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Thermoviscous hydrodynamics in nondegenerate dipolar Bose gases
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We present a hydrodynamic model of ultracold, but not yet quantum condensed, dipolar bosonic gases. Such
systems present both s-wave and dipolar scattering, the latter of which results in anisotropic transport tensors of
thermal conductivity and viscosity. This paper presents an analytic derivation of the viscosity tensor coefficients,
utilizing the methods established by Wang and Bohn [R. R. W. Wang and J. L. Bohn, Phys. Rev. A 106, 023319
(2022)], where the thermal conductivities were derived. Taken together, these transport tensors then permit a
comprehensive description of hydrodynamics that is now embellished with dipolar anisotropy. An analysis
of attenuation in linear waves illustrates the effect of this anisotropy in dipolar fluids, where we find a clear
dependence on the dipole orientation relative to the direction of wave propagation.
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I. INTRODUCTION

The field of ultracold dipolar physics has seen exciting
progress in the last two decades [1–3], brought about by tech-
nological advances in the cooling and trapping of magnetic
lanthanide atoms [4–8] and heteronuclear polar molecules
[9–13]. Of note are recent experiments that have realized
evaporative cooling in three-dimensional polar molecular
gases, made possible by electric field [14] or microwave
shielding [15,16]. The observed high ratio of elastic to in-
elastic collision rates permits long-lived samples even at high
densities, motivating study of dipolar induced anisotropic phe-
nomena deep in the hydrodynamic regime. Reference [17]
takes the first step in formulating a hydrodynamic model of
ultracold dipolar Bose gases, by deriving the transport tensor
of thermal conductivity using the Chapman-Enskog procedure
[18–21]. Here we extend this formulation by deriving the
viscosity tensor for gases consisting of dipolar constituents.

To construct these tensors, we assume molecular scattering
cross sections due to ideal point dipoles aligned in a particular
direction in space, as described in Ref. [22]. Fortunately for
our analysis, the effective long-ranged molecular interaction
potential between microwave shielded molecules is equivalent
to the classical dipole potential [16,23], permitting use of the
collision cross sections derived in Ref. [22]. The same is ap-
parently not strictly true for electric-field shielded molecules
[24], but use of the same cross section has previously proven
adequate in describing cross-dimensional thermalization ex-
periments [14,25].

These transport tensors then permit us to study the prop-
agation of waves through the dipolar gas via the dispersion
relation [26], derived from the equations of conservation and
constitution. Although extensively studied in quantum degen-
erate dipolar gases [27–31], wave phenomena in their still
thermal counterparts remain less treated. A goal of this paper
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is, therefore, also to motivate deeper investigations of nor-
mal phase dipolar gases in the ultracold community. These
systems promise a vast variety of dynamical phenomena still
unexplored, for example anisotropies in flow behavior or in
turbulence.

The remainder of this paper is organized as follows: In
Sec. II, we follow the procedure outlined in Ref. [17] to
derive the transport tensor of viscosity from a microscopic
theory of dipolar collisions. A linearization of the hydrody-
namic equations allows us to extract the dispersion relation
in Sec. III, where it is used to illustrate anisotropic wave
attenuation. Finally, discussions and concluding remarks are
drawn in Sec. IV.

II. ANISOTROPIC VISCOSITY

A. General

Whereas a dilute gas is described in terms of the distri-
bution of molecular velocities, a fluid in the hydrodynamic
limit is described in terms of macroscopic observables such
as the density ρ, velocity U , and temperature T , all of which
may vary in time and space. The governing equations for
these quantities, including in ultracold systems [32], are the
equations of conservation [33]:

∂ρ

∂t
+ ∂ j (ρUj ) = 0, (1a)

∂

∂t
(ρUi ) + ∂ j (ρUjUi ) = ∂ jσi j, (1b)

∂

∂t
(ρT ) + ∂ j (ρTUj ) = 2m

3kB
(σi j∂ jUi − ∂ jJ j ), (1c)

where ∂i denotes the partial derivative with respect to co-
ordinate ri, and we invoke the summation conventions. The
left-hand side of each of these equations denotes the rate of
change of the relevant quantity at a given location in the fluid,
including convective transport due to the fact that the fluid
is in motion. In the first, this derivative of the mass density
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FIG. 1. A schematic diagram of the stresses (black arrows) on a
differential fluid volume element (red cube) due to thermodynamic
pressure and gradients in the velocity field.

ρ is zero; this is the equation of continuity. In the second
equation, the change of the momentum density ρU is given
by forces acting in the fluid, thus giving the Navier-Stokes
equation [34,35]. These forces are in turn given as gradients
of the stress tensor σ, denoting the force on a surface with
normal vector r̂i, in direction r̂ j . These forces are illustrated
schematically in Fig. 1, where all vectors appear to have the
same length, although this is not generally true in the fluid. In
the third equation of motion, for the mass-weighted tempera-
ture distribution, the rate of change depends on both the stress
tensor and heat conduction vector J.

Equations (1) are general in the absence of long-
ranged forces between the molecules, and are described in
Refs. [21,36,37]. Additional external forces, such as the trap
confining the atoms, can be added as necessary. To apply the
equations of change to a particular fluid, such as the dipolar
gas we have in mind, requires some constitutive relations
describing the fluid. For example, the stress tensor is written

σi j = −Pδi j + τi j . (2)

Here P is the thermodynamic pressure, related to the density
and temperature by the fluid’s equation of state, which we will
take as the ideal gas law in what follows. The remaining part,
τ, is the viscous stress tensor, i.e., the part arising from viscos-
ity. In a Newtonian fluid the viscous shear is assumed to be a
linear function of the velocity gradients, so that, generally,

τi j = μi jk� ∂�Uk, (3)

where μ is in general a fourth-rank viscosity tensor and the
flow velocity gradients ∂�Uk characterize the rate of strain on
differential fluid volumes. We will see, however, that ultracold
elastic collisions leave only a symmetrized portion of ∂�Uk

relevant. Meanwhile, the heat conduction vector is assumed
to be linearly related to temperature gradients in accordance
with Fourier’s law:

Ji = −κi j∂iT, (4)

where κ is the thermal conductivity tensor,
The hydrodynamic relations of the dilute dipolar gas

are therefore specified once the tensors μ and κ are deter-
mined. The thermal conductivity κ was previously derived in
Ref. [17]. Here we turn our attention to the viscosity tensor μ.

B. Microscopic theory

The hydrodynamic variables are given by the velocity-
averaged quantities

ρ(r, t ) = mn(r, t ) =
∫

d3v f (r, v, t )m, (5a)

U (r, t ) = 1

n(r, t )

∫
d3v f (r, v, t )v, (5b)

T (r, t ) = 2

3n(r, t )kB

∫
d3v f (r, v, t )

1

2
mu2, (5c)

where f (r, v, t ) denotes the phase-space distribution of the
molecules. The so-called peculiar velocity u(r) = v − U (r),
is the velocity of molecules relative to the local flow velocity.

Similarly, the stress tensor is defined microscopically by
the integral

σi j = −m
∫

d3u f (u)uiu j . (6)

This integral computes the mean flux of momentum mui

through a surface with normal unit vector r̂ j , thus describing
a force per area on that surface.

In the spirit of the perturbative method of Chapman and
Enskog, the phase-space density is assumed to differ but little
from its equilibrium value:

f ≈ f0[1 + 	], (7)

where 	 � 1 and the equilibrium distribution of peculiar
velocities is

f0(u, β ) = n0(β )c0(u, β )

= n0(β )

(
mβ

2π

)3/2

exp

(
−mβ

2
u2

)
, (8)

n0 is the gas equilibrium number density, β = (kBT )−1, and
u2 = ukuk .

Reference [17] argued, after a lengthy derivation and com-
paring terms in the approximate Boltzmann equation [36] (see
Sec. II C below), that a suitable variational ansatz for 	 is
given in terms of gradients of temperature and velocity as

	 = Vlblk∂k (ln T ) + 2mβWi jai jkl Dkl . (9)

This expression is written in terms of the vector

Vi(u) ≡
(

βmu2

2
− 5

2

)
ui (10)

and symmetrized quantities

Wi j (u) ≡ uiu j − 1
3δi ju2, (11a)

Di j (U ) ≡ 1
2 (∂ jUi + ∂iUj ) − 1

3δi j∂kUk, (11b)

where the coefficients b and a are to be determined variation-
ally.

The term in 	 involving ln T contributes to the thermal
conductivity and was evaluated in Ref. [17]. Here we fo-
cus on the other term, in terms of which the stress tensor
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becomes

σi j = −m
∫

d3u f0(u)[1 + 	(u)]uiu j

= −n0

β
δi j − 2

(
m2β

∫
d3u f0(u)uiu jWmnamnk�

)
Dk�. (12)

This expression identifies the thermodynamic pressure as P =
n0/β, and the quantity in parentheses as related to the shear
viscosity. We find that with symmetry arguments detailed in
Appendix A, the viscous stress tensor can in fact be written in
terms of just the strain rate tensor of Eq. (11b) as

τi j = 2μi jk�Dk�. (13)

Then comparing the forms of Eqs. (2) and (13) with τi j above,
the shear stress integrand is readily evaluated to give the
viscosity tensor

μi jk� = −2n0

β
Ii jmnamnk�, (14)

in terms of the variational parameters a and

Ii jmn = δimδ jn + δinδ jm

2
− 1

3
δi jδmn. (15)

These parameters must be determined by an approximate so-
lution of the Boltzmann equation.

C. Approximate solution to the Boltzmann equation

To this end, we start with the Boltzmann equation for the
local phase-space distribution:(

∂

∂t
+ vi∂i

)
f (r, v, t ) = C[ f (r, v, t )], (16)

where C[ f ] is the two-body collision integral [40]. We ig-
nore molecular finite-size effects required at higher densities,
which would modify the collision integral above [21,41].
At the current experimental regime of interest (detailed in
Sec. III), we find that such effects only contribute <5%
changes to the transport coefficients.

Assuming the close-to-equilibrium phase-space distribu-
tion of Eq. (7), we arrive at the ansatz in Eq. (9) and the
approximate Boltzmann equation

f0 Wk�Dk� ≈ 2C[ f0Wi j]ai jk�Dk�. (17)

Note that this refers to the portion of the simplified equa-
tion that pertains to viscosity, i.e., it does not include terms
with temperature gradients. Further details of this approxima-
tion are provided in Ref. [17].

To obtain explicit forms for the variational coefficients ai jk�

and hence the viscosities by Eq. (14), we rewrite the right-
hand side of Eq. (17) as

2C[ f0Wmn]amnk�Dk� = 2C[ f0Wmn](Imnrsarsk�)Dk�

= − β

n0
C[ f0Wmn]μmnk�Dk�. (18)

Multiplying both sides of Eq. (17) by Wi j and integrating over
u then gives

Ti jk� = Mi jmnμmnk�, (19)

where

Ti jk� =
∫

d3u f0(u)Wi jWk� = 2n0

(mβ )2
Ii jk�, (20a)

Mi jmn = − β

n0

∫
d3u Wi jC[ f0Wmn]. (20b)

The Mi jmn integrals are particularly involved due to the
highly anisotropic differential cross section of dipolar bosons,
for which the appropriately symmetrized scattering amplitude
from Ref. [22] is given as

fB(û′
r, ûr ) = ad√

2

(
4

3
− 2as

ad
− 2(ûr · Ê )2 + 2(û′

r · Ê )2 − 4(ûr · Ê )(û′
r · Ê )(ûr · û′

r )

1 − (ûr · û′
r )2

)
, (21)

where as is the s-wave scattering length, ur = u − u1 is the
relative peculiar velocity between colliding molecules, primes
denote postcollision velocities, and Ê is the dipole align-
ment axis. This provides us the differential cross section via
dσ/d�′ = | fB(û′

r, ûr )|2, to compute M.
After evaluating the integrals in Eq. (20b), the complicated

explicit expressions for the viscosity coefficients are tabulated
in Appendix B, as functions of the dipole angle , defined to
be the angle between Ê and ẑ in the x-z plane. More details of
this derivation are also in Appendix B.

D. Viscosities for upright dipoles

In the case where the dipole and ẑ axes coincide (i.e.,
= 0), we find that the stress tensor simplifies greatly and
can be written in a form more familiar to the usual theory

of viscosity. That is, the stress tensor can be decomposed
into a normal part which includes a proportionality with the
symmetrized velocity gradients,

τ 0
i j = 2μ0

i j ◦ Di j, (22)

and two additional anomalous stress terms which modify the
radial diagonal stresses [42]:

τ ′
11 = τ ′

22 = 2μ′D33. (23)

The symbol ◦ denotes the Hadamard product, which is the
elementwise product in which repeated indices remain un-
summed. The total stress is then written as the sum of
the above two parts τi j = τ 0

i j + τ ′
i j , with the corresponding

viscosity coefficients in this representation given explicitly
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as

μ0
13 = μ0

23 = μ0

2(A2 − 3A1 − 4ã2
d/63)

, (24a)

μ0
12 = μ0

11 = μ0
22 = μ0

2A2
, (24b)

μ0
33 = μ0

2A2
+ 2μ0A1

A2(A2 − 4A1)
, (24c)

μ′ = 1

2

(
μ0

11 − μ0
33

)
. (24d)

Above, the A ’s are polynomial functions of the reduced
dipole length ãd ≡ ad/as, in units of the scattering length:

A1 = 4
63 ã2

d − 16
21 ãd , (25a)

A2 = 32
63 ã2

d − 32
21 ãd + 4. (25b)

The dipole length is defined as ad = md2/(8πε0h̄2) where d
is the electric dipole moment, m is the molecular mass, and
ε0 is the vacuum permittivity. The viscosity coefficients are
given in units of the Chapman-Enskog result

μ0 = 5

16a2
s

√
m

πβ
. (26)

corresponding to the viscosity of a gas of hard spheres with
diameter as [21].

We remark in passing that the stress tensor in this represen-
tation remains traceless, therefore the gas should not possess a
bulk viscosity. This is a feature expected of monatomic gases
in general and applies here since, at ultralow temperatures,
only the ground state of the molecule is accessible.

In the limit where the scattering length remains finite and
the dipole length goes to zero, we get μ′ = 0 and all the other
coefficients reduce to the same value:

μ0
i j (ad = 0) = μ0

8
= 5

128a2
s

√
m

πβ
, (27)

which is eight times smaller than μ0 since the s-wave scatter-
ing cross section in Bose gases is 8πa2

s (instead of πa2
s for

classical hard spheres), consistent with Ref. [43].
To illustrate the deviation from the isotropic result above

as ad increases, we plot the the unique viscosities of Eq. (24)
normalized by the isotropic viscosity of Eq. (27),

η0
i j (ad ) ≡ μ0

i j (ad )

μ0
i j (ad = 0)

, η′(ad ) ≡ μ′(ad )

μ0
i j (ad = 0)

, (28)

as a function of ãd for both positive scattering length (Fig. 2)
and negative scattering length (Fig. 3). To make these plots,
we assume bosonic NaK molecules with a scattering length of
magnitude |as| = 500a0.

On the microscopic level, the differential scattering of
dipolar molecules exhibits a large anisotropy due to the dipole
interaction itself, compounded by the interference of this
scattering with the s-wave part characterized by a scattering
length. The way in which this interference plays out is via a
tremendous variation of the relative viscosity coefficients as
ãd is varied. Indeed, the ratio of μ0

33 to μ0
11 can vary from 0.36

to 9.3 based on the value and sign of as. Relative viscosities
are therefore highly tunable in laboratory experiments via

FIG. 2. The unique unit-free viscosity tensor elements with
dipoles aligned along ẑ, normalized by the finite scattering length
isotropic viscosity of Eq. (27), plotted as a function of ad/as (unit
free) from 0 to 10. The scattering length here is assumed positive
(as > 0).

the scattering length with blue-detuned circularly polarized
microwaves [44] (also tunable in lanthanide atoms via the
multitude of Fano-Feshbach resonances [45,46]), leading to
phenomena yet to be explored.

Figure 3 reveals that the anomalous viscosity is negative
when as < 0, implying a negative proportionality between
radial viscous stresses and axial strain rates. Fortunately, this
aberration does not imply an unwarranted dynamical instabil-
ity since the positive axial viscous stress ensures the bulk fluid
dilation remains identically zero.

III. ATTENUATION IN DIPOLAR GASES

Having both the thermal conductivity and viscosity ten-
sors now allows fluid dynamical studies in ultracold dipolar
systems. As a first application, we analyze linear wave
propagation through an initially uniform density gas. To do
so, the density, flow velocity, and temperature variations
are written in terms of fluctuations about their equilibrium

FIG. 3. The unique unit-free viscosity tensor elements with
dipoles aligned along ẑ, normalized by the finite scattering length
isotropic viscosity of Eq. (27), plotted as a function of ad/as (unit
free) from 0 to 10. The scattering length here is assumed negative
(as < 0).
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TABLE I. Table of parameter values utilized to generate the
plots for bosonic 23Na 39K dipolar molecules. Da = 1.661×10−27 kg
stands for Dalton (atomic mass unit), a0 = 5.292×10−11 m is the
Bohr radius, and D = 3.336×10−30 Cm is a Debye.

Parameter Symbol Value Unit

Relative molecular mass Mr 62 Da
Effective electric dipole moment deff 0.75 D
Dipole length ad 4.95×104 a0

Equilibrium number density n0 5×1012 cm−3

Equilibrium gas temperature T0 250 nK

distributions:

ρ(r, t ) = ρ0[1 + χ (r, t )], (29a)

Ui(r, t ) = vsξi(r, t ), (29b)

T (r, t ) = T0[1 + ε(r, t )], (29c)

where vs = √
5/(3mβ0) is the ideal gas speed of sound.

Plugging the form of Eq. (29) into Eq. (1) and assuming
χ, ξi, ε � 1, allows a linearization to first order in the fluc-
tuations which gives

∂χ

∂t
≈ −vs∂ jξ j, (30a)

∂ξi

∂t
≈ −3

5
vs∂i(ε + χ ) + 3β0vs

5n0
∂ jτi j, (30b)

∂ε

∂t
≈ −2

3
vs∂ jξ j + 2

3n0kB
κi j∂i∂ jε, (30c)

as detailed in Appendix C.
Solutions to Eqs. (30) are obtained by utilizing the plane-

wave ansatz for each dynamical variable, resulting in the
system of equations

ωχ ≈ vsKjξ j, (31a)

ωξi ≈ 3

5
vsKi(ε + χ ) − i

ρ0
μi jk�KjK�ξk, (31b)

ωε ≈ 2

3
vsKjξ j − 2i

3n0kB
κi jKiKjε. (31c)

Defining thermal conductivity and viscosity associated
rates

� = − 2κi j

3n0kB
KiKj, (32a)

�ik = −μi jk�

ρ0
KjK�, (32b)

we get the linear system above written as the eigenvalue
matrix equation⎛

⎝ 0 vsKT 0
3
5vsK i� 3

5vsK
0 2

3vsKT i�

⎞
⎠

⎛
⎝χ

ξ

ε

⎞
⎠ = ω

⎛
⎝χ

ξ

ε

⎞
⎠. (33)

A dispersion relation is then obtained via the characteristic
polynomial of Eq. (33). Further analytical insight is gained by
asserting only long-wavelength (λ) excitations and large den-
sities, which allow us to define the small parameter ε = K0L,
where K0 = 2π/λ is the sourced-fixed wave number, L =
(σn0)−1 is the molecular mean-free path, and σ = 32πa2

d/45
is the angular averaged total cross section [22]. The dispersion
relation to first order in ε is then given as

ω3 − iω2[� + tr(�)] − ω[vsK]2

+ i

5
v2

s

{
K2

x [3� + 5(�22 + �33)] + K2
y [3�

+ 5(�11 + �33)] + K2
z [3� + 5(�11 + �22)]

− 10(�12Ky + �13Kz )Kx − 10�23KyKz
} = 0, (34)

where tr(�) denotes the matrix trace of �.
To analyze the dispersion relation, we envision an exper-

iment with a uniform density sample of ultracold 23Na 39K
polar molecules. A wave generation source of constant fre-
quency ν = ω

2π
is then applied that propagates waves along

the z direction. We focus our attention to the case where
the scattering length is zero, which emphasizes the universal
dipolar anisotropy while simplifying the viscosity and ther-
mal conductivity expressions. We then solve the dispersion
relation for the wave vector K as functions of ν and , to first
order in ε. This yields two pairs of K solutions:

K1,±(ω,) = ± ω

vs

[
1 − i63ω

16384vsa2
d n0

√
5

3π
(3 cos(4) − 21 cos(2) − 94)

]
, (35a)

K2,±(ω,) = ±
√

iω

vsa2
d n0

√
5

3π

[ {16384a2
d n0

√
π + 63iω[3 cos(4) − 21 cos(2) − 94]

√
β0m}

384
√

35[2 cos(4) + 17 cos(2) + 93]

]
. (35b)

The second solution pair K2,±, has dominant imaginary

terms which scale as
√

K0a2
d n0 ∼ K0/

√
K0L, causing corre-

sponding wave solutions to attenuate within length scales of
order

√
L. We therefore take it that these solutions do not

support wave propagation.
As for K1,±, these do support propagating waves with at-

tenuation length ra = |Im[K1,±]|−1, and phase velocity vp =
ω|Re[K1,±]|−1. We see that to first order in ε, the phase ve-
locity is simply the frequency-independent ideal gas speed of
sound vp = vs, whereas the attenuation length still retains a

frequency dependence:

ra(ω) = 1

L

(
vs

ω

)2 512
√

15/π

7[94 + 21 cos(2) − 3 cos(4)]
. (36)

Therefore, we plot the ratio of attenuation length to the source-
fixed wavelength λ = vs/ν in Fig. 4 for  = 0 to π and ν = 50
to 250 Hz. This frequency range is chosen to ensure ε ≈ 0.1.
The experimental parameters used to generate this plot are
listed in Table I, intended to reflect relevant experiments with
NaK [12,16].
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FIG. 4. The attenuation length ra, normalized by the sourced-
fixed wavelength λ, as a function of frequency ν (in Hertz) and dipole
alignment angle  (in radians).

Figure 4 showcases a clear variation of ra with the dipole
angle , indicating that the attenuation of waves is highly
dependent on the direction of propagation relative to the
dipole orientation. In particular, waves that travel parallel to
the dipole orientation attenuate faster in this case than those
perpendicular to it. Moreover, the attenuation length is seen to
decrease at higher frequencies as occurs with acoustic waves
in ordinary dry air. The  dependence of wave attenuation is
further made clear in Fig. 5, which plots the percentage extinc-
tion of the waveform cos(|Re[K1]|r) exp(−r/ra)×100%, as a
function of distance from the wave source r, for  = 0 and π

2
with ν = 150 Hz. Figure 5 also plots the decay envelope with
fainter colors for clarity.

We have thus far neglected long-range effects, which
would modify the Navier-Stokes equation by adding the gra-
dient of a mean-field potential

UMF(r) =
∫

d3r′n(r′)Udd(r − r′), (37)

FIG. 5. The percentage extinction as a function of distance from
the source r, normalized by the sourced-fixed wavelength λ, for
 = 0 (dashed blue curve) and  = π

2 (solid green curve) with
ν = 150 Hz. The fainter curves are the decay envelopes associated
to each extinction curve.

where

Udd(r) = d2

4πε0

(
1 − 3(r̂ · Ê )

r3

)
(38)

is the potential between two point electric dipoles. Close to
uniform density with χ ≈ 0.1, the experimental parameters of
Table I yield UMF/kBT ≈ 0.01, validating this approximation.

As an added remark, we find that the viscosities of ultra-
cold NaK molecules presented here are around 1011 times
less than that of ordinary dry air at room temperature,
μair (T = 300 K) ≈ 18.5 μPa s.

IV. CONCLUSIONS AND OUTLOOKS

Recent experiments have demonstrated the ability to shield
ultracold molecules from inelastic collisional losses, allowing
long-lived dense samples of highly dipolar gases. As these
molecular gases enter the hydrodynamic regime, a contin-
uum model which includes the transport tensors of thermal
conductivity and viscosity is warranted to describe the fluid
dynamics. The thermal conductivities have been derived in
Ref. [17], and viscosities have been derived in this paper,
which now permit comprehensive phenomenological stud-
ies of bosonic fluid systems that are enriched by dipolar
anisotropy.

As a first analysis, we looked at how the dipole orientation
dependence of our derived transport tensors carries over into
the attenuation of linear waves generated by a constant fre-
quency source. We find that attenuation is most pronounced
when the directions of wave propagation and dipole alignment
coincide (i.e.,  = 0), whereas the least attenuation occurs
in the orthogonal configuration (i.e.,  = π

2 ). These results
are illustrated with plots of the attenuation length (36) and
percentage extinction (Figs. 4 and 5), that show a signifi-
cant variation of these quantities with . Experiments which
measure the attenuation length as a function of the dipole
orientation could therefore provide an experimental means to
extracting the anisotropic transport tensor coefficients.

In the future, higher-density corrections to the derived
transport tensors can be included using the generalized
Chapman-Enskog method [21,41]. This modification would
result in the emergence of a bulk viscosity and explorations of
hydrodynamic phenomena not present in the current theory.
At lower temperatures, the inclusion of quantum statistical
effects [33] to our derived transport tensors could permit
a normal-superfluid phase coupled hydrodynamic model for
dipolar systems, extending the formalism established by
Nikuni and coworkers [32,47,48]. The mechanism to which
dipolar gases cross over from the dilute to hydrodynamic
regimes might also be of interest to the ultracold community,
such as in the context of evaporative cooling. Such a theory
would interpolate the formulation presented in this paper with
that in Refs. [25,49]. Finally, the results of this paper can
also be extended to systems of fermionic polar molecules and
lanthanide atoms, by utilizing the scattering cross section for
identical fermions found in Ref. [22].
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APPENDIX A: A NOTE ON SYMMETRY

The viscosity tensor as defined by Eq. (3) gives the stresses
as linear combinations of the unsymmetrized second-rank
tensor ∂lUk giving the gradients of the fluid’s velocity compo-
nents. By contrast, the microscopic evaluation of stresses (13)
from the Boltzmann equation relates these stresses only to
the symmetrized tensor D. The difference is telling: generally
this tensor can be reduced in the usual way into the traceless,
second-rank D, along with an antisymmetric tensor R and a
scalar:

∂�Uk = Dk� + Rk� + 1
3δk�∇ · U , (A1)

where

Rk� = 1
2 (∂�Uk − ∂kU�). (A2)

The absence of the antisymmetric tensor and the scalar from
the expression connotes that there are no rotational viscosities
or bulk viscosities in a dilute gas of particles with no internal
degrees of freedom [21,38,39]. Without loss of generality, the
viscous stress tensor can now be written in terms of just the
strain rate tensor of Eq. (11b):

τi j = 2μi jk�Dk�. (A3)

Note that this conclusion is independent of the form of the
collision cross section of the molecules.

The relation between the two forms of the symmetrized
tensors is conveniently handled via a contraction:

Wi j (u) = Ii jk�uku� = uku�Ik�i j, (A4a)

Di j (U ) = Ii jk�∂�Uk = ∂�UkIk�i j, (A4b)

with the traceless symmetric tensor

Ii jmn = δimδ jn + δinδ jm

2
− 1

3
δi jδmn. (A5)

Written in these terms, the expression for the shear stress
tensor in Eq. (13) is

τi j = −2m2β

∫
d3u f0uiu jumunImnopaopk�Dk�. (A6)

The integrand now consists of products of components of
the peculiar velocity u, multiplied by the known equilibrium
velocity distribution. All such integrals are readily evaluated
(many leading to Kronecker delta functions), whereby the
viscosity tensor ultimately becomes

μi jk� = −2n0

β
Ii jmnamnk�, (A7)

as presented in Eq. (14) of the main text.

APPENDIX B: EVALUATION OF THE VISCOSITY TENSOR

To obtain the viscosity tensor, the collision integrals of
Eq. (20b) must be evaluated. These integrals are evaluated

with methods identical to those described in Ref. [17]. How-
ever, the integrand differs slightly where instead of

Nik ≡ 2mβ

5n0

∫
d3u ViC[ f0Vk], (B1)

we are now evaluating

Mi jmn = − β

2n0

∫
d3u Wi jC[ f0Wmn]. (B2)

The collision integral is therefore similarly set up by rewriting
it in terms of c.m. and relative (r) velocity coordinates uc.m.

and ur , respectively, which renders the product of equilibrium
distributions as

f0(u) f0(u1) = fc.m.(uc.m.) fr (ur ). (B3)

Expanding the collision integral and writing it in terms of the
c.m. and r coordinates leaves us with

Mi jmn = − β

2n0

∫
d3uc.m. fc.m.(uc.m.) (B4)

×
∫

d3ur ur fr (ur )Wi j

∫
d�′ dσ

d�′ �Wmn.

The collision-varied quantity is written as

�Wi j = �(uiu j ) = 1
2 (u′

r,iu
′
r, j − ur,iur, j ), (B5)

so the integral over postcollision velocities with the differ-
ential cross section for dipolar bosons given in Ref. [22]
becomes

I�′ ≡ 1

2

∫
d�′

r

dσ

d�′
r

(u′
r,iu

′
r, j − ur,iur, j ). (B6)

We then utilize MATHEMATICA [50] to evaluate and plug the
integral above back into Eq. (B4) to obtain the elements of
Mi jmn.

Obtaining the μ tensor now requires us to invert M, which
is most easily performed by converting M into its matrix
representation denoted by an overhead circle, M̊. This is done
by mapping index pairs to single indices (i, j) → (i′), via the
relation

i′ = 3( j − 1) + i, (B7)

rendering Mi jk� → M̊i′k′ . In its 9×9 matrix representation, the
inherent symmetry of M reduces its matrix rank from 9 to
5. This prevents us from inverting the matrix in its current
representation, so we are now required to perform a change of
basis transformation which decomposes the 9×9 matrix into
a block-diagonal matrix with a 5×5 irreducible block. The
desired change of basis matrix C̊ is obtained by diagonalizing
the isotropic tensor I in its matrix representation:

I̊ = C̊(I5×5 ⊕ 04×4)C̊
−1

, (B8)

where I and 0 are the identity and zero matrices respectively,
with dimensions specified by their subscripts, and ⊕ denotes
a direct sum. Applying the transformation C̊ to Eq. (19) gives

C̊
−1

T̊C̊ = C̊
−1

(M̊μ̊)C̊ = (C̊
−1

M̊C̊
−1

)(C̊μ̊C̊), (B9)

which leaves both sides of the equation above to only have a
5×5 nontrivial matrix block. The structures of these matrices
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are shown more explicitly by writing

[C̊
−1

T̊C̊]5×5 ⊕ 04×4 = [(C̊
−1

M̊C̊)(C̊
−1
μ̊C̊)]5×5 ⊕ 04×4.

(B10)

The direct sum with 04×4 is trivial, so we can just consider the
5×5 irreducible subspace. This now allows us to effectively
invert M̊ by

[C̊
−1
μ̊C̊]5×5 = [(C̊

−1
M̊C̊)]−1

5×5[(C̊
−1

T̊C̊)]5×5, (B11)

and take the direct sum of the expression above with 04×4, to
give

μ̊ = C̊(C̊
−1

M̊
+

C̊)(C̊
−1

T̊C̊)C̊
−1 = M̊

+
T̊ , (B12)

where M̊
+

is a pseudoinverse of M̊ defined by the procedure

above, which satisfies M̊
+

M̊μ̊ = μ̊. Finally, we apply the
inverse mapping of Eq. (B7) to attain the rank-4 tensor form
of μ.

For brevity of presentation, we divide each viscosity tensor
element by the isotropic viscosity as derived by Chapman and
Enskog [21], denoted by a tilde:

μ̃i jk� ≡ μi jk�/μ0. (B13)

The 13 unit-free unique viscosity tensor elements are tabu-
lated below as a function of scattering length as, dipole length
ad , and dipole orientation angle :

μ̃1111 = 21

128P1P2P3
[9P1P2 + 11P1P3 + 12P2P3 − 48O1P1 cos(2) + 12O3 cos(4)], (B14a)

μ̃1113 = 63

32P1P2P3
[2O1P1 sin(2) − O3 sin(4)], (B14b)

μ̃1122 = − 21

8P2P3
[1 + P1 − 3O1 cos(2)], (B14c)

μ̃1133 = 21

128P1P2P3
[3P1P2 − 7P1P3 − 12P2P3 − 12O3 cos(4)], (B14d)

μ̃1221 = 63

32P1P3
[P1 + P3 − 4O2 cos(2)], (B14e)

μ̃1223 = 63

8P1P3
O2 sin(2), (B14f)

μ̃1331 = 63

128P1P2P3
[P1P2 + 3P1P3 + 4P2P3 − 4O3 cos(4)], (B14g)

μ̃1322 = − 63

8P2P3
O1 sin(2), (B14h)

μ̃1333 = 63

16P1P2P3
[O1P1 + O3 cos(2)] sin(2), (B14i)

μ̃2222 = 21

16P2P3
(3P2 + P3), (B14j)

μ̃2233 = − 21

8P2P3
[1 + P1 + 3O1 cos(2)], (B14k)

μ̃2332 = 63

32P1P3
[P1 + P3 + 4O2 cos(2)], (B14l)

μ̃3333 = 21

128P1P2P3
[9P1P2 + 11P1P3 + 12P2P3 + 48O1P1 cos(2) + 12O3 cos(4)], (B14m)

having defined the adimensional polynomials of reduced
dipole length ãd = ad/as:

O1 = ã2
d − 12ãd , (B15a)

O2 = ã2
d − 9ãd , (B15b)

O3 = 369 − 60ãd − 4ã2
d , (B15c)

P1 = 63 + 12ãd + 4ã2
d , (B15d)

P2 = 63 + 24ãd + 4ã2
d , (B15e)

P3 = 63 − 24ãd + 8ã2
d . (B15f)

The latter three polynomials above that appear as denom-
inators in the viscosities, P1,P2, and P3, do not have real
roots for any combination of as, ad > 0, preventing unphysi-
cal poles.

Other nontrivial viscosity terms are specified by the tensor
symmetry identities

μi jmn = μ jimn, (B16a)

μi jmn = μ jinm, (B16b)

μi jmn = μmni j, (B16c)

μi jmnδi j = 0, (B16d)
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μi jmnδmn = 0, (B16e)

μi jmnδi jmn = 0, (B16f)

where δi jmn is 1 if i = j = k = � and zero otherwise. Repeated
indices are summed over. All other unspecified tensor ele-
ments are zero.

APPENDIX C: LINEARIZING THE BALANCE EQUATIONS

This section of the Appendix details the linearization of the
balance equations with the variational forms in Eq. (29). First,
we shall take the thermodynamic pressure to be given by the
ideal gas law

P = n

β
. (C1)

Then starting with the continuity equation, we have

∂ρ

∂t
+ ∂ j (ρUj ) = 0,

⇒ ρ0
∂χ

∂t
+ ρ0vs(∂ jξ j + ξ j∂ jχ ) = 0,

⇒ ∂χ

∂t
+

√
5

3mβ0
∂ jξ j ≈ 0. (C2)

The Navier-Stokes equation is then

∂

∂t
(ρUi ) + ∂ j (ρUjUi ) = −∂iP + ∂ jτi j,

⇒ vsρ0

(
(1 + χ )

∂ξi

∂t
+ ξi

∂χ

∂t

)

+ v2
s ρ0

(
∂ j (ξ jξi) + ξ jξi∂ jχ

)
= − n0

β0
(1 + ε)∂iχ − n0

β0
(1 + χ )∂iε + ∂ jτi j,

⇒∂ξi

∂t
≈ −

√
3

5mβ0
∂i(ε + χ ) + 1

n0

√
3β0

5m
∂ jτi j .ri. (C3)

Finally, we have the energy balance equation as

∂

∂t
(ρT ) + ∂ j (ρTUj ) = 2m

3kB
(σi j∂ jUi − ∂ jJ j ),

⇒ ρ0T0

(
(1 + χ )

∂ε

∂t
+ (1 + ε)

∂χ

∂t

)

+ vsρ0T0[(1 + χ )(1 + ε)∂ jξ j

+ (1 + χ )ξ j∂ jε + (1 + ε)ξ j∂ jχ ]

= 2m

3kB
(vsσi j∂ jξi − ∂ jJ j ),

⇒ ∂

∂t
(ε + χ ) + 5

3

√
5

3mβ0
∂ jξ j ≈ −2

3

β0

n0
∂ jJ j,

⇒ ∂ε

∂t
+ 2

3

√
5

3mβ0
∂ jξ j ≈ −2

3

β0

n0
∂ jJ j . (C4)

In summary these grant us the closed set of equations in
Eq. (30) of the main text.
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