibration pro-
cesses are encapsulated by transport coefficients (e.g., viscos-
ity, thermal conductivity, etc.) derivable from a microscopic
picture by methods established by Chapman and Enskog [12].
The development we present here closely follows that of [26].

Within length scales on the order of the atomic mean
free path, atomic interactions are dominated by collisional
processes. The local distribution of atoms in flow thus
has dynamics well described by the Boltzmann transport
equation [27,28](

∂

∂t
+ vi∂i

)
f (r, v) = C[ f (r, v)], (1a)

C[ f ] =
∫

d�′ dσ

d�′

×
∫

d3v1|v− v1|( f ′ f ′
1− f f1), (1b)

where f (r, v) is the phase-space distribution function and
C[ f ] is the two-body collision integral. We adopt the con-
vention that all repeated indices are summed over unless
otherwise specified, and primes denote postcollision velocities
for pairs of atoms colliding with incoming velocities v and
v1. We also adopt the compact notation f1 = f (r, v1) and
f ′ = f (r, v′). The gas number density is given by

n(r, t ) = ρ(r, t )

m
=

∫
d3v f (r, v, t ), (2)

which at thermal equilibrium is dependent on only tem-
perature n0 = n0(β ). Thermal equilibrium also imposes a
Boltzmann velocity distribution,

f0(u, β ) = n0(β )c0(u, β ) = n0(β )

(
mβ

2π

)3/2

exp

(
−mβ

2
u2

)
,

(3)

where β = (kBT )−1, u2 = ukuk , and u(r) = v − U (r) is the
peculiar velocity, defined as the molecular velocity v relative
to the flow velocity,

U (r, t ) = 1

n(r, t )

∫
d3v f (r, v, t )v. (4)

In close-to-equilibrium scenarios, we can consider the out-of-
equilibrium atomic distribution to take the form

f (r, u, β ) ≈ f0(u, β )[1 + �(r, u, β )], (5)

with a perturbation function � that must satisfy∫
d3u f0(u)�(r, u, β )m = 0, (6a)

∫
d3u f0(u)�(r, u, β )mu = 0, (6b)

∫
d3u f0(u)�(r, u, β )

1

2
mu2 = 0 (6c)

as a result of mass, momentum, and energy conservation,
respectively. Enskog’s prescription of successive approxi-
mations then renders the Boltzmann equation, to leading
nontrivial order, as(

∂

∂t
+ vi∂i

)
f0 ≈ C[ f0�]. (7)

Physically, this approximation is motivated by establishing
a separation of scales between phenomena of interest. We
are concerned with the regime in which macroscopic fluid
dynamics is governed by length scales λ (e.g., wavelengths)
much larger than the mean free path L of its constituent atoms
(i.e., the regime of small Knudsen number Kn = Lλ−1 � 1).
Furthermore, the period over which such dynamics occurs is
much longer than the timescales associated with collisions.
Therefore, Eq. (7) effectively makes an adiabatic approxima-
tion that separates the macro- and microscale phenomena. We
refer to the fluid dynamics as occurring on “macroscales,”
whereas collisional interactions are said to occur on
“microscales.”

Under the approximation described above, the left-hand
side of Eq. (7) equates to(

∂

∂t
+ vk∂k

)
f0 = f0

[
Vk∂k (ln T ) + mβWk
Dk


]
, (8)

where

Vi(u) ≡
(

mβu2

2
− 5

2

)
ui, (9a)

Wi j (u) ≡ uiu j − 1

3
δi ju2, (9b)

Di j (U ) ≡ 1

2
(∂ jUi + ∂iUj ) − 1

3
δi j∂kUk . (9c)

The derivation of this result is detailed in Appendix A. The
collision integral on the right-hand side of Eq. (7) is then

C[ f ] ≈
∫

d3u1|u − u1| f0(u) f0(u1)
∫

d�′ dσ

d�′ ��, (10)

where �� = �′ + �′
1 − � − �1. Since Eq. (10) is linear in

� and Eq. (8) is linear in the quantities ∂i ln T and ∂ jUi, one
can infer an ansatz for the scalar function � of the form

�(u, β ) = Bk∂k (ln T ) + mβAk
Dk
, (11)

where B (vector) and A (two-rank tensor) are functions of
u and β. The ansatz above allows a separation of Eq. (7)
into an equation in velocity gradients and that in temperature
gradients,

f0 Wk
Dk
 ≈ C[ f0Ak
]Dk
, (12a)

f0 Vk∂k (ln T ) ≈ C[ f0Bk]∂k (ln T ), (12b)
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which upon a comparison of the terms, further motivate us to
write B and A as

Ai j (u, n0, β ) = Wk
(u)ak
i j (u, n0, β ), (13a)

Bi(u, n0, β ) = Vj (u)b ji(u, n0, β ), (13b)

where u = |u| and the coefficients ak
mn(u, n0, β ) and
bk
(u, n0, β ) are introduced as variational ansatze. These vari-
ational coefficients can, in general, be expressed as an infinite
linear combination of Sonine polynomials (also known as
associated Laguerre polynomials). The assumption of a low-
temperature gas, however, allows us to approximate a and b
with only the first term in the summation series, which is u
independent. Such an approximation has been shown to have
good accuracy (relative errors of ∼1%) in computing transport
coefficients for gases of isotropic scatterers [28–30]. We are
thus left with

�(u, β ) = V
(u)b
k (n0, β )∂k (ln T )

+ mβWi j (u)ai jk
(n0, β )Dk
. (14)

The coefficients a and b are determined for a particular gas by
the microscopic scattering theory of the constituents, a task to
which we now turn.

III. THERMAL CONDUCTIVITY IN DIPOLAR GASES

Thermal conduction in a dilute gas arises through a transfer
of kinetic energy by kinetic transport of the gaseous atoms, out
of a region of fluid, resulting in a heat flux [19],

Ji(r, t ) =
∫

d3u f (r, u, t )
1

2
mu2ui. (15)

For a first-order approximation, we adopt the ansatz in
Eq. (11) to compute the integral above. The A associated term
does not contribute to the heat-flux integral, leaving us with

Ji = m

2

∫
d3u f0(u)[1 + �(u)]u2ui

=
(

kBmβ

2

∫
d3u f0(u)u2uiVkbk j

)
∂ jT , (16)

where the local temperature T (r, t ) is written in terms of its
kinetic definition,

3

2
kBT = 1

n(r, t )

∫
d3u f (r, u, t )

1

2
mu2. (17)

Additionally, we say that this flow of kinetic energy occurs
across a temperature gradient via Fourier’s law of heat con-
duction,

Ji = −κi j∂ jT, (18)

where κ is the thermal conductivity, a two-rank tensor. A
comparison of Eqs. (16) and (18) then tells us that the thermal
conductivity is found via the integral

κi j = −
(

kBmβ

2

∫
d3u f0(u)u2uiVk

)
bk j = −5n0kB

2mβ
bi j,

(19)

assuming knowledge of the coefficients bk j .
The transport of kinetic energy across a temperature gra-

dient is brought about by the flow of atoms mediated by
collisions, allowing use of the Boltzmann equation to de-
rive b(u), with the first-order Chapman-Enskog expansion.
Referring back to Eq. (12b), one finds that it is formally
mathematically inconsistent but holds in an average sense over
the atomic distribution after multiplying Eq. (12b) by Vi(u)
and integrating over u. This gives(∫

d3u f0(u)Vi(u)Vj (u)

)
∂ j (ln T )

≈
(∫

d3u Vi(u)C[ f0Vk]

)
bk j∂ j (ln T ), (20)

where the coefficients of ∂ j (ln T ) satisfy the relation

Nikbk j = δi j, (21a)

Nik ≡ 2mβ

5n0

∫
d3u ViC[ f0Vk]. (21b)

The integral terms above are made complicated by the highly
anisotropic differential cross section for dipolar bosons, for
which the appropriately symmetrized scattering amplitude is
provided in closed form as [11]

fB(û′
r, ûr ) = ad√

2

(
4

3
− 2as − 2(ûr · Ê )2 + 2(û′

r · Ê )2 − 4(ûr · Ê )(û′
r · Ê )(ûr · û′

r )

1 − (ûr · û′
r )2

)
, (22)

where ur = u − u1. This provides us the differential cross
section via dσ/d�′ = | fB(û′

r, ûr )|2, with which the Nik terms
are evaluated as

N11 = −256

15
+ 256ad [3 cos(2�) − 1]

225a

− 512a2
d [3 cos(2�) + 13]

4725a2
, (23a)

N13 = −256ad sin(2�)

75a
+ 512a2

d sin(2�)

1575a2
, (23b)

N22 = −256

15
+ 512ad

225a
− 8192a2

d

4725a2
, (23c)

with the additional relations

N33(�) = N11(� − π/2), (24a)

N12(�) = N23(�) = 0, (24b)

Ni j (�) = N ji(�), (24c)

where we have cast Nik in terms of the adimensional functions

Ni j = 1

a2n0

√
mβ

π
Ni j . (25)

The details of the evaluation of these integrals are provided
in Appendix B, following the successful methods developed
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FIG. 2. The unit-free thermal-conductivity tensor elements κ/κ0

as a function of the dipole-alignment angle �, as defined in Eq. (26)
for native 164Dy (a = 92a0). The tensor elements κ11/κ0 (solid dark
red line), κ13/κ0 (dot-dashed red line), and κ22/κ0 (dashed orange
line) display a sinusoidal � dependence, whereas κ33/κ0 (dotted
yellow line) is � independent due to the coordinate frame definition.
The parameters considered here are for 164Dy with ad/a ≈ 199/92,
taken from Ref. [6].

in [4]. It then follows that the thermal-conductivity tensor is
given as

κ(�) = − 5kB

2a2
√

πmβ
N−1(�)

= − 5kB

2a2
√

πmβ

⎛
⎜⎝

N33

N11N33−N 2
13

0 N13

N 2
13−N11N33

0 1
N22

0
N13

N 2
13−N11N33

0 N11

N11N33−N 2
13

⎞
⎟⎠.

(26)

The structure of the tensor above and Eq. (18) imply that a
temperature gradient along x could result in a thermal flux
along z and vice versa. In the event that the dipoles are aligned
along ẑ, that is, � = 0, the Cartesian axes are the principal
axes of κ. This situation leaves us with only two unique,
nontrivial thermal conductivities, κxx = κyy �= κzz.

We plot in Fig. 2 the coefficients in Eq. (26) with values
normalized by the isotropic coefficient κ/κ0 [31], where

κ0 = 75kB

256r2
eff

√
πmβ

, (27)

where r2
eff = 2a2 + 8a2

d/45 is an effective isotropic radius
obtained from an angular average of the dipolar differential
cross section. The coefficients are plotted with the scattering
and dipole lengths of native 164Dy (a = 92a0 and ad = 199a0,
where a0 is the Bohr radius) [6], which showcases the func-
tional dependence on the angle � between the polarization
and the laboratory z axis.

IV. EQUATIONS OF MOTION

Having derived the transport tensor of thermal conduc-
tivity, macroscopic gas dynamics can now be studied under
the lens of a continuum fluid formulation. The dynamics of

fluids is characterized by spatial and temporal variations of
macroscopic quantities such as the fluid mass density ρ (2),
flow-velocity U (4), and temperature

T (r, t ) = 2

3n(r, t )kB

∫
d3v f (r, v, t )

1

2
mu2. (28)

The associated hydrodynamic phenomena are well modeled,
even in ultracold systems [32], by the continuum conservation
equations [19]

∂ρ

∂t
+ ∂ j (ρUj ) = 0, (29a)

∂

∂t
(ρUi ) + ∂ j (ρUjUi ) = ∂ jσi j, (29b)

∂

∂t
(ρT ) + ∂ j (ρTUj ) = 2m

3kB
(σi j∂ jUi − ∂ jJ j ), (29c)

where ∂i denotes a derivative with respect to the coordinate ri

(i = 1, 2, 3) and m is the atomic mass. These equations are,
in order, referred to as the continuity, Navier-Stokes, and
energy-balance equations. As we saw in the previous section,
atom-atom collisions in the gas result in thermal transport and
viscous effects, included into Eqs. (29) via the heat-flux vector
Jj and pressure tensor [33]

σi j = −Pδi j + τi j, (30a)

τi j = μi jk
∂
Uk, (30b)

where P is the thermodynamic pressure, τi j is the viscous
stress tensor, and μi jk
 is the viscosity tensor. For the time
being, we focus on the influence of thermal conductivity by
assuming that all second derivatives of the flow velocity are
small, effectively rendering the viscous stress terms negligible
(i.e., τi j ≈ 0). Consideration of the anisotropic viscosity is left
to future work.

V. DIFFUSION OF A HOT SPOT

As an example of anisotropy due to the thermal-
conductivity tensor, we consider a simple uniform-gas experi-
ment in which a localized temperature hot spot is induced, for
example, by heating the gas locally with a focused laser and
then allowed to diffuse. For simplicity, we assume that the
temperature field is excited perturbatively so that the temper-
ature dynamics is described by its deviation from the uniform
background temperature T0, T (r, t ) = T0[1 + ε(r, t )]. This
permits a linearization of Eq. (29c) to first order in ε, which
gives

∂ε

∂t
≈ −2

3
∂ jUj + 2

3n0kB
κi j∂i∂ jε. (31)

At the onset of the hot spot, the flow velocity U is taken to be
negligible, thus rendering the heat equation as

∂ε

∂t
= Di j∂i∂ jε (32)

in terms of a thermal-diffusivity tensor

Di j ≡ 2

3n0kB
κi j . (33)
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FIG. 3. Thermal relaxation timescales τr and τz vs the reduced
dipole length ad/a. The axial timescale τz is seen to be drastically
larger than the radial timescale τr for large values of the reduced
dipole length.

We model the initial hot spot as described by a Gaussian of
width σ ,

ε(r, t = 0) = ε0e− r2

2σ2 . (34)

Utilizing a Fourier expansion, we obtain the time-dependent
solution to Eq. (32),

ε(r, t ) = ε0

∫
σ 3d3K

(2π )3/2
e− 1

2 K2σ 2
e−(KT DK )t eiK·r. (35)

The integral above can be evaluated analytically to get

ε(r, t ) = ε0σ
3

√
8 det (M)

exp

(
− rT M−1r

4

)
, (36a)

M ≡ 1

2
σ 2I + Dt, (36b)

where I is the identity matrix. The solution above is further
simplified if we assume that the dipoles define the z axis,
which is done here without loss of generality. The diffusion
tensor is now diagonal with only two distinct elements, D11 =
D22 and D33. Thus, diffusions in the radial (perpendicular
to the dipole alignment) and axial (parallel to the dipole
alignment) directions occur with the respective different char-
acteristic timescales

τr ≡ σ 2

2D11
= 128(315a2 − 42aad + 32a2

d )

7875r2
eff

τ0, (37a)

τz ≡ σ 2

2D33
= 128(315a2 + 84aad + 20a2

d )

7875r2
eff

τ0, (37b)

with τ0 = σ 2r2
effn0

√
πmβ, which dictate the Gaussian hot-

spot relaxation time along the radial and axial directions,
respectively. These timescales are, of course, identical in the
limit of vanishing dipole moment ad = 0. Their difference is
quite pronounced, however, as ad increases, as illustrated in
Fig. 3. Figure 3 uses the experimental parameters in Table I
and a hot spot of initial width σ = 5L ≈ 0.6 (mm). It is
apparent that the diffusion occurs far more rapidly in the axial
direction when dipolar scattering is significant.

TABLE I. Experimental parameter values. Da = 1.661 ×
10−27 kg stands for daltons (atomic mass unit), a0 = 5.292 ×
10−11 m is the Bohr radius, and μB = 9.274 × 10−24 J/T is the Bohr
magneton.

Parameter Symbol Value Unit

Atomic mass number A 164 Da
Magnetic moment μ 10 μB

Dipole length ad 199 a0

Equilibrium number density n0 1013 cm−3

Equilibrium gas temperature T0 300 nK

With the dipoles aligned along ẑ, the explicit time evolution
of the hot spot is given by

ε(r, t ) =
ε0 exp

(
− x2+y2

2σ 2
(

1+ t
τr

) − z2

2σ 2
(

1+ t
τz

))
√(

1 + t
τz

)2(
1 + t

τr

) . (38)

Figure 4 visualizes the anisotropy of thermal relaxation by
showing the temperature field variation ε in the x, z plane. We
plot the time evolution of ε in Fig. 4, up to the geometric mean
of the two timescales in three panels (t = 0,

√
τrτz/2,

√
τrτz),

where we have set a = 0 to accentuate the dipolar anisotropy.
With the parameters in Table I, the timescales take values
τr = 0.0667 s and τz = 0.667 s. The Gaussian hot spot clearly
elongates along the x direction over time, demonstrating an
observable effect of anisotropic thermal conductivity dur-
ing thermal diffusion in the fluid. This could be observed
in ultracold-atom experiments with time-of-flight imaging,
which extracts the gas momentum distribution. Exciting such
a temperature hot spot would create additional peaks in the
momentum distribution that our theory predicts would ther-
malize anisotropically.

VI. DISCUSSION AND CONCLUSION

Normal-phase gases of ultracold dipolar atoms present a
vast arena for anisotropic dynamical phenomena. In large
enough samples, a continuum description of these systems
is warranted, permitting fluid dynamics studies. The fluid
equations of motion are, however, complete only upon speci-
fication of the transport tensors, which govern the finite-time
dispersive processes in the fluid. In this work, we have used
the Chapman-Enskog procedure to derive analytic expressions
for the anisotropic transport tensor of thermal conductivity,
induced by collisions between dipolar bosons. By construc-
tion, each tensor element is a function of the dipole-alignment
angle and functionally dependent on the ratio of dipole length
to scattering length.

We then analyzed the anisotropic effects of these thermal
conductivities in the thermal relaxation of a Gaussian hot
spot, where time-dependent solutions were derived from a lin-
earization of the viscosity-free fluid equations. We found that
an initially isotropic hot spot would disperse preferentially
in a direction orthogonal to the dipole orientation, opening
the possibility for controlling heat transport with the dipole-
alignment direction.
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FIG. 4. Stroboscopic evolution of the temperature-field variation ε(r, t ) at times t = 0, 0.106, 0.211 s (from left to right), visualized along
a 2D slice in the x, z plane. The initial peak temperature fluctuation amplitude is set to ε0 = 0.25, and the color scale for each plot is rescaled
for visual clarity at each time instance.

A comprehensive fluid description will, of course, require
the transport tensor of viscosity to also be derived. The ana-
lytic techniques presented here permit this derivation, which
will be a subject of future work. Another possible extension of
this work is to include quantum statistical effects in computing
the transport coefficients, as done in Refs. [32,34], but with
the dipolar cross section of Ref. [11]. These effects might
become relevant at temperatures closer to quantum degener-
acy. Finally, we note that recent experiments have realized
long-lived three-dimensional polar molecular samples by mi-
crowave shielding [35,36] or dc electric fields [37], promising
larger and tunable electric dipole moments in collisional dipo-
lar gases. These systems would serve as ideal platforms for
experimental investigations of dipolar fluid dynamics.
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APPENDIX A: THE FIRST-ORDER CHAPMAN-ENSKOG
APPROXIMATION TO THE BOLTZMANN EQUATION

This Appendix details the derivation of the left-hand side
of the Boltzmann equation under the Chapman-Enskog ex-
pansion to first order [26]. We can first write this expression
as (

∂

∂t
+ vi∂i

)
f0 = f0

(
∂

∂t
+ vi∂i

)
ln f0

= f0

( D

Dt
+ ui∂i

)
ln f0, (A1)

where we defined the material derivative

D

Dt
≡ ∂

∂t
+ Uj∂ j . (A2)

From Eq. (3), it follows that

ln f0 = 3

2
ln

m

2π
+ ln(n0β

3/2) − mβ

2
u2, (A3)

so(
∂

∂t
+ vi∂i

)
f0 = f0

( D

Dt
+ ui∂i

)[
ln(n0β

3/2) − mβ

2
u2

]
.

(A4)

At local thermal equilibrium as prescribed by f0, the equa-
tions of conservation [Eq. (29)] reduce to

D

Dt
n0 = −n0∂ jUj, (A5a)

D

Dt
Ui = − 1

n0
∂i

(
n0

mβ

)
, (A5b)

D

Dt
β = 2

3
β∂ jUj, (A5c)

from which the equations of continuity and energy balance
can be combined to give the relation

D

Dt
ln(n0β

3/2) = 0, (A6)

identifying the quantity ln(n0β
3/2) as an adiabatic invariant.

This simplifies the expression to( D

Dt
+ ui∂i

)
f0 = f0u j∂ j ln(n0β

3/2) − f0

( D

Dt
+ui∂i

)mβ

2
u2.

(A7)

Applying the material derivative to the term in u2 gives

D

Dt

(
mβ

2
u2

)
= m

2

(
u2 Dβ

Dt
+ β

Du2

Dt

)

= mβ

(
1

3
u2∂iUi − ui

DUi

Dt

)

= mβ

[
1

3
u2∂iUi + ui

n0
∂i

(
n0

mβ

)]

= 1

3
mβu2∂iUi + ui∂i ln(n0T ); (A8)

thus, the left-hand side of the Boltzmann equation becomes( D

Dt
+ vi∂i

)
ln f0

= ui∂i

(
5

2
ln β − mβ

2
u2

)
− 1

3
mβu2∂iUi

= 1

β

(
5

2
− mβ

2
u2

)
ui∂iβ + mβ

(
uiu j∂ jUi − 1

3
u2∂iUi

)

=
(

mβ

2
u2 − 5

2

)
ui∂i(ln T ) + mβ

(
uiu j − 1

3
δi ju2

)

×
(

∂ jUi + ∂iUj

2
− 1

3
δi j∂kUk

)
, (A9)
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FIG. 5. The collision frame (black) defined in the laboratory
frame (blue) via the relative velocities between two colliding partners
(red spheres). The angle α is defined as that between vectors ur

and Ê .

which is the form presented in Eq. (8) of the main text.

APPENDIX B: EVALUATION OF THE COLLISION
INTEGRAL FOR THERMAL CONDUCTION

The collision integral to be computed is written as

Nik = 2mβ

5n0

∫
d3uVi(u)C[ f0Vk] (B1)

= 2mβ

5n0

∫
d3u Vi(u)

∫
d3u1|u − u1| f0(u) f0(u1)

×
∫

d�′ dσ

d�′ �Vk. (B2)

In considering both the thermal motion of the atoms and col-
lisional processes, it is convenient to first define the velocities
in terms of center-of-mass (c.m.) and relative (r) coordinates,

uc.m. = u + u1

2
, (B3a)

ur = u − u1, (B3b)

which allows the product of equilibrium distributions to be
recast as

f0(u) f0(u1) = fc.m.(uc.m.) fr (ur ), (B4a)

fc.m.(uc.m.) ≡ n0

(
mβ

π

)3/2

exp
(−mβu2

c.m.

)
, (B4b)

fr (ur ) = n0

(
mβ

4π

)3/2

exp

(
−mβ

4
u2

r

)
. (B4c)

Furthermore, the anisotropy of the dipolar differential cross
section has us consider two distinct coordinate frames: (1) the

laboratory frame (LF) defined by the dipole-alignment axis Ê
lying along the xLF, zLF plane (Fig. 1) and (2) the collision
frame (CF) defined by aligning the ẑCF axis in the direction
of relative incoming velocities ur for two colliding atoms
(visualization in Fig. 5). We perform the collision integral in
coordinates defined with respect to the laboratory frame.

To transform between coordinate frames, we construct a
frame-rotation matrix of direction cosines,

RCF→LF =
⎛
⎝x̂LF · x̂CF x̂LF · ŷCF x̂LF · ẑCF

ŷLF · x̂CF ŷLF · ŷCF ŷLF · ẑCF

ẑLF · x̂CF ẑLF · ŷCF ẑLF · ẑCF

⎞
⎠, (B5)

that takes the vector û′
r from the CF to the LF. The differential

scattering cross section is then also required to be expressed
in LF coordinates during integration of the collision integral.
To do so, we utilize the coordinate-independent form of the
scattering amplitude for bosons fB (22) and express that in
terms of our desired coordinates, which allows us to compute
the differential cross section dσ/d�′. The above coordinate
transformations are sufficient for us to now compute the colli-
sion integrals.

Expanding in terms of the c.m. and r coordinates of
Eq. (B3), the collision integral becomes

Nik = 2mβ

5n0

∫
d3uc.m. fc.m.(uc.m.)

×
∫

d3ur fr (ur )urVi(uc.m., ur )
∫

d�′ dσ

d�′ �Vk . (B6)

Collisions result in the variation

�Vk = �

[(
mβu2

2
− 5

2

)
uk

]
= mβ

2
�(u2uk ), (B7)

where the velocity terms are written in terms of CF and LF
coordinates as

ui = uc.m.,i + 1
2 ur,i, (B8a)

u1,i = uc.m.,i − 1
2 ur,i, (B8b)

u2 = u2
c.m. + 1

4 u2
r + uc.m., jur, j, (B8c)

u2
1 = u2

c.m. + 1
4 u2

r − uc.m., jur, j, (B8d)

which gives the expansion

�(u2ui ) = u′2u′
i + u′2

1 u′
1,i − u2ui − u2

1u1,i

= uc.m. ·
(
u′

ru
′
r,i − urur,i

)
. (B9)

The integral over postcollision velocities is then performed as∫
d�′ dσ

d�′ �Vk ≡ mβ

2

∫
d�′ dσ

d�′ �(u2uk ), (B10)

which, when plugged back into Eq. (B6) and evaluated, gives
the result in Eq. (23) and expressions thereafter.
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