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Viscous dynamics of a quenched trapped dipolar Fermi gas
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We consider collective motion and damping of dipolar Fermi gases in the hydrodynamic regime. We in-
vestigate the trajectories of collective oscillations—here dubbed “weltering” motions—in cross-dimensional
rethermalization experiments via Monte Carlo simulations, where we find stark differences from the dilute
regime. These observations are interpreted within a semiempirical theory of viscous hydrodynamics for gases
confined to anisotropic harmonic potentials. The derived equations of motion provide a simple effective theory
that show favorable agreement with full numerical solutions. To do so, the theory must carefully account for the
size and shape of the effective volume within which the gas’s behavior is hydrodynamic. Although formulated
for close-to-threshold dipolar collisions, our theoretical framework can be repurposed for other elastic cross
sections in future studies.
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I. INTRODUCTION

Suppression of two-body collisional losses has been crucial
for achieving stable samples of molecular quantum gases.
Within the last decade, theoretical and experimental ad-
vances have brought to fruition the electric field shielding
of polar molecules against chemical reaction and complex
formation [1–10], permitting the production of degenerate
bulk molecular samples [11,12]. But even before the onset
of quantum degeneracy, these shielded molecules present a
long-lived versatile platform for exploring dipolar physics
[13–15]. For instance, dipole-dipole interactions lead to
highly anisotropic two-body collision cross sections [16] and
observable anisotropy in the collective dynamics of thermal
gases [17–21]. For these nondegenerate bulk gases, ther-
malization is an essential mechanism with great utility in
applications such as evaporative cooling [22–29] and scatter-
ing length measurements [30–34]. The accuracy and efficacy
of both these applications, in turn, rely on a deep understand-
ing of thermalization in such systems.

The difference between dilute and hydrodynamic limits is
revealed clearly in a gas’s response to perturbation. In partic-
ular, in a cross-dimensional rethermalization experiment, an
initially equilibrated gas is preferentially heated along a par-
ticular axis, then allowed to rethermalize back to equilibrium
[30]. Thermalization in the dilute regime is closely related to
the collision rate [21,30,35], while the hydrodynamic regime
sees similarly extracted relaxation rates close to the trapping
frequency instead [12,25,36]. The difference between the two
regimes is illustrated in Fig. 1. In both panels, a collection
of 23Na 40K molecules is subjected to the same harmonic
trapping potential
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and subsequently excited along the z axis. The only difference
is the molecule number: for fewer molecules in the upper
panel (a), the dynamics is dilute, while for a greater number
of molecules in the lower panel (b), it is hydrodynamic.

In both cases, the behavior is tracked using time trace
plots of the pseudotemperatures Ti(t ), shown in Fig. 1. A
pseudotemperature is defined along axis i as [19]
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FIG. 1. Pseudotemperatures (2) obtained from Monte Carlo sim-
ulations in the dilute [upper panel, (a)] and hydrodynamic [lower
panel, (b)] regimes. The gas consists of microwave shielded 23Na 40K
molecules with dipole moment d = 0.75 D, oriented along x̂, at
temperature T = 700 nK. The gas is initially excited along z by
an instantaneous trap frequency ramp to ωz = 2π × 147 Hz, while
ωx = ωy = 2π × 82.5 Hz remain constant. The regimes are differ-
entiated by the number of molecules N , which are N = 104 in panel
(a), and N = 2 × 105 in panel (b).
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where {· · · }(t ) denotes the time varying ensemble average
over molecular positions r and velocities v, m is the molecular
mass, and kB is Boltzmann’s constant. Details of the calcula-
tions that produced this figure are provided below.

The dilute regime is characterized by collision rates that
are small compared to the trap frequencies. Hence in this
case, pseudotemperature in the warm, z direction gradually
diminishes, while that in the other, cooler directions gradually
increases, until the gas equilibrates on the time scale shown.
The hydrodynamic gas, by contrast, behaves like a somewhat
compressible fluid; excitation initially in the z direction is dis-
tributed almost immediately into the other directions, and the
resulting dynamics is more like the irregular flow to and fro
of this liquid. The fluid expands sometimes in the radial direc-
tion, sometimes in the axial direction, with irregularly varying
amplitudes, reminiscent of waves on an unquiet ocean. To
encapsulate such motion and differentiate it from center of
mass “sloshing” [37], we refer to this form of collective
fluid excitation as weltering [38]. Notably, present examples
consider essentially perturbative quenching of the trapping
potential, where motion is well described, as in Fig. 1, by
tracking the widths along each axis. We anticipate, however,
future investigations in which this is not so, for instance,
where the radial width at a given instant may vary with the
axial one. These more intricate scenarios will fully exemplify
the weltering motion we envision, making it worthwhile to
coin the term now for future use.

In the dilute gas case, the primary response of the gas
is to come to thermal equilibrium, whereby its dynamics is
largely summarized in a single, density-normalized equilibra-
tion rate, whose inverse defines the “number of collisions
per rethermalization” [30]. For dipolar gases, this quantity
can depend on the orientation of the dipoles relative to the
excitation axis [16,21]. In contrast, the complex dynamics of
the hydrodynamic fluid requires a more complete theoretical
description.

The purpose of this paper is to provide such a description.
We will base full dynamics on a Monte Carlo simulation,
to further elaborate the difference between dilute and hy-
drodynamic regimes. Further, we will develop a simplified
formulation based on a Gaussian ansatz for the width of a
gas, which semiempirically reproduces the numerics. Key to
this model is the realization that the periphery of a harmoni-
cally trapped gas is always dilute [39,40], which necessitates
defining an effective volume inside which hydrodynamics is a
good idea. We identify the dependence of this volume on the
anisotropy of the trap and of the collision cross section among
polarized dipoles. Our theory is also presented in a manner
where analyses can be repeated to accommodate other cross
sections, opening its applicability to a broader variety of ul-
tracold molecular gas experiments with far from threshold
collisions [41].

The remainder of this paper is organized as follows: In
Sec. II, we describe the numerical tools adopted to study
trapped hydrodynamic gases, and present notable differences
from the dilute limit in Sec. III. We then introduce the
equations of motion employed to model a nondegenerate
hydrodynamic dipolar gas in Sec. IV, with the assumption
of threshold scattering. A variational ansatz is employed in
Sec. IV A, to derive effective dynamical equations governing

weltering oscillations in a harmonic trap. A comparison of our
theory to full numerical solutions is presented in Sec. IV C,
from which we extract several considerations about the hy-
drodynamic extent of gases in traps. Finally, conclusion are
drawn in Sec. V, along with possible extensions of this current
work.

II. NUMERICAL METHOD

A gas is said to be hydrodynamic when the molecu-
lar mean-free path is much smaller than the characteristic
length over which fluid flow occurs [42]. The ratio of these
scales is given by the Knudsen number Kn. For a harmoni-
cally trapped gas with mean density 〈n〉 = 1

N

∫
n2(r)d3r and

molecules with total cross section σcoll, the mean-free path
is given by L = (〈n〉σcoll )−1. With a given geometric mean
frequency ω and temperature T , the thermal width of the gas is
Rth =

√
kBT/mω2.

Alternatively, the Knudsen number can also be written
as the ratio of mean trapping frequency over the collision
rate γcoll = 〈n〉σcoll〈vcoll〉, where 〈vcoll〉 = √

16kBT/(πm) is
the mean collision velocity. Explicitly, these relations are sum-
marized as

Kn = L

Rth
= 4 ω

π1/2γcoll
= 8π3/2kBT

Nmω2σcoll
. (3)

A trapped gas is said to be hydrodynamic if Kn � 1. The
relations above provide an approximate mean Knudsen num-
ber. In practice, the thermal width can differ in directions with
different trap frequencies, while the cross section, for dipolar
scattering, can depend on the direction of the collisions axis.
Thus the boundary between hydrodynamic and dilute flow can
be anisotropic, a topic to be dealt with below.

To compute dynamics in either regime, we utilize the di-
rect simulation Monte Carlo (DSMC) method [43] to obtain
numerical solutions to the Boltzmann equation. In doing so,
these numerical simulations allow for explorations of hydro-
dynamic phenomena, while later also serving as a benchmark
for our semi-empirical theory.

The DSMC implementation we adopt for this work fol-
lows very closely that described in Refs. [19,20], which study
similar systems but in the dilute regime. Described briefly,
the Boltzmann equation is solved by approximating the phase
space distribution with a discrete ensemble of N molecules,

f (r, v) ≈
N∑

k=1

δ3(r − rk )δ3(v − vk ). (4)

Most crucial to an accurate hydrodynamic simulation is that
collisions are handled adequately. The DSMC does so by
constructing a discrete spatial grid within the simulation vol-
ume, binning particles into each grid cell based on their
positions, then sampling their collisional interactions from
a probability distribution derived from the differential cross
section [19].

Choosing a uniform grid that is appropriate for maintaining
accuracy and computational efficiency becomes tricky at large
collision rates, so we utilize a locally adaptive discretization
scheme instead. At every numerical time step, the locally
adaptive grid is built in two phases. Phase one constructs a
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TABLE I. Table of parameter values utilized in the Monte
Carlo simulation for fermionic 23Na 40K molecules. Da = 1.661 ×
10−27 kg stands for Dalton (atomic mass unit) and D = 3.33564 ×
10−30 Cm is a Debye.

Parameter Symbol Value Unit

Relative molecular mass Mr 63 Da
Electric dipole moment d 0.75 D
Initial gas temperature T (0) 700 nK
Trap frequency geometric mean ω 2π100 Hz

master grid, consisting of uniform volume cells that span the
simulation volume. The resolution of the grid is then refined in
phase two, with an octree algorithm [44]. The octree algorithm
further discretizes the simulation volume by recursively sub-
dividing cells into eight octants, terminating when each cell
has at most Nmax

cell particles. The parameter Nmax
cell , is initialized

at the start of the simulation, which we optimize for stochastic
convergence.

III. NUMERICAL RESULTS

For our numerical experiments, we envision an ultracold
gas of microwave shielded 23Na 40K molecules with the pa-
rameters in Table I. The initial temperature is chosen such that
the gas remains nondegenerate with T > TF [45] for all values
of Kn in consideration, and the trap is assumed cylindrically
symmetric with ωx = ωy ≡ ω⊥ but ω⊥ 	= ωz. Key variables
of interest to this study will be (a) the number of molecules
N , which affects Kn and therefore how hydrodynamic the gas
is; (b) the trap anisotropy λ = (ωz/ω⊥)2; and (c) the dipole
orientation Ê . For the sake of illustration, collision cross sec-
tions are described by the analytical formulas for point dipoles
given in Ref. [16], although, at sufficient temperature, realistic
cross sections may differ from these. For convenience, we
only allow Ê to tilt within the x, z plane, allowing us to
define a dipole tilt angle � = cos−1 Ê · ẑ, that parametrizes
the collisional anisotropy.

The behavior of the fluid after excitation in the z direc-
tion is shown in Fig. 2. This is done in a prolate (cigar)
trap with λ = 0.2, containing N = 5 × 105 molecules, with
Knudsen number Kn ≈ 0.04. This figure plots the separated
position and momentum space pseudotemperatures Tri (t ) =
mω2

i {r2
i }(t )/kB and Tvi (t ) = m{v2

i }(t )/kB respectively. The
position-space time trace shows the clear out-of-phase oscil-
lations between the widths in the radial and axial directions,
expected for a weltering fluid. The momentum-space time
trace has oscillations of considerably smaller magnitude than
Tri , and also shows a phasing in oscillations amongst the
different Tvi traces. These observations showcase how large
collision rates diminish the effect of out-of-equilibrium ther-
modynamics on the hydrodynamic welter of the gas.

The difference between dilute and hydrodynamic regimes
is sharpened by comparing the dependence of dynamics on
the tilt angle � of the dipoles. To this end, Fig. 3 plots
the three components of pseudotemperature Ti for the dilute
(upper row) and hydrodynamic (lower row) gases, at the three
different dipole tilt angles � = 0◦, 45◦, 90◦.

As anticipated in Fig. 1, the dilute gas responds to the
excitation primarily by melting back to thermal equilibrium

FIG. 2. Plots of the Tri [upper panel (a)] and Tvi [lower panel
(b)] vs time from a cross-dimensional rethermalization experiment,
with excitation along z. The gas is hydrodynamic with N = 5 × 105

(Kn ≈ 0.04), λ = 0.2 and the parameters in Table I.

while the hydrodynamic gas exhibits weltering motion, result-
ing from oscillating fluid flow toward and away from the trap
center. In Fig. 3 a second dramatic difference appears. For
the dilute gas, with the dipoles tilted away from the axis of
trap symmetry (z), the rates of warming of the gas in the x
and y directions differ, as a consequence of the anisotropic
scattering cross section [16,19,21]. By contrast, the excita-
tions in the x and y directions in the hydrodynamic regime
are nearly equal. In the hydrodynamic regime, relatively rapid
collisions scramble memory of the dipole orientation. Note
that a slight difference in x and y motions occurs, due to a
residual anisotropy of the viscosity tensor, described in the
next section. Nevertheless, this anisotropy is not a main driv-
ing force in the dynamics. It is true, however, that the overall
damping rate of the weltering excitations does depend on the
dipole tilt angle, as will be elaborated upon in Sec. IV C below.

IV. HYDRODYNAMIC FORMULATION

The Monte Carlo simulation, while accurate, is neverthe-
less somewhat cumbersome for calculating the response of the
gas. For this reason, in the hydrodynamic regime, it is useful to
formulate the fluid’s motion directly in terms of hydrodynam-
ics. When hydrodynamic, a nondegenerate gas behaves as a
thermoviscous fluid [46–48] with thermal conductivity κi j and
viscosity μi jk
, which are, in general, coordinate dependent
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FIG. 3. Pseudotemperature times traces Tx (t ) (solid green curves), Ty(t ) (dashed blue curves), and Tz(t ) (dotted red curves) for the three
values of � = 0◦, 45◦, 90◦, in subplots (a,d), (b,e), and (c,f) respectively. The two rows are differentiated by the number of molecules, with
the upper row [subplots (a)–(c)] having N = 2 × 103 (Kn ≈ 11.10), while the lower row [subplots (d)–(f)] has N = 3 × 105 (Kn ≈ 0.07). The
experimental parameters are those in Table I with λ = 0.2. Note that the simulation times are different between the upper (t = 0 to 0.1 s) and
lower (t = 0 to 0.04 s) rows.

and formulated as rank-2 and rank-4 tensors respectively [49].
The equations of motion of the fluid are [50]

∂ρ

∂t
+
∑

j

∂ j (ρUj ) = 0, (5a)

∂

∂t
(ρUi ) +

∑
j

∂ j (ρUjUi ) = −∂i(nkBT ) − n∂iV (r)

+
∑
j,k,


∂ j (μi jk
∂
Uk ), (5b)

∂

∂t
(ρT ) +

∑
j

∂ j (ρTUj ) = −2

3
ρT

∑
i

∂iUi

+ 2m

3kB

∑
i, j,k,


(∂ jUi )μi jk
(∂
Uk )

+ 2m

3kB

∑
i, j

∂i(κi j∂ jT ). (5c)

These equations govern the dynamics of the velocity averaged
field variables of mass density, flow velocity and temperature:

ρ(r, t ) = mn(r, t ) =
∫

d3v f (r, v, t )m, (6a)

U (r, t ) = 1

n(r, t )

∫
d3v f (r, v, t )v, (6b)

T (r, t ) = 2

3n(r, t )kB

∫
d3v f (r, v, t )

1

2
mu2, (6c)

where f (r, v, t ) denotes the phase space distribution of the
molecules and u(r) = v − U (r) is the comoving molecular
velocity, relative to the frame of fluid flow.

It is worth pointing out that the local fluid kinetic tempera-
ture is related to the flow velocity via

3

2
n(r, t )kBT (r, t ) =

∫
d3v f (r, v, t )

1

2
mv2 − 1

2
ρU (r, t )2,

(7)

where the integral term is the local kinetic energy density.
This relation emphasizes a central difference between dilute
and hydrodynamic trapped gases: temperature, in the sense
of equilibrium thermodynamics, is well defined through-
out the entire dynamical evolution when hydrodynamic, but
only upon global equilibration when dilute. Such a distinc-
tion identifies time-of-flight imaging, common to ultracold
gas experiments, as an indirect form of thermometry to
hydrodynamic gases, that probes an ensemble averaged sum
of both the fluid local temperature and mechanical energy
from flow.

In this work, we assume that the transport tensors arise
from two-body collisions with elastic differential cross sec-
tion dσ/d, as derived with the first-order Chapman-Enskog
method [51–53]. We shall later see that only viscosity is rel-
evant to this work, so we omit further details of the thermal
conductivity. At this level of approximation, the anisotropic
viscosity tensor for arbitrary dσ/d works out to be density
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FIG. 4. Diagram of a density slice along axis ri, through the
Gaussian ansatz for ρ(r, t ) with time varying widths σi(t ).

independent, and is given as [53,54]

μ = − 2

β

(
n

mβ

)2(∫
d3uW (u) ⊗ C[ f0W ]

)−1

, (8)

where β = (kBT )−1 is the usual inverse temperature,

W = uuT − 1
3 u2I, (9)

is a rank-2 comoving velocity tensor, and I is the identity
matrix. The collision integrals

C[ f0W ] =
∫

d3u1|u − u1| f0(u) f0(u1)
∫

d′ dσ

d′ �W ,

(10)

with �W = W ′ + W ′
1 − W − W 1 and primes denoting

post-collision quantities, are evaluated with the Maxwell-
Boltzmann equilibrium phase space distribution function
f0(u) [55]. The symbol ⊗ denotes a dyadic product which
takes two tensors of rank N1 and N2, and forms a tensor
of rank N1 + N2 (e.g., Ai j ⊗ Bk
 = Ci jk
). Of interest here is
the anisotropic cross section resultant from close-to-threshold
scattering [56] between ultracold fermionic polar molecules
or dipolar atoms [7,12,33,34]. At low enough temperatures
with electric fields that align the dipoles along Ê , dipolar scat-
tering is energy independent and permits the viscosity tensor
to be computed analytically [54]. It is this analytic viscosity
tensor that we use below.

A. Viscous damping of a trapped fluid

The fluid equations in (5) are highly nonlinear and, in
general, require numerical methods to obtain solutions. For
our purposes, we instead adopt a variational ansatz approach

to solving these partial differential equations [57]. External
confinement from a harmonic potential results in the equilib-
rium (denoted by subscript 0) density distribution following

ρ0(r) = mN

Z
exp

(
−V (r)

kBT0

)
, (11)

where Z = ∫
d3r e− V (r)

kBT0 gives the appropriate normalization
and N is the number of molecules. If we were then only to
consider collective oscillations and damping from long wave-
length excitations that do not induce center-of-mass sloshing,
Eq. (11), motivates a Gaussian variational ansatz for the local
density:

ρ(r, t ) = mN
3∏

i=1

1√
2πσ 2

i (t )
exp

(
− r2

i

2σ 2
i (t )

)
, (12)

where σi(t ) is the distribution widths along each axis i that we
allow to vary in time (depicted in Fig. 4).

Plugging the ansatz of Eq. (12) into the continuity
equation (5a) gives

3∑
i=1

[
∂iUi(r) −Ui(r)

(
ri

σ 2
i (t )

)
+
(

r2
i

σ 2
i (t )

− 1

)
σ̇i(t )

σi(t )

]
= 0,

(13)

which admits the velocity field solution

Ui(r) =
(

σ̇i(t )

σi(t )

)
ri. (14)

Thus, as expected, the fluid flow vanishes in the trap’s center
for the excitations we consider. These functional forms for ρ

and U then render the Navier-Stokes equation (5b), in the form

σ̈i(t ) + ω2
i σi(t ) = kB

m

(
1

σi(t )
− σi(t )

ri
∂i

)
T (r, t )

+ σi

∑
j,k,


∂ jμi jk
(T )

riρ(r)
δk,


σ̇k

σ


, (15)

which bears no dependence on the thermal conductivity. Since
σi(t ) does not depend on spatial coordinates, consistency
requires that we take a spatial average to suppress local
fluctuations of the temperature field in Eq. (15). This av-
erage is taken by multiplying Eq. (15) and the temperature
balance equation (5c) by n(r, t ), then integrating over d3r.
Appendix A gives further details of the spatial averaging
procedure, which results in

σ̈i(t ) + ω2
i σi(t ) + 1

3σi(t )

∑
j

[
ω2

jσ
2
j (t ) + σ̇ 2

j (t )
]− 2kBT0

mσi(t )
≈ −2

5

Vhy

Nm

∑
j

μii j j (T (t ))
σi(t )

σ̇ j (t )

σ j (t )
. (16)

The relevant viscosity matrix elements can be recast in terms of a unit-free matrix

Mi j (�) ≡ μii j j (T ; �)

μ0(T )

= 1

512

⎛
⎜⎝

117 cos(4�) + 84 cos(2�) + 415 −28[3 cos(2�) + 11] −[117 cos(4�) + 107]

−28[3 cos(2�) + 11] 616 28[3 cos(2�) − 11]

−[117 cos(4�) + 107] 28[3 cos(2�) − 11] 117 cos(4�) − 84 cos(2�) + 415

⎞
⎟⎠, (17)
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FIG. 5. Mi j matrix elements as a function of �. The diagonal
elements are plotted on the left in subplot (a), whereas the negated
(multiplied by a minus sign) off-diagonal elements plotted on the
right in subplot (b).

as is taken from Ref. [54], where the isotropic unit-full
viscosity coefficient is given by [51]

μ0(T ) = 5

16a2
d

√
mkBT

π
. (18)

With the parameters in Table I, the isotropic viscosity has a
value of μ0 ≈ 2.5 × 10−15 Pa s, which is around 1010 times
less than air at room temperature and pressure [58]. The
Mi j (�) matrix elements are plotted in Fig. 5, with compo-
nents coupled to the x and z axes showcasing a significant
variation with �. We see in Fig. 5 that the magnitude of off-
diagonal matrix elements M13 = Mxz and M23 = Myz become
maximally separated around � ≈ 45◦, explaining the slight
separation of Tx(t ) and Ty(t ) in Fig. 3(e), otherwise negligible
when � = 0◦, 90◦.

Equation (16) above treats the temperature field appearing
in μi jk
(T ) to be spatially uniform over the region where the
gas is hydrodynamic. Such an approximation follows from
the form of collective oscillations implied by the density (12)
and flow velocity fields (14) in an initially isothermal gas,
disallowing a spatial temperature variation on the order of
the gas spatial widths [39,48]. Hence, temperature as appears
in the viscosity is simply treated as T ≈ T (t ). In doing so,
we were required to define an effective hydrodynamic volume
Vhy = ∫

d3r [59]. Proper identification of this volume, includ-
ing its dependence on aspect ratio, density, and dipole tilt, is
essential to the performance of the model, and is our main
undertaking here. We define this volume to be the spheroidal
volume bounded by the outer classical turning radius of the
trap, multiplied by an empirical factor η. The outer turning
radius is obtained by equating Etotal = V (RHD, θ, φ), to give
(see Appendix A)

R2
HD(θ ) = 6kBT (t )

mω2
⊥

[sin2 θ + λ cos2 θ ]−1, (19)

where λ = (ωz/ω⊥)2 quantifies the trapping anisotropy. The
effective hydrodynamic volume is then computed as

Vhy(λ, Kn) = η(λ, Kn)

3

∫
R3

HD()d

= 4π

3

(
6kBT (t )

mω2
⊥

)3/2
η(λ, Kn)√

λ
. (20)

As written, we have assumed that η could depend on the
trapping geometry through λ and on the Knudsen number,
which in turn, also implicitly depends on N and the dipole
angle �. These dependencies are addressed later in the pa-
per. Such generality allows η to act as a coarse-graining
parameter which accounts for all non-hydrodynamic effects
excluded from our current theoretical treatment. Additionally,
Eq. (18) implies the temperature dependence of viscosity goes
as μii j j (T ) ∝ √

T , for which we will simply approximate as
T ≈ T0 for all times [60].

For the relevance of time-of-flight imaging, we point out
that the momentum space temperature, which differs from
the local temperature of Eq. (6c), can also be obtained from
solutions to Eq. (16) via the relation

kBTp(t ) = 1

3N

∫
d3rd3v f (r, v, t )mv2

= 2kBT0 − 1

3

∑
i

mω2
i σ

2
i (t ), (21)

as follows from Eqs. (7), (14), and (A11).

B. Linear analysis

Some proceeding discussions on collective dynamics are
made more accessible in the language of normal modes, moti-
vating a linear analysis of Eq. (16). If only taken perturbatively
out of equilibrium, we can consider small deviations away
from the equilibrium widths by writing σi(t ) = σ0,i + δσi(t ).
Then expanding to first order in δσi(t ), Eq. (16) becomes

¨δσ i(t ) + 2
∑

j

�i j ˙δσ j (t ) +
∑

j

Oi jδσ j (t ) ≈ 0, (22)

with squared-frequency and damping matrices

Oi j = 2ω2
i δi, j + 2

3
ωiω j, (23a)

�i j = μ0Vhy

5NkBT0
ωiMi j (�)ω j . (23b)

The matrices above encode the anisotropies from both the
trap and anisotropic collisions. A factor 2 multiplies � in
Eq. (22) as is the convention in damped harmonic oscillators.
With � multiplying the first-order time derivative terms ˙δσ i,
it is made clear that damping of weltering oscillations results
from the trap frequency weighted viscosities within the hydro-
dynamic volume.

Diagonalizing the squared-frequency matrix O gives the
eigenvalues

ω2
0 = 2ω2

⊥, (24a)

ω2
± = 1

3 (4λ + 5 ±
√

16λ2 − 32λ + 25)ω2
⊥, (24b)

which are exactly those obtained for inviscid Euler flow in
Refs. [46,48], and correspond to the respective eigenmodes
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FIG. 6. Comparison of the momentum space temperature Tp (21) vs time t , obtained from DSMC simulations (black solid curves) and our
theory (red dashed curves) with N = 5 × 105 (Kn ≈ 0.04), � = 90◦, and parameters in Table I. The subplots (a) to (h) correspond to various
values of trapping anisotropy with λ = 0.13 to 8.0 as labeled in the subplot headers. The fitted values of η are also provided in the subplot
headers with their fitting standard uncertainties.

(up to arbitrary normalization)

o0 =
⎛
⎝ 1

−1
0

⎞
⎠, (25a)

o± =

⎛
⎜⎝

5 − 4λ ± √
25 + 16λ(λ − 2)

5 − 4λ ± √
25 + 16λ(λ − 2)

4
√

λ

⎞
⎟⎠. (25b)

The eigenmode o0 is a strictly radial quadrupole mode, while
o− and o+ are three-dimensional quadrupole and breathing
modes respectively.

Similarly, � results in two nontrivial eigenvalues γ±, that
constitute the eigenrates of �. Although it is tempting to
assign one of these eigenrates as the overall relaxation rate,
the eigenmodes associated to each γ±, are in general, not
the eigenmodes of O. Consequently, coupling between the
eigenmodes of � is inevitable during dynamical evolution, en-
forcing that accurate relaxation trajectories are best obtained
from full solutions to Eq. (22).

C. The hydrodynamic volume

Returning to the main argument, Eq. (16) is expected to
be a reasonable representation of dynamics, provided the
shape of the gas remains nearly Gaussian. To employ these
equations, we must establish the value of the effective hy-
drodynamic volume. A first guess at this volume is given in
Eq. (20), which left available a free parameter η, that may
depend on λ and Kn. As noted in Sec. IV A, Kn is implicitly
dependent on N and �, which are taken as the relevant inde-
pendent variables for this study.

To extract η, we perform multiple DSMC runs while vary-
ing λ, N, and �, which provides us time traces of Tp(t )
(21) for each combination of parameter values. We then fit
Tp(t ) as computed from our theory (16) to those from the
DSMC simulations while floating η, such that it minimizes
the relative root-mean-squared error

ε(η) =

√√√√∑
t

(
T DMSC

p (t ) − T theory
p (t ; η)

T DMSC
p (t )

)2

. (26)

In these numerical experiments, we tune the trap anisotropy
in a manner that does not the affect Kn, by setting ω⊥ =
ω/λ1/6 and ωz = ωλ1/3. This construction ensures that ω, and
therefore Kn, both remain independent of λ. The dipoles are
taken to point along x̂ (� = 90◦) for the data shown. Depen-
dence on dipole orientation will be included below.

Results of several such fits are shown in Fig. 6, which
compares the Tp time traces for a series of cross-dimensional
rethermalization experiments with N = 5 × 105 (Kn ≈ 0.04)
over a range of λ = 0.13 to 8.0, as obtained from DSMC
simulations (solid black curves) and our fitted theory (dashed
red curves). Noticeably, there is a clear beating of various
modes with different frequencies which our theory is able to
describe, showing favorable agreement in both the amplitude
and phase of oscillations. A representative comparison plot of
Tr (t ) as obtained from DSMC and Eq. (16) is also provided
in Fig. 7, with N = 5 × 105 (Kn ≈ 0.04) and λ = 0.32. Good
agreement is seen in all Tri (t ) time traces as well. We note that
temperature time traces tend to show better agreement to the
DSMC ones for excitation along the long axis of a prolate trap,
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FIG. 7. Comparison of the position space pseudotemperatures Tr

vs time t , obtained from DSMC simulations [upper subplot (a)] and
our theory [lower subplot (b)] with the parameters in Table I, � =
90◦, N = 5 × 105 (Kn ≈ 0.04), and λ = 0.32.

even for larger Knudsen numbers (Kn ≈ 0.1). So, we stick to
this excitation geometry for a more focused study.

For a given orientation of the dipoles, it may be expected
that η depends on both the trap aspect ratio λ and the num-
ber of molecules N . Increasing N , ceteris paribus, evidently
increases the density and hence likely the hydrodynamic vol-
ume. As for aspect ratio, a tentative λ dependence of Vhy

is already taken into account by (20), whereby the scaling
parameter η may depend only weakly on λ. This hypothesis
is supported by the numerics as shown in Fig. 8, where we
find that η is linearly dependent on N , but largely independent
of λ for the range of these parameters we explore.

Finally, for a given λ and N , it remains to resolve the
dependence of η on the dipole orientation Ê . In this con-
text, recall that the dilute and hydrodynamic regimes are
distinguished by the Knudsen number, which is inversely
proportional to the collision cross section, Eq. (3). We saw
in Sec. IV A that this cross section results in anisotropic
viscosities that work to bring local thermodynamic fluctua-
tions back to equilibrium. Having accounted for this aspect
of differential scattering, we posit that η should only depend
on the post-collision averaged cross section σcoll = ∫

d′ dσ
d′ ,

which still preserves an incoming-collision angle dependence
[16]. As to how so, we present the following argument. Pro-
late traps have a weak trapping axis z, along which the gas
has a larger thermal width. As a result, the mean-free path

FIG. 8. Plot of η vs N for various values of λ = 0.13, 0.20,

0.32, 0.50, all of which are prolate (cigar) geometries. Also plotted is
a linear function ansatz in Eq. (28) (gray dashed line), for comparison
with data from DSMC simulations (blue data). Error bars on the
DSMC data points denote standard fit uncertainties.

along that axis is relatively smaller compared to the sample
size, and consequently more hydrodynamic. Collisions that
occur with relative momentum directed along the long axis
are then most able to keep molecules behaving collectively as
hydrodynamic. The bulk total cross section is, therefore, most
simply taken as

σcoll = a2
d

π

3
[3 + 18 cos2(Ê · êhy) − 13 cos4(Ê · êhy)], (27)

where êhy = ẑ denotes the most hydrodynamic axis (weakest
trap frequency), so that Ê · êhy = �.

We indeed find that η follows a � dependence very similar
to that of Eq. (27), when comparing η as obtained from DSMC
experiments, to a fitting function of the form (σcoll/σ coll )α +
β in Fig. 9, where σ coll = ∫

σcoll(êhy)d êhy = 32πa2
d/15 is the

angular averaged total cross section. The observations above
motivate the functional form

η ≈ a + b

(
N

105

)[
1 + c

(
σcoll

σ coll

)]
(28)

for some constants a, b, and c, which we determine from fits
to be a ≈ 2.21 ± 0.017, b ≈ 0.67 ± 0.020, and c ≈ 0.26 ±
0.015. See Appendix C for further details. Our functional
guess for the hydrodynamic volume is therefore

Vhy(λ, N,�) ≈ 4π

3

(
6kBT0

mω2
⊥

)3/2

× 1√
λ

[
2.21 + 0.67

(
1 + 0.26

σcoll(�)

σ coll

)
N

105

]
.

(29)

This quasiempirical formula constitutes the main result of the
present paper. Using this parametrization, the equations of
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FIG. 9. Plot of η vs � from a cross-dimensional rethermalization
experiment. The data points (points with error bars) are obtained
from DSMC simulations, and are compared to the fitting function
(dashed curves) in Eq. (28). The data is obtained with the parameters
in Table I and λ = 0.2, for three values of N = 4 × 105 (black data,
Kn ≈ 0.06), N = 3 × 105 (gray data, Kn ≈ 0.07), and N = 2 × 105

(light gray data, Kn ≈ 0.11).

motion (16) can be used to reliably determine the evolution
of a hydrodynamic dipolar Fermi gas in a prolate trap, subject
to excitation along the long axis of the trap.

V. DISCUSSIONS AND CONCLUSIONS

A trapped gas transitions to one that is hydrodynamic when
the molecular mean-free path is far exceeded by the extent of
its thermal cloud. Collisional thermalization is then a local and
rapid process, for which collective dynamics becomes likened
to that of a fluid. In this work, we have studied the damping
and oscillations of hydrodynamic welter in harmonically con-
fined dipolar gases, with cross-dimensional rethermalization
experiments.

Unlike its dilute counterpart, a hydrodynamic dipolar gas
has its distribution width (second moment) dynamics closely
follow the symmetries imposed by the confining potential.
This adherence to the extrinsic trap symmetry arises from a
high frequency of collisions, suppressing the intrinsic dipo-
lar properties from manifesting on macroscopic scales. But
since local thermal equilibration is not truly instantaneous,
dipolar collisions still result in anisotropic viscous shearing
between fluid layers, damping the macroscopic fluid welter.
We have constructed a model to describe such damped wel-
tering dynamics, presented in Eq. (16). Embedded in this
model is a semiempirical quantity Vhy, which quantifies the
hydrodynamic extent of the trapped gas and its consequence
to damping. Through use of numerical experiments, we obtain
a functional form for Vhy in Eq. (29), expected to work in the
range of λ, N , and � explored here.

Larger Knudsen numbers and trap anisotropies will in-
crease the dilute fraction, requiring more nuanced treatments
of the nonhydrodynamic regions. Moreover, the approxima-
tion made in Sec. IV of threshold dipolar scattering, may
not be adequate in hydrodynamic samples of polar molecular
gases. Threshold scattering requires that the collision energies
relative to the dipole energy are sufficiently low [61], but
that there be high enough collision rates to remain hydro-
dynamic, as detailed in Appendix B. This raises issues for
Bose gases within the presented formalism, since lowering
the temperature to achieve threshold scattering would result
in a significant condensate fraction. On the other hand, Fermi
gases below TF still have collective excitations well described
by classical kinetic theories, if Pauli blocking effects are
included [47]. Lastly, dipolar mean-field effects have been
ignored, thermal energies being much larger than the average
dipolar mean-field energy per particle [14]. All these con-
siderations, albeit important to current molecular ultracold
experiments, are not within the current scope of this work and
will be considered in future investigations.
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APPENDIX A: AVERAGING OUT SPATIAL COORDINATES

To obtain the spatially averaged equations of motion in
Sec. IV A, we start by defining a notation for spatially aver-
aged quantities:

〈· · · 〉 = 1

N

∫
n(r, t )(· · · )d3r. (A1)

This renders the density averaged equation for σi(t ) as〈
r2

i T
〉

σ 2
i (t )

− 〈ri∂iT 〉 = m

kB

(
σ̈i(t )

σi(t )
+ ω2

i

)〈
r2

i

〉

−
∑
j,k,


σ̇k

σ


δk,


∫
d3r

NkB
ri∂ jμi jk
(T )

= m

kB

(
σ̈i(t )

σi(t )
+ ω2

i

)
σ 2

i (t )

−
∑
j,k,


σ̇k

σ


∫
d3r

NkB
ri∂ jμi jk
(T )δk,
. (A2)

as for averaging the temperature balance equation

∂T (r, t )

∂t
+
∑

i

Ui∂iT (r, t ) + 2

3

∑
i

∂iUiT (r, t )

= 2

3n(r, t )kB

∑
i, j,k,


(∂ jUi )(∂
Uk )μi jk
(T )

+ 2

3n(r, t )kB

∑
i, j

∂i[κi j∂ jT (r, t )], (A3)
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we first note the relation

d〈T 〉
dt

=
∫

d3r

N

[
n(r, t )

∂T (r, t )

∂t
+ T (r, t )

∂n(r, t )

∂t

]

=
〈
∂T

∂t

〉
+
∑

i

σ̇i(t )

σi(t )

( 〈
r2

i T
〉

σ 2
i (t )

− 〈T 〉
)

, (A4)

where we utilized the continuity equation. Then multiplying
the temperature balance equation by n(r, t )/N and integrating
over d3r gives

d〈T 〉
dt

+ 5

3

∑
i

σ̇i(t )

σi(t )
〈T 〉 −

∑
i

σ̇i(t )

σi(t )

( 〈
r2

i T
〉

σ 2
i (t )

− 〈ri∂iT 〉
)

= 2

3NkB

∑
i, j,k,


σ̇i(t )

σi(t )
δi, j

(∫
d3r μi jk


)
δk,


σ̇
(t )

σ
(t )

+ 2

3NkB

∑
i, j

∫
d3r[∂i(κi j∂ jT )]. (A5)

Combining equations (A2) and (A5), we get

d〈T 〉
dt

+ 5

3

∑
i

σ̇i(t )

σi(t )
〈T 〉

− m

kB

∑
i

σ̇i(t )
[
σ̈i(t ) + ω2

i σi(t )
]

≈ 2

3NkB

∑
i, j,k,


σ̇i(t )

σi(t )
δi, j

(∫
d3r μi jk


)
δk,


σ̇
(t )

σ
(t )

− 1

NkB

∑
i, j,k,


σ̇i(t )

σi(t )

(∫
d3r ri∂ jμi jk


)
δk,


σ̇k

σ


+ 2

3NkB

∑
i, j

∫
d3r[∂i(κi j∂ jT )]. (A6)

At this point, conservation of energy has that

Etotal = m

2

∑
i

(
ω2

i

〈
r2

i

〉+ ∫
d3rd3v

N
f (r, v, t )v2

i

)

= m

2

∑
i

(
ω2

i σ
2
i +

∫
d3rd3v

N
f (r, v, t )v2

i

)
, (A7)

where Etotal is the total energy of the hydrodynamic system.
Therefore, the relation above along with Eqs. (7) and (14)
motivates the form for 〈T 〉 as

〈T 〉 = 2Etotal

3kB
− m

3kB

∑
i

[
ω2

i σ
2
i (t ) + σ̇ 2

i (t )
]
, (A8)

and its time derivative

d〈T 〉
dt

= − 2m

3kB

∑
i

[
ω2

i σ̇i(t )σi(t ) + σ̈i(t )σ̇i(t )
]
. (A9)

Plugging these relations into Eq. (A6) and assuming each axis
can be solved independently, we obtain

σ̇i(t )
[
σ̈i(t ) + ω2

i σi(t )
]

+ σ̇i(t )

σi(t )

⎡
⎣1

3

∑
j

[
ω2

jσ
2
j (t ) + σ̇ 2

j (t )
]− 2Etotal

3m

⎤
⎦

≈ 3

5Nm

∑
j,k,


σ̇i(t )

σi(t )

(∫
d3r ri∂ jμi jk


)
δk,


σ̇k

σ


− 2

5Nm

∑
j,k,


σ̇i(t )

σi(t )
δi, j

(∫
d3r, μi jk


)
δk,


σ̇
(t )

σ
(t )

− 2

5Nm

∑
j

∫
d3r[∂i(κi j∂ jT )]. (A10)

Finally, the conserved total energy Etotal is made up of the
potential energy and thermal equilibrium temperature T0:

Etotal = 3

2
kBT0 + m

2

∑
i

ω2
i σ

2
0,i = 3kBT0, (A11)

where we utilized that σ0,i =
√

kBT0/mω2
i .

APPENDIX B: CONSIDERATIONS FOR THRESHOLD
SCATTERING

The analytic results obtained for the viscosities in
Sec. IV A are applicable for close-to-threshold dipolar scat-
tering, which is energy independent [16]. However, this
assumption is only appropriate when the collision energy
is much smaller than the characteristic dipole energy Edd =
16π2ε2

0 h̄6/m3d4, where d is the electric dipole moment [61].
At the same time, the transport coefficients are derived with
classical kinetic theory that assumes a nondegenerate sam-
ple. Implicit in this formulation is, therefore, that the gas
temperature remains well above the Fermi temperature TF =
h̄ω(6N )1/3/kB [45]. The applicability of our current theory
requires that temperature lies in the range TF < T � Edd/kB.

Furthermore, the derivation above relies on the gas being
hydrodynamic, as is characterized by the Knudsen number
Kn. The requirements to remain in the regime of validity as
formulated in Sec. IV A are summarized as

h̄2

4ma2
d

� kBT > h̄ω(6N )1/3, (B1a)

N � 15
√

π

4

kBT

mω2a2
d

, (B1b)

which is only ever possible if ad/aHO � 0.04, where ad =
md2/(8πε0h̄2) is the dipole length and aHO = √

h̄/(mω) is
the harmonic oscillator length. In heteronuclear alkali dimers,
these microwave shielded molecules with d ∼ 1 D and m ∼
50 amu have dipole lengths on the order of ad ∼ 5000a0 to
10 000a0, in units of Bohr radius a0. The necessary trap fre-
quencies to permit threshold scattering above TF would thus
need to be of order ω � 10 Hz, which is very weak compared
to typical ultracold experiments.

For the parameters in Table I, we find that kBT/Edd ≈ 28,
implying a more accurate cross section would be that obtained
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from the semi-classical Eikonal approximation [61–63]. We
opt to proceed with the effective cross section obtained with
threshold energy scattering as it still serves to illustrates the
effectiveness of our theory, which can be extended to other
cross sections.

APPENDIX C: A SIMPLE FUNCTIONAL FORM FOR THE
HYDRODYNAMIC VOLUME

From Fig. 8, we saw that η is mostly independent of λ,
which leaves us with η = η(N,�). Then assuming that η

is separable in its two arguments, this allows us to write
η(N,�) = ηN (N )η�(�). Within the range of N we explore,
we could Taylor expand ηN around a number of molecules
that is sure to be hydrodynamic N0, so that

η(N,�) ≈
(

ηN (N0) + (N − N0)
∂ηN

∂N

∣∣∣∣
N0

)
η�(�). (C1)

Then also assuming that the dependence of η� on � purely
arises through σcoll(�) [i.e., η� = η�(σcoll )], we then treat
ξ = σcoll/σ coll as a small parameters and Taylor expand η�

to give

η(N,�) ≈ a + b

(
N

105

)[
1 + c

(
σcoll(�)

σ coll

)]
, (C2)

as in Eq. (28), where

a = η�(0)

(
ηN (N0) − N0

∂ηN

∂N

∣∣∣∣
N0

)
, (C3a)

b = 105 × η�(0)
∂ηN

∂N

∣∣∣∣
N0

, (C3b)

c = 1

η�(0)

∂η�

∂ξ

∣∣∣∣
ξ=0

, (C3c)

having used the notation η�(0) = η�(ξ = 0).
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