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We study anisotropic thermalization in dilute gases of microwave shielded polar molecular
fermions. For collision energies above the threshold regime, we find that thermalization is sup-
pressed due to a strong preference for forward scattering and a reduction in total cross section with
energy, significantly reducing the efficiency of evaporative cooling. We perform close-coupling cal-
culations on the effective potential energy surface derived by Deng et al. [Phys. Rev. Lett. 130,
183001 (2023)], to obtain accurate 2-body elastic differential cross sections across a range of collision
energies. We use Gaussian process regression to obtain a global representation of the differential
cross section, over a wide range of collision angles and energies. The route to equilibrium is then
analyzed with cross-dimensional rethermalization experiments, quantified by a measure of collisional
efficiency toward achieving thermalization.

The ever growing interest in quantum control of po-
lar molecules motivates the cooling of molecular gases
to unprecedented cold temperatures [1–5]. In bulk gases,
reaching such temperatures can be accomplished through
evaporative cooling [6], a process which throws away en-
ergetic molecules and leverages collisions to rethermal-
ize the remaining, less energetic, distribution. Under-
standing and controlling 2-body scattering for thermal-
ization is, therefore, of great importance for ultracold
experiments. To this end, the exciting advent of colli-
sional shielding with external fields has permitted a large
suppression of 2-body losses between molecules [7–11].
Thermalization relies instead on the elastic cross section,
which is generally dependent on the field-induced dipole-
dipole interaction and their energy of approach. Of par-
ticular interest to this Letter is collisional shielding with
microwave fields [12–14], recently achieved at several labs
around the world [15–18].

In analogous gases of magnetic atoms with compara-
tively small dipole moments, dipolar scattering remains
close-to-threshold [19] at the ultracold but nodegenerate
temperatures of T ∼ 100 nK [20–23]. For dipoles, thresh-
old scattering occurs when the collision energy is much
lower than the dipole energy Edd, in which case the scat-
tering cross section becomes energy independent [24] with
a universal analytic form [25]. Numerical studies of ther-
malization are made much simpler at universality, since
collisions can be sampled regardless of collision energy
[26, 27]. However, this convenience is lost with the polar
molecular gases of interest here. Take for instance a gas
of fermionic 23Na40K, as we will concern ourselves with
in this study. This species has a large intrinsic dipole mo-
ment of d = 2.72 D, so that even ultracold temperatures
have majority of collisions occurring away from threshold
with an energy dependent cross section.

In this Letter, we find that non-threshold collisions
can dramatically reduce thermalization and thus, the ef-
ficiency of the cooling process. Ignoring all 1 and 2-body
losses for a focused study on elastic collisions, the de-
crease in gas total energy E = 3NkBT along with the
number of molecules N , approximately follows the cou-

pled rate equations [17, 28]

dN

dt
= −ν(κ)γthN, (1a)

dE

dt
= −1

3
λ(κ)γthE, (1b)

where ν(κ) = (2 + 2κ+ κ2)/(2eκ) and λ(κ) = (6 + 6κ+
3κ2 +κ3)/(2eκ) are functions of the energetic truncation
parameter κ = U/(kBT ) [29].

FIG. 1. A log-log plot of T vs N during a forced evapora-
tion protocol. The plot compares the evaporation trajectory
for microwave shielded 23Na40K when scattering is realistic
and non-threshold (solid black curve), to the artificial case of
threshold scattering (dashed red curve). Both 1 and 2-body
losses are assumed negligible and ignored here.

By continuously lowering the energetic depth of the
confining potential U(t) = U0 exp(−t/τ) over a time in-
terval τ , highly energetic molecules are forced to evapo-
rate away, lowering the number of molecules along with
the gas temperature as shown in Fig. 1. For the plot,
Eq. (1) is solved by taking evaporation to occur with an
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initial trap depth U0/kB = 4 µK over τ = 0.5 s, in a
harmonic trap with mean frequency ω = 2π × 100 Hz,
starting at temperature T0 = 400 nK and molecule num-
ber N0 = 20, 000. The evaporation efficiency, defined as
the slope of T vs N on a log-log scale, is governed by the
thermalization rate γth. The figure shows efficient cool-
ing for the low-energy threshold cross sections (dashed
red curve), and significantly less efficient cooling for the
realistic cross sections (solid black curve). The remainder
of this Letter provides the microscopic mechanisms that
lead to this dramatic difference, and efficient theoretical
tools we employ to obtain these conclusions.

Shielded collisions—Central to this study, are collisions
that occur between molecules shielded by circularly po-
larized microwaves [14]. The resulting potential energy
surface between two such molecules is conveniently de-
scribed by a single effective potential [30]:

Veff(r) =
C6

r6
[
1− (r̂ · Ê)4

]
+

d
2

4πϵ0

3(r̂ · Ê)2 − 1

r3
, (2)

where r = (r, θ, ϕ) is the relative position between the

two colliding molecules, Ê is the axis along which the
dipoles are effectively aligned, d = d0/

√
12(1 + (∆/Ω)2)

is the effective molecular dipole moment and C6 = d40(1+
(∆/Ω)2)−3/2/(128π2ϵ20ℏΩ). Here ∆ and Ω are the detun-
ing and Rabi frequency respectively, of the microwaves.
A y = 0 slice of the effective microwave shielding inter-
action potential is plotted in the inset of Fig. 2. Notably,
the long-range 1/r3 tail of Veff(r) is almost identical to
that of point dipole particles, modified only by an over-
all minus sign. As a result, the close-to-threshold elastic
cross sections for microwave shielded molecules are iden-
tical to those for point dipoles.

It is natural to introduce units based on the reduced
mass µ, dipole length and dipole energy:

ad =
µd

2

4πϵ0ℏ2
and Edd =

ℏ2

µa2d
, (3)

respectively. Threshold scattering is then expected to oc-
cur for collision energies E ≪ Edd. With the microwave
parameters ∆ = 2π × 15 MHz and ∆ = 2π × 9.5 MHz,
which will be assumed in what follows, the molecules
see a dipole length of ad ≈ 3900a0, corresponding to
a dipole energy of Edd/kB ≈ 360 nK. Therefore, tem-
peratures comparable to Edd/kB are insufficient to keep
molecular scattering in the threshold regime [24]. More-
over, since the dipole energy scales as Edd ∼ d−4, larger
dipoles require much lower temperatures to achieve uni-
versal dipolar threshold scattering as alluded to earlier.
Away from threshold, the integral cross section σ in the
presence of microwave shielding (dashed black curve), de-
velops a nontrivial energy dependence that clearly dif-
fers from that of plain point dipoles (dotted blue curve)
as illustrated in Fig. 2. The plotted cross sections were
obtained from close-coupling calculations logarithmically
spaced in energy, with a universal loss short-range bound-
ary condition [31] (see Supplementary Material for fur-
ther details).

FIG. 2. Energy dependence of the angular averaged total
cross section σ between microwave shielded 23Na40K (black
dashed line). The energy dependence clearly differs from the
total cross section between fermionic point dipoles (dotted
blue curve). For comparison, we plot the low energy Born and
high energy Eikonal approximations with solid red lines. The
inset shows a y = 0 slice of the effective microwave shielding
interaction potential, with Rabi frequency Ω = 2π × 15 MHz
and microwave detuning ∆ = 2π × 9.5 MHz. The shielding
core is depicted as a white patch surrounding the coordinate
origin which saturates the colorbar at Veff > 200Edd. Coor-
dinate axes are plotted in units of 103 Bohr radii a0.

Away from threshold at E ≈ Edd, the microwave
shielded integral cross section does not deviate much from
its value at threshold (solid red line in Fig. 2). But the
differential cross section could still have its anisotropy
changed substantially, which is what ultimately affects
thermalization [25]. For a study of both non-threshold
differential scattering and its implications to thermaliza-
tion in nondegenerate Fermi gases, we take its nonequi-
librium evolution as governed the Boltzmann transport
equation [32]. Formulated in this way, numerical so-
lutions treat the molecular positions and momenta as
classical variables, while collisions can be efficiently com-
puted by means of Monte Carlo sampling [26, 33]. But
on the fly close-coupling calculations would be too ex-
pensive for such sampling over a broad range of collision
energies and angles. Instead, we propose the following.
Gaussian process fitting—At a given collision energy,

the elastic differential cross section Del, is a function of
the dipole alignment axis Ê, and the relative ingoing and
outgoing momentum vectors ℏk and ℏk′, respectively.
Collectively, we refer to this set of parameters as β. By
first performing close-coupling calculations at several well
chosen collision energies E = ℏ2k2/(2µ) [34], we can use
the resultant scattering data to infer an M -dimensional
continuous hypersurface that approximates Del, with a
Gaussian process (GP) model [35–37].
GP regression is a machine learning technique used to
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interpolate discrete data points, stitching them together
to form a continuous global surface. To do so, a GP as-
sumes that Del(β) evaluated any 2 nearby points in its
coordinate space, βi and βj , are Gaussian distributed
with a covariance given in terms of a function K(βi,βj),

called the kernel. A parameterized functional form for
the kernel is chosen prior to the surface fitting process,
reducing the task of combing through an infinite space of
possible functions that best match the data, to a mini-
mization over the kernel parameters. This minimization
step is referred to as training the GP model.

FIG. 3. The central plot shows the total cross section as a function of the incident collision angle, obtained from (a) the Born
approximation (red dashed curve), and from GP interpolation (solid curves) for 3 different collision energies: (b) E = 0.2Edd

(black), (c) E = 2Edd (gray) and (d) E = 20Edd (light gray). In alphabetical correspondence, are angular plots of the
differential cross section (in units of a2

d) in subplots with the respective collision energies, assuming dipoles pointing along

Ê = ẑ and incident collision angle η = 45◦ lying in the x, z-plane. Subplot (d) uses a smaller domain for clarity of presentation.

Several symmetries in the differential cross section help
to reduce the computational load of training slightly. Ro-
tated into the frame where Ê points along the z axis,
which we refer to as the dipole-frame, the unique hyper-
surface regions effectively live in an M = 4 dimensional
space, with coordinates β = (E, η, θs, ϕs). As defined,

η = cos−1 k̂ · Ê is the angle between the dipole and in-
cident relative momentum directions, where it is conve-

nient to select k̂ to lie in its x, z plane. The angles θs and
ϕs, denote the inclination and azimuthal scattering an-
gles respectively, in this frame. Doing so, the differential
cross section possesses the symmetry

Del(E, η, θs, ϕs) = Del(E, η, θs,−ϕs). (4)

Consequently, we only need to specify the differential
cross section for angles within the domain η, θs, ϕs ∈
[0, π], to fully describe its global structure. More details
of the appropriate frame transformations are provided in
Supplementary Material.

To perform the interpolation with GP regression, we
utilize the Matérn- 52 kernel [38], which is better able to
capture the sharp jumps in a non-smooth function, over
higher-order differentiable kernels such as the radial ba-
sis function. This kernel contains a parameter w that
sets a length scale over which features of the data vary

in coordinate space, that is optimized during the model
training process. This kernel is typically not ideal for
periodic input data, so we make the periodicity of the
angles (η, θs, ϕs) explicitly known to the GP model by
training it with the cosine of these angles, instead of the
angles themselves. Furthermore, log10(E/Edd) is fed into
the GP model in place of E, to reduce the disparity in
fitting domains between each coordinate of β. The GP
model is trained over the range log10(E/Edd) = −6 to
2, corresponding to collision energies of E/kB ≈ 0.36
pK to 36 µK. After training on ∼ 10, 000 samples of
Del(E, η, θs, ϕs), the resulting GP fit obtains a mean-
squared error of ≈ 0.5% against the close-coupling calcu-
lations [39], which we take as an accurate representation
of the actual cross section.

In Fig. 3, we plot the total cross section σ(E, η) =∫
Del(E, η,Ωs)dΩs, at various collision energies. There

is a marked variation in the η dependence, indicating
a higher tendency for side-to-side collisions (η = 90◦)
over head-to-tail ones (η = 0◦) at higher energies. To
highlight the dominant anisotropic scattering process,
Fig. 3 also provides plots of the differential cross section
at η = 45◦, the approximate angle at which σ is maxi-
mal. As energy increases from subplots (a) to (d), the
scattered angle dependence of Del becomes biased toward
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forward scattering, reducing the effectiveness of collisions
for thermalization as discussed below. Alphabetic labels
in Fig. 3 consistently correspond to the collision energies:
(b) E = 0.2Edd, (c) E = 2Edd and (d) E = 20Edd. The
Born approximated cross sections at threshold [25] are
labeled with (a).

Collisional thermalization—Fast and easy access to the
accurate differential cross section via its GP model now
permits accurate theoretical investigations of nondegen-
erate gas dynamics. More specifically, we are concerned
here with a gas’ route to thermal equilibrium. A common
experiment for such analysis is cross-dimensional rether-
malization [40], in which a harmonically trapped gas is
excited along one axis, then left alone to re-equilibrate

from collisions.
We present results in terms of the temperatures along

each axis i, defined in the presence of a harmonic
trap as Ti = (⟨p2i ⟩/m + mω2

i ⟨q2i ⟩)/2, where ⟨. . .⟩ =∫
d3qd3pf(q,p)(. . .) denotes a phase space average over

the phase space distribution f in molecular positions q
and momenta p, while ωi are the harmonic trapping fre-
quencies. As is usual in cross-dimensional rethermaliza-
tion, we consider an excitation of axis i then proceed
to measure the thermalization rate along axis j. This
is modeled by taking axis i to have an initial out-of-
equilibrium temperature Ti = T0 + δi/kB , with a pertur-
bance in energy δi, while the the other 2 axes are simply
at initial temperature T0.

FIG. 4. Plot of εij as a function of the dipole tilt angle Θ, for all 6 unique configurations (subplots a to f) of the excitation axis
i, and measured thermalization axis j. The solid red curves are the analytic εij results derived with the Born approximated
cross section at threshold, whereas the dashed-dotted curves are those from Monte Carlo integration using the GP interpolated
cross sections, at temperatures T = 10 nK (black), T = 100 nK (dark gray), T = 400 nK (gray), and T = 1 µK (light gray).
The dashed blue lines are the efficiency for purely p-wave collisions, εp = 1/4.1.

In the case of a dilute gas, the relaxation of Tj follows
an exponential decay in time, whose rate γij is related
to the standard collision rate γcoll, by a proportionality
factor εij = γij/γcoll. As defined, the quantity εij is the
inverse of the so-called number of collisions per rether-
malization [40, 41], a measure of thermalization common
to the literature [10, 16, 17]. We opt to utilize its in-
verse instead as it is the more natural definition to dis-
cuss efficiency of evaporative cooling. Usually defined as
γcoll = ⟨n⟩⟨σvr⟩ with phase space averaged number den-
sity ⟨n⟩ and 2-body elastic rate ⟨σvr⟩, εij represents the
efficiency of each non-threshold collision toward thermal-
ization of the gas. This collisional efficiency is formally

cast in terms of the integral

εij ≈ αij
π2

64

∫
d3κ

(2π)3
e−κ2/4

√
π

∫
d2Ω′D′

elκ

⟨σκ⟩
∆κ2i∆κ

2
j , (5)

where ∆κ2i = κ′2i −κ2i is the collisional change in adimen-
sional relative momenta κ = pr(mkBT0)

−1/2, αij = 3/2
if i = j, and αij = −3 otherwise (see Supplementary
Materials). The integral above has been evaluated ana-
lytically in the threshold scattering regime [27], both for
identical dipolar fermions and bosons.
Evidently from Eq. (5), εij is symmetric in its indices

which leaves only 6 unique configurations of i and j. As-
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serting the dipoles lie in the x, z-plane and tilted with
angle Θ = cos−1 Ê · ẑ, we compute Eq. (5) with Monte
Carlo integration [42] and plot the results in Fig. 4. Each
subplot (a to f) shows a different (i, j) configuration,
within which, εij is plotted against the dipole tilt an-
gle Θ as dashed curves, for the temperatures T = 10 nK
(black), T = 100 nK (dark gray), T = 400 nK (gray)
and T = 1 µK (light gray). Interestingly, the εij terms
involving excitation or rethermalization along y essen-
tially lose their dependence on Θ around 400 nK, beyond
which collisions are less efficient than even nondipolar p-
wave scattering (dashed blue line in Fig. 4) [43] for all
Θ. This decrease can be intuited by looking at the dif-
ferential cross section around η = 45◦, around which the
total cross section is maximal. As evidenced from the
subplots of Del in Fig. 3, forward scattering is favored at
higher collision energies, limiting momentum transfer be-
tween axes and therefore, also the efficiency of collisions
toward rethermalization. Preferential forward scattering
is what ultimately leads to the reduction in evaporation
efficiency, earlier described and seen in Fig. 1. There,
the rate of thermalization was approximated by the av-
erage γth = γcoll

∑
i,j εij/9, as is expected for evapora-

tion along all 3-dimensions. The dipoles were assumed
aligned along Θ = 90◦, and γth interpolated over several
temperatures to solve Eq. (1).

Realistically, forced evaporation by trap depth lower-
ing tends to occur primarily along 1 direction, reducing
the evaporation efficiency in the presence of molecular
losses [44]. The resulting out-of-equilibrium momentum
distribution from single axis evaporation will be much
like that in cross-dimensional rethermalization experi-
ments, where an anisotropic collisional efficiency could
now be used to your advantage. For instance, near unity
collisional efficiency is achieved in the threshold regime
with εxz specifically at Θ = 45◦. Optimal evaporation
protocols could thus be engineered by varying the molec-
ular dipole orientation relative to the axis of evaporation.
We leave such investigations to a future work.

Outlook and conclusions—By constructing a GP model
of the elastic differential cross section between microwave
shielded polar molecular fermions, we have found that
non-threshold collisions can greatly diminish the efficacy
of collisions toward thermalization of a nondegenerate
gas. It is thus prudent to perform evaporation in the
threshold regime, with the caveat that Pauli blocking in
fermions would also lower the collisional efficiency below
the Fermi temperature [20]. If deployed in direct sim-
ulation Monte Carlo solvers [26, 27, 33], this GP model
could also permit accurate dynamical studies in the Fermi
degenerate or hydrodynamic regimes. The latter is mo-
tivated by restrictions of εij , only being able to describe
thermalization in dilute samples. With larger molecular
dipoles at densities required to achieve quantum degen-
eracy, the collision rate is far exceeded by the mean trap-
ping frequency, demanding equilibration of trapped dipo-
lar gases be treated within a hydrodynamic framework
[45–48]. The method of GP interpolation proposed here

could similarly be applied to DC field shielded molecules
[49] and bosonic species.
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I. SCATTERING CALCULATIONS OF SHIELDED MOLECULES

For 2 polar molecules scattering of the effective potential Veff(r) provided in the main text, scattering solutions can
be obtained by first expanding the wavefunction in the basis

ψ(r) =
∑
ℓ,mℓ

uE,ℓ,mℓ
(r)

r
Yℓ,mℓ

(θ, ϕ), (1)

where Yℓ,mℓ
(θ, ϕ) are spherical harmonics, and uE,ℓ,mℓ

(r) are solutions to the radial time-independent Schrödinger
equation: (

d2

dr2
− ℓ(ℓ+ 1)

r2
+ k2

)
uE,ℓ,mℓ

(r) =
2µ

ℏ2
∑
ℓ′,m′

ℓ

⟨ℓ,mℓ|Veff(r) |ℓ′,m′
ℓ⟩uE,ℓ′,m′

ℓ
(r). (2)

Above, k2 = 2µE/ℏ2 is the collision wavenumber, and the explicit matrix elements ⟨ℓ,mℓ|Veff(r) |ℓ′,m′
ℓ⟩, provided in

below (IA).
Numerical scattering solutions associated to Eq. (2), require picking a consistent convention when referencing the

associated scattering matrices. We present our adopted convention as follows. First defining the matrices

D
ℓ′,m′

ℓ

ℓ,mℓ
= δℓ,ℓ′δmℓ,m′

ℓ

d2

dr2
, (3a)

W
ℓ′,m′

ℓ

ℓ,mℓ
= δℓ,ℓ′δmℓ,m′

ℓ

(
k2 − ℓ(ℓ+ 1)

r2

)
− 2µ

ℏ2
⟨ℓ,mℓ|Veff(r) |ℓ′,m′

ℓ⟩ , (3b)

and the fundamental set of radial wavefunction solutions U(r;E), Eq. (2) can be recast as the compact system of
equations:

[D +W ]U = 0. (4)

In principle, these equations can be solved numerically at a given collision energy E, by propagating the log derivative
matrix

Y (r) = U−1(r)
∂U(r)

∂r
=
∂ logU(r)

∂r
, (5)

from r = 0 to r → ∞. In practice, however, propagating to ∞ is not possible so we only do so up to r = rmatch,
then match Y (r) to the asymptotic solutions where the distant colliders no longer interact. Moreover, we side step
the issue of singularities at the origin by imposing a short-range boundary condition by starting the propagation at
a minimum radius r = rmin, then initializing the diagonal log-derivative matrix there as [31, 51]

Y ℓ,mℓ

ℓ,mℓ
(rmin) = −i

√
W ℓ,mℓ

ℓ,mℓ
(rmin), (6)

that assumes universal short-range loss. This boundary condition prevents dipolar scattering resonances [52, 53] which
simplifies our current study. Propagation is done with an adaptive radial step size version of Johnson’s algorithm [54],
utilizing

rmin = 100a0, (7a)

rmatch =

√
ℏ2L(L+ 1)

mE
+ 50ad, (7b)
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where a0 is the Bohr radius and L is the largest value of ℓ utilized in the calculation. Typically, we utilize L = 121
or as many as is required for numerical convergence.

The asymptotic solutions to Eq. (2) arise by considering the domain where r is much larger than the range of the
potential, so that Eq. (2) is well approximated as(

d2

dr2
− ℓ(ℓ+ 1)

r2
+ k2

)
uE,ℓ,mℓ

(r) ≈ 0. (8)

This asymptotic radial equation is solved by the 2 independent solutions (up to arbitrary normalization):

fE,ℓ(r) = krjℓ(kr), (9a)

gE,ℓ(r) = krnℓ(kr), (9b)

where jℓ(kr) and nℓ(kr) are the spherical Bessel and Neumann functions respectively. Then defining the matrices

F
ℓ′,m′

ℓ

ℓ,mℓ
(r;E) = δℓ,ℓ′δmℓ,m′

ℓ
fE,ℓ(r), (10a)

G
ℓ′,m′

ℓ

ℓ,mℓ
(r;E) = δℓ,ℓ′δmℓ,m′

ℓ
gE,ℓ(r), (10b)

arbitrary solutions to Eq. (8), and in fact Eq. (2), can be written as

U(r) = N [F (r)−KG(r)] , (11)

where K is the reactance matrix that is responsible for matching the numerical scattering solutions U to the asymp-
totic solutions in Eq. (10) at r = rmatch. In particular, the off-diagonal elements of K provide information on the
channel couplings that arise due to the interaction potential for a given incident collision channel. The matrix N is
relevant only for normalization.

The reactance matrix can be written in terms of the logarithmic derivative via

K =
F (r)Y (r)− ∂

∂rF (r)

G(r)Y (r)− ∂
∂rG(r)

∣∣∣∣∣
r=rmatch

, (12)

from which, we can then compute the other scattering matrices via the relations [24]

S =
I + iK

I − iK
, (13a)

T = i(S − I). (13b)

The scattering matrices above permit us to evaluate the scattering amplitude, noting thatmℓ remains a good quantum
number in these collision (App. IA), as

fsc(k, k̂
′) = −2π

k

∑
mℓ

∑
ℓ,ℓ′

iℓY ∗
ℓ,mℓ

(k̂)T ℓ′,mℓ

ℓ,mℓ
(k)Yℓ′,mℓ

(k̂′)i−ℓ′ , (14)

which gives the appropriately antisymmetrized elastic differential cross section [25] via

Del(k, k̂
′) =

1

2

∣∣∣fsc(k, k̂′)− fsc(k,−k̂′)
∣∣∣2, (15)

total cross section [51]

σ(k) =

∫
d2k̂′Del(k, k̂

′)

=
4π2

k2

∑
mℓ

∑
ℓ̃,ℓ,ℓ′

iℓ−ℓ̃Yℓ̃,mℓ
(k̂)Y ∗

ℓ,mℓ
(k̂)
[
T ℓ′,mℓ

ℓ̃,mℓ
(k)
]∗
T ℓ′,mℓ

ℓ,mℓ
(k), (16)

and integral total cross section

σ =
2π

k2

∑
mℓ

∑
ℓ,ℓ′

∣∣∣T ℓ′,mℓ

ℓ,mℓ
(k)
∣∣∣2. (17)
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A. Matrix elements of effective potential

To perform the scattering calculations on the effective single-channel microwave shielded potential energy surface,
we are required to compute the ⟨ℓ,m|Veff(r) |ℓ′,m′

ℓ⟩ matrix elements. We list these elements explicitly in this section.
The matrix elements for Vdd(r) are given as

⟨ℓ,mℓ|Vdd(r) |ℓ′,m′⟩ = d2eff
4πϵ0r3

⟨ℓ,mℓ|
[
4

√
π

5
Y2,0(θ, ϕ)

]
|ℓ′,m′

ℓ⟩

=
d2eff

4πϵ0r3

[
4

√
π

5

∫
dΩY ∗

ℓ,mℓ
(Ω)Y2,0(Ω)Yℓ′,m′

ℓ
(Ω)

]

=
d2eff

4πϵ0r3
2(−1)mℓ

√
(2ℓ+ 1)(2ℓ′ + 1)

(
ℓ 2 ℓ′

0 0 0

)(
ℓ 2 ℓ′

−mℓ 0 m′
ℓ

)
, (18)

while the matrix elements for V6(r) are given as

⟨ℓ,mℓ|V6(r) |ℓ′,m′
ℓ⟩ =

C6

r6
⟨ℓ,mℓ|

(
1 + cos2 θ

)
sin2 θ |ℓ′,m′

ℓ⟩

= 4
√
π
C6

r6
⟨ℓ,mℓ|

[
2

5
Y0,0(θ, ϕ)

2

7

√
1

5
Y2,0(θ, ϕ)−

4

105
Y4,0(θ, ϕ)

]
|ℓ′,m′

ℓ⟩

=
C6

r6
2(−1)m

√
(2ℓ+ 1)(2ℓ′ + 1)

×
[
2

5

(
ℓ 0 ℓ′

0 0 0

)(
ℓ 0 ℓ′

−mℓ 0 m′
ℓ

)
2

7

(
ℓ 2 ℓ′

0 0 0

)(
ℓ 2 ℓ′

−mℓ 0 m′
ℓ

)
− 4

35

(
ℓ 4 ℓ′

0 0 0

)(
ℓ 4 ℓ′

−mℓ 0 m′
ℓ

)]
. (19)

II. FRAME TRANSFORMATIONS FOR GAUSSIAN PROCESS FITTING

For efficient GP fitting of the elastic differential cross section, it is optimal to choose a coordinate frame whereby
the symmetries are most conveniently handled. Naively, the differential cross section during a two-body collision
involves 3 unit vectors: 1) the dipole alignment axis Ê, 2) the incident relative momentum k and 3) the outgoing
relative momentum k′, therefore requiring 6 angular coordinates. This description is the case in a lab-frame (LF),

where without loss of generality, we define it such that the dipole axis lies in its x, z-plane ÊLF = (sinΘ, 0, cosΘ)T ,
and the other 2 vectors are given in terms of spherical coordinates as

k̂ =

sin θ cosϕ
sin θ sinϕ

cos θ

 , (20a)

k̂′ =

sin θ′ cosϕ′

sin θ′ sinϕ′

cos θ′

 . (20b)

However, we can also define a dipole-frame (DF) which utilizes the dipole alignment direction as its z-axis, Ê = ẑDF,

while its x axis is aligned to the plane in which both Ê and k̂ lie, so that

ŷDF =
Ê × k̂

|Ê × k̂|
1

|Ê × k̂|

 − cosΘ sin θ sinϕ
cosΘ sin θ cosϕ− sinΘ cos θ

sinΘ sin θ sinϕ

 . (21)

The remaining x̂DF axis is then obtained with the cross product x̂DF = ŷDF × ẑDF. In the event where Ê and k̂
coincide, we simply choose

x̂DF =

sin(Θ + π/2)
0

cos(Θ + π/2)

 , (22)
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and also ŷDF = Ê × x̂DF. The differential cross section only cares about the relative angle between k̂ and Ê,
but not the vectors themselves. The dipole frame allows a convenient handling of this fact, we can simply write

k̂ = (sin η, 0, cos η)T where η = cos−1 k̂ · Ê. So to obtain the post-collision relative momentum in the dipole-frame, we
can construct the required rotation matrix R(DF← LF), by the method of direction cosines

R(DF← LF) =

x̂DF · x̂LF x̂DF · ŷLF x̂DF · ẑLF
ŷDF · x̂LF ŷDF · ŷLF ŷDF · ẑLF
ẑDF · x̂LF ẑDF · ŷLF ẑDF · ẑLF

 . (23)

The outbound relative collision vector is then given in dipole-frame as k̂′(DF) = R(DF ← LF)k̂′(LF). We then
denote inclination and azimuthal scattering angles in the dipole frame as θs and ϕs respectively.
Furthermore, the dipole frame as defined makes the differential cross section symmetric about the x, z-plane, only

requiring us to specify ϕs within the range [0, π]. The entire differential cross section can then be obtained by specifying
its value in the appropriate energy interval, and for η, θs, ϕs ∈ [0, π].

III. THE EIKONAL APPROXIMATION

At collision energies much larger than Edd, the scattering becomes semiclassical with the total cross section well
approximated by the Eikonal approximation [24]. Within this approximation, the scattering amplitude, considering
on the 1/r3 long-range tail of Veff , is given by

fEi
sc (k, k̂

′) =
adk̃

2πi

∫ 2π

0

dϕ

∫ ∞

0

db̃ b̃eiq̃b̃ cosϕ
[
exp

(
−1

k̃

∫ ∞

−∞
Ṽeff(r̃

′)dz̃′
)
− 1

]
=
adk̃

2πi

∫
b̃db̃dϕeiq̃b̃ cosϕ

[
exp

(
− 2i

k̃b̃2
sin2 α cos(2ϕ− 2β)

)
− 1

]
,

where α = cos−1(k̂ · Ê), β = tan−1(ŷ · Ê/x̂ · Ê), q = k−k′ is the momentum transfer vector, b is the impact parameter
and tildes denote adimensional quantities normalized by the relevant dipole units (see the main text).

From the scattering amplitude, we can compute the total cross section using the optical theorem

σEi
total(k) =

4π

k
Im
{
fEi
sc (q̃ = 0)

}
, (24)

which requires evaluation of the scattering amplitude at forward scattering q̃ = 0:

fEi
sc (k, k̂

′) =
ad

2πik̃

∫
ℓ̃dℓ̃dϕ

[
e−

2ik̃
ℓ̃2

sin2 α cos(2ϕ−2β) − 1
]

=
ad

2πik̃

∫
ℓ̃dℓ̃dϕ

[ ∞∑
m=0

ϵm(−i)mJm

(
2k̃

ℓ̃2
sin2 α

)
cos[2m(ϕ− β)]− 1

]

=
ad

ik̃

∫
ℓ̃dℓ̃

[
J0

(
2k̃

ℓ̃2
sin2 α

)
− 1

]
= iad sin

2 α, (25)

where ϵm = 1 if m = 0, and ϵm = 2 if m > 0, and we utilized the substitution ℓ = kb. Then plugging the forward
scattering amplitude into the optical theorem gives

σEi
total(k) =

4πad
k

[
1−

(
k̂ · Ê

)2]
, (26)

which averaged over incident directions, gives

σEi
total =

8πad
3k

, (27)

identical to the formula obtained for point-dipole scattering in Ref. [24]. The result above is applicable to distin-
guishable dipoles, and so may not be quantitatively accurate in describing our study of scattering between identical
fermions. Nevertheless, it serves to provide a useful visual aid to the expectation energy scaling, and seems to actually
give rather favorable quantitative agreement.
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IV. DERIVING THE COLLISIONAL EFFICIENCY TOWARD THERMALIZATION

Obtaining the form of Nij in the main text requires formulation of the Enskog equations. To do so, we define the
phase space averaged quantity ⟨χi⟩ = kB(Ti − Teq), which quantifies the system’s deviation from its equilibration
temperature, Teq. Then multiplying the Boltzmann equation [55] by χi and integrating it over phase space variables
[27], we derived Enskog equations that govern the relaxation of ⟨χj⟩:

d⟨χi⟩
dt

= C[χi], (28a)

C[χi] =
⟨n⟩
2

∫
d3pr

m
prcr(pr, t)

∫
d2Ω′Del∆χi, (28b)

where ⟨n⟩ is the average number density, cr(pr, t) is the distribution of relative momentum pr, and ∆χ ≡ χ′+χ′
1−χ−χ1

denotes the amount by which χ changes during a collision event.
Taken only perturbatively from equilibrium along axis i, Eq. 28a is approximated by the decay law C[χj ] ≈ −γij⟨χj⟩,

which results in the short-time relation

γij = −
1

(Tj(t)− Teq)
dTj(t)
dt

∣∣∣∣
t=0

, (29)

identifying γij as the thermalization rate. Now considering the collision integral

C[χj ] =
⟨n⟩
2

∫
d3pr

m
prcr(pr, t)

∫
d2Ω′Del∆χj ,

=
kB⟨n⟩

2

∫
d3pr

m
prcr(pr, t)

∫
d2Ω′Del∆Tj , (30)

we move to center of mass and relative momentum coordinates, P = (p+p1)/2 and pr = p−p1 respectively, so that
the change in χi is given as

∆χi =
∆p2i
2m

=
p′2j + p′21,j − p2j − p21,j

2m

=
p′2r,j + P ′2

j − p2r,j − P 2
j

4m

=
p′2r,i − p2r,i

4m
. (31)

As for the relative momentum distribution, we Taylor expand it at t = 0 with respect to δi/kBT0 to get

cr(pr, 0) =
∏
i

(
1

4πmkBTi

)1/2

exp

(
−

p2r,i
4mkBTi

)

≈ c(0)r (pr)

[
1 +

(
p2r,i

4mkBT0
− 1

2

)
δi

kBT0

]
, (32a)

c(0)r (pr) =
1

(4πmkBT0)3/2
exp

(
− p2r
4mkBT0

)
. (32b)

The expressions above render the collision integral

C[χj ] ≈
⟨n⟩
2

∫
d3pr

m
prc

(0)
r (pr)

[
1 +

(
p2r,i

4mkBT0
− 1

2

)
δi

kBT0

]∫
d2Ω′Del

(
p′2r,j − p2r,j

4m

)

=
δi

16(mkBT0)2
⟨n⟩
2

∫
d3pr

m
c(0)r (pr)pr

∫
d2Ω′D′

elp
2
r,i

(
p′2r,j − p2r,j

)
, (33)
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which upon utilizing the time-reversal symmetry of elastic collisions

C[χj ] ≈
δi

16(mkBT0)2
⟨n⟩
2

∫
p2rdprc

(0)
r (pr)

pr
m

∫
d2Ωd2Ω′D′

elp
2
r,i

(
p′2r,j − p2r,j

)
=

δi
16(mkBT0)2

⟨n⟩
2

∫
p2rdprc

(0)
r (pr)

pr
m

∫
d2Ω′d2ΩD′

elp
′2
r,i

(
p2r,j − p′2r,j

)
, (34)

the expression above can also be written in a form that is explicit in the symmetry under exchange of indices i and j:

C[χj ] = −
δi

32(mkBT0)2
⟨n⟩
2

∫
d3pr

m
c(0)r (pr)pr

∫
d2Ω′D′

el

(
p′2r,i − p2r,i

) (
p′2r,j − p2r,j

)
. (35)

We have used the suggestive notationD′
el = Del(pr,Ω

′). Plugging C[χj ] as written into Eq. (29) and taking Tj(t)−Teq =
ϵj/kB , we obtain

γij = −
C[Tj ]

(Tj(t)− Teq)

= −kB
ϵj
C[Tj ]

=
δi
ϵj

⟨n⟩
512

∫
p2rdpr

(πmkBT0)3/2
exp

(
− p2r
4mkBT0

)
pr
m

∫
d2Ωd2Ω′D′

el

(
p′2r,i − p2r,i
mkBT0

)(
p′2r,j − p2r,j
mkBT0

)
. (36)

Finally, taking the limit of δi/(kBT0) → 0, we obtain εij in the main text, having defined αij = δi/ϵj and using the
equipartition theorem (Teq = T0 + δi/3kB) to get

δi
ϵj

=

{
3/2, i = j,

−3, i ̸= j.
(37)
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