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Simulations of evaporation to deep Fermi degeneracy in microwave-shielded molecules
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In the quest toward realizing novel quantum matter in ultracold molecular gases, we perform a numerical study
of evaporative cooling in ultracold gases of microwave-shielded polar fermionic molecules. Our Monte Carlo
simulations incorporate accurate two-body elastic and inelastic scattering cross sections, realistic modeling of
the optical dipole trap, and the influence of Pauli blocking at low temperatures. The simulations are benchmarked
against data from evaporation studies performed with ultracold NaK molecules, showing excellent agreement.
We further explore the prospects for optimizing the evaporation efficiency by varying the ramp rate and duration
of the evaporation trajectory. Our simulation shows that it is possible to reach <10% of the Fermi temperature
under optimal conditions even in the presence of two-body molecular losses.
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I. INTRODUCTION

Ultracold polar molecules have emerged as a clean and
highly controllable platform for studying quantum chem-
istry [1–3] and dipolar quantum many-body physics [4–7].
Recent developments in collisional shielding [8–18] have
enabled efficient evaporative cooling of polar molecules, lead-
ing to the creation of both degenerate Fermi gases and a
Bose-Einstein condensate of polar molecules [19–21]. This
paves the way to explore novel quantum phases, includ-
ing p-wave superfluids and the extended Fermi-Hubbard
model in fermionic molecules [22,23], as well as quantum
droplets, exotic supersolids, and Wigner crystals in bosonic
molecules [24].

The lowest reported temperature achieved for a Fermi gas
of polar molecules is so far 0.36 times the Fermi temperature
TF [20], substantially above the critical temperature required
for realizing p-wave superfluidity in polar molecules and a
Bose-Einstein condensate of tetratomic molecules [25]. Evap-
orative cooling of fermions to deep quantum degeneracy is
hindered by Pauli blocking, which suppresses elastic colli-
sions that are necessary for energy redistribution to thermalize
an out-of-equilibrium gas [26], and hole heating from loss-
induced entropy production that becomes more severe under
deeper quantum degeneracy [27]. Additionally, two-body col-
lisional losses and rapid dipolar elastic collisions further limit
the evaporative cooling efficiency in molecular Fermi gases
compared to their atomic counterparts [20].

In this work, we develop a comprehensive theoretical
model to simulate, understand, and enhance the evaporative
cooling of fermionic molecular gases. Our simulations are ca-
pable of recreating the observed evaporation trajectories with
microwave-shielded 23Na 40K molecules down to quantum
degeneracy, recently achieved in Ref. [20]. In that study, the
final trap depth was varied over several experimental instances
with forced evaporation occurring over 150 ms, resulting in

various molecule numbers and gas temperatures attained at
the end of each evaporation trajectory. Figure 1 showcases the
favorable agreement of our numerically simulated data points
(red crosses) with the experimental measurements (black cir-
cles with error bars), except for disagreement at low molecule
numbers attributed to experimental trap jitter at low laser pow-
ers. The purpose of this paper is, therefore, to provide details
of our simulation methods, survey parameters relevant to cur-
rent evaporation experiments, and open avenues for broader
evaporation studies for collisionally shielded polar molecules.

The rest of this paper is organized as follows. Section II
presents the theoretical model we utilize for our simulations,
with details of its numerical solutions given in Sec. III. The
procedure for forced evaporation is discussed in Sec. IV, along
with the observables we extract from our solver that mimic
those of experiments. Recommendations for efficient cooling
from simulation results are presented in Sec. V, following
which pathways to going below 10% of TF are explored in
Sec. VI. Final remarks and conclusions are drawn in Sec. VII.

II. KINETIC FERMI GASES

At nonzero temperatures, the dynamics of ultracold Fermi
gases is well described by the quantum Boltzmann equation,
which provides a statistical description of rarefied gases in
phase space [28]. These many-body systems are collectively
described by a single-particle phase-space distribution func-
tion f (r, p, t ), defined such that∫

d3r d3 p f (r, p, t ) = N, (1)

with phase-space position and momentum coordinates {r, p}.
The Boltzmann equation is then written as [29](

∂

∂t
+ p

m
· ∇r − ∇rV (r) · ∇p

)
f (r, p, t ) = I[ f ], (2)
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FIG. 1. Plot of the ratio of the gas to Fermi temperatures T/TF ,
after evaporating down to N molecules in experiments (black circles
with error bars) with different final trap depths, compared to those
obtained from our numerical simulations (red crosses). See the main
text for further details.

where m is the molecular mass, V (r) is the trap potential, and
N is the number of molecules.

Molecular collisions are accounted for via the collision
integral I[ f ]. With the goal of cooling to deep quantum de-
generacy, Pauli blocking must be included in the kinetic model
for temperatures lower than TF [30,31]:

I[ f ] =
∫

d3 p1

m
|p − p1|

∫
d�′ dσ

d�′

× [ f ′ f ′
1(1 − h3 f )(1 − h3 f1)

− f f1(1 − h3 f ′)(1 − h3 f ′
1)], (3)

where dσ/d� is the differential cross section and we use
the shorthand notation f1 = f (r, p1, t ) and f ′ = f (r, p′, t ).
The Pauli blocking factors −h3 f become significant at phase-
space densities (PSD) of order ρPSD � 0.1, where PSD is
defined as

ρPSD = 〈n〉λ3
th, (4)

which compares the ensemble-averaged number density 〈n〉
against the cubed thermal de Broglie wavelength λth =
h/

√
2πmkBT . Above, h is Planck’s constant, kB is Boltz-

mann’s constant, and T is the gas temperature.
Our study considers a single species gas of N dipoles,

aligned along the dipole polarization axis E. The gas is
confined in a crossed optical dipole trap (xODT) with two
perpendicular intersecting Gaussian beams along the x and
y axes, with gravity acting in the −z direction. The overall
potential experienced by the molecules is given by

V (r) = VODT(r) + Vg(r), (5)

with terms above defined as [32]

VODT(r) = −
2α1P1 exp

(
− 2y2

w2
1,y (x)

− 2z2

w2
1,z (x)

)
πw1,y(x)w1,z(x)

−
2α2P2 exp

(
− 2x2

w2
2,x (y)

− 2z2

w2
2,z (y)

)
πw2,x(y)w2,z(y)

, (6a)

Vg(r) = mgz. (6b)

Above, Pi is each beam’s laser power, αi the molecular polar-
izability given the wavelength of beam i, and

wμ,i(r) = Wμ,i

√
1 + r2

R2
μ,i

, (7)

with Rμ,i = πW 2
μ,i/λ denoting the Rayleigh length and Wμ,i

being the Gaussian beam waist of wavelength λ. Altering the
power of the xODT lasers can alter the trap depths, allowing
molecules to spill out due to gravity and produce evaporative
cooling. At high laser powers, VODT is well approximated as
harmonic around the trap minima:

Vharm(r) = 1

2
m

∑
ν

ω2
νr2

ν , (8)

where the gas mostly resides. Above, ων are the harmonic trap
frequencies along coordinate axis ν defined in terms of the
laser parameters as detailed in Appendix A.

III. MONTE CARLO SOLUTIONS

The existing literature on numerical solutions to the
Boltzmann equation provides a strong foundation for this
work [33–37]. For completeness, we briefly present our im-
plementation of these methods in this section.

Numerical solutions to Eq. (2) are performed by stepping
forward in time with discrete time steps. In our case, there are
two main features of the dynamics: (1) free-stream evolution
influenced by the trapping potential V (r) [left-hand side of
Eq. (2)] and (2) two-body collisional interactions [right-hand
side of Eq. (2)], motivating the definition of two distinct time
scales:

τV = 2π

maxν{ων} , (9a)

τcoll = 〈nσvr〉−1, (9b)

where σ is the total cross section, vr is the relative velocity,
and 〈. . .〉 denotes a molecular ensemble average. We take
advantage of this distinction by time evolving each physi-
cal process with its own time step, free-stream kinetics with
�t � τV , and collisions with δt � τcoll. Furthermore, δt is
taken to be adaptive [38], updated based on the mean collision
rate at any given time in the simulation.

A. Free-stream kinetics

Direct solutions of the six-dimensional phase-space dis-
tribution are, in general, extremely expensive to solve
numerically. Instead, we adopt the approximation employed
by Ref. [33], where f (r, p) is discretized into phase-space
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FIG. 2. Visualization of the octree algorithm refinement (b) ap-
plied to the master grid (a), projected in two dimensions. In this
figure, there are initially eight master grid cells with N = 200, and
Nmax

cell = 3, with Gaussian distributed points in arbitrary units.

points we refer to as “simulation particles”:

f (r, p) ≈ ξ

Nsim∑
k=1

δ3(r − rk )δ3(p − pk ), (10)

where ξ = N/Nsim is the ratio of the actual number of parti-
cles N to simulation particles Nsim. For most considerations
here, we set Nsim = N so that each evaporated particle de-
picts the expected cooling effect from such molecular loss.
Each test particle then evolves under Newton’s equations,
which is numerically performed with the Verlet symplectic
algorithm [39]:

qk = rk (t ) + �t

2m
pk (t ), (11a)

pk (t + �t ) = pk (t ) + Fk�t, (11b)

rk (t + �t ) = qk + �t

2m
pk (t + �t ), (11c)

where subscripts k denote the kth test particle, t is the current
time, and Fk = −∇VODT(r).

B. Quantum collision integral

The collision integral is computed via a direct simulation
Monte Carlo (DSMC) method [33] at time intervals δt . The
DSMC method utilizes a discrete spatial grid for efficiency,
where we adopt a locally adaptive discretization scheme to
construct it based on local density variations.

The spatial grid is built at every δt time step in two phases.
Phase one is the construction of a master grid, consisting of
uniform volume cells that span the simulation volume sur-
rounding the test particle ensemble. From this, the resolution
of the spatial grid is then refined in phase two with an octree
algorithm [40]. The algorithm recursively subdivides each
master grid cell into eight octants, terminating only when each
cell has at most Nmax

cell test particles. The parameter Nmax
cell is

initialized at the start of the simulation and can be optimized
for stochastic convergence. The octree refinement of an initial
master grid is illustrated in Fig. 2. In practice, we typically use
Nmax

cell = 5 to 10.
A dilute gas allows us to consider collisions as occur-

ring only within grid cells, resulting in their exiting from
a phase-space volume element d3r d3 p, at a rate given by

d3r d3 pIout[ f ], where

Iout[ f ] = −
∫

d3 p1

m
|p − p1|

∫
d�′ dσ

d�′

× f f1(1 − h3 f ′)(1 − h3 f ′
1). (12)

In the simulation, we replace the product of distributions in
a differential phase-space volume d3q d3 p f f1 by all pairs
of test particles in a grid cell along with their associated
momenta p and p1. This facilitates Monte Carlo integration
of the integral over d3 p1, with integrand

1

m
|p − p1| f f1

∫
d�′ dσ

d�′ (1 − h3 f ′)(1 − h3 f ′
1), (13)

to get a collision rate. Obtaining values of the integrand
above requires further computation of the effective total cross
section

σeff =
∫

d�′ dσ

d�′ (1 − h3 f ′)(1 − h3 f ′
1), (14)

which we also evaluate through Monte Carlo integration over
d�′. The two sequential integration steps above correspond to
a sampling of (1) collision occurrences and (2) postcollision
momenta.

In step (1), a collision proceeds between test particles i and
j, with probability [36,41]

Pi j ≈ ξ
δt

m�Vcell
|pi j |σ (pi j ), (15)

where pi j = pi − p j , and the total cross section is the sum
σ = σinel + σel of the inelastic and elastic cross sections,
respectively. Details on the inelastic cross sections with uni-
versal short-range loss are provided below. Inelastic collisions
are then sampled to occur with probability σinel/σ , following
which that pair of molecules is discarded from the simulation.
Otherwise, the algorithm proceeds to step (2).

In step (2), postcollision momenta are sampled [33,36]
from the anisotropic differential cross section, following the
occurrence of an elastic collision. For this work, we adopt
the differential cross section derived in Ref. [42] at thresh-
old, although, strictly speaking, the large dipole moment of
NaK has evaporation starting generally slightly outside of
the scattering threshold regime [43]. Moreover, the elastic
cross sections are those appropriate to microwave-shielded
molecules, rather than point dipoles, but the differential cross
sections are identical in the threshold limit. The simulation
results here are therefore a little more optimistic than real-
ity [44], but compare favorably enough to experiments that we
will leave inclusion of these nonthreshold cross sections to a
future work.

Quantum statistics then requires an additional accept-reject
step [34], where the sampled postcollision momenta are only
accepted with probability

P′
i j = (1 − h3 f ′

i )(1 − h3 f ′
j ). (16)

Otherwise, no collision is said to have occurred. Application
of these steps to all test particles results in an approximation
of the collision integral over δt .
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C. Smoothing the particle distribution

Sampling f ′ in Eq. (16) is problematic, since the particle
distributions f ′

i and f ′
j are discretized in the simulation. We

resolve this issue by “smearing” the δ functions with a Gaus-
sian convolution kernel [34,35]. These kernels are taken to
have spatial width ςν along axis ν and momentum width ςp,
such that discretization noise is smoothed out while the distri-
bution function remains physically consistent. These criteria
are encapsulated by the conditions [45]

ςpςq � hξ 1/3, (17a)

ςν � Rν

T

TF
, (17b)

ςp � pF
T

TF
, (17c)

where pF = √
2mEF is the Fermi momentum, Rν =√

2EF /(mω2
ν ) are the Thomas-Fermi radii [46], and EF =

kBTF = h̄ω(6N )1/3 is the Fermi energy [47]. Bars above quan-
tities denote geometric means. We use widths defined by the
geometric means of these upper and lower bounds, multi-
plied by a free parameter β, which is adjusted for stochastic
convergence:

ςν =
√(

h̄

mων

)1/2(
Rν

T

TF

)
, (18a)

ςp =
√

(mh̄ω)1/2

(
pF

T

TF

)
. (18b)

The convolution kernels are then

δ3(r − rk ) → gr (r − rk ) ≡
3∏

ν=1

e−(r−rk )2/ς2
ν√

πς2
ν

, (19a)

δ3(p − pk ) → gp(p − pk ) ≡
3∏

ν=1

e−(p−pk )2/ς2
pν√

πς2
pν

, (19b)

which when used in Eq. (10) constitute a continuous distribu-
tion for evaluating Eq. (16).

Including the Pauli blocking factors in Eq. (3) enforces
the equilibrium molecular distribution to obey Fermi-Dirac
statistics, illustrated in Fig. 3. To obtain this plot, we ran
an instance of the Monte Carlo simulation with N = 10 000
molecules in a perfectly harmonic trap of (ωx, ωy, ωz ) =
2π (45, 67, 157) Hz, for a duration of t = 0.5 s. The molecules
are initially sampled from a Maxwell-Boltzmann distribution
(dashed red curve) at T = 50 nK (T/TF ≈ 0.34), then allowed
to thermalize from elastic collisions to the gray histogram
energy distribution. A Fermi-Dirac function [47] is then fitted
to the histogram to obtain the solid black curve, with an
extracted temperature of T ≈ 42 nK and chemical potential
μ/kB ≈ 87 nK. Fermi-Dirac statistics will affect how we per-
form thermometry during simulated evaporation, a topic to
which we now turn.

IV. SIMULATIONS OF DIPOLAR EVAPORATION

During forced evaporation, the trap power is gradually
reduced, lowering the trap depth which promotes the loss

FIG. 3. Simulation ensemble energy distribution with
N = 10 000 molecules (gray histogram), after collisional
thermalization for t = 0.5 s from an initial Maxwell-Boltzmann
distribution at 50 nK (dotted red curve). The simulation achieves a
Fermi-Dirac distribution (solid black curve) at T ≈ 42 nK with a
chemical potential of μ/kB ≈ 87 nK.

of energetic molecules. During this process, the trap powers
follow the time dependence

Pi(t ) = Pi(0) − �Pi

(
1 − e−t/τ

1 − e−td /τ

)
, (20)

where �Pi is the change in laser power of beam i, td is the
characteristic decay time, and τ is the forced evaporation
time. The log PSD versus log molecule number describes the
forced evaporation trajectory, from which we can extract an
evaporation efficiency through a linear fit of its decrease [48]:

Eevap = −∂ log10 ρPSD

∂ log10 N
. (21)

The PSD is obtained from temperature measurements of
the simulation ensemble via the local density approximated
relation

Li3

(
ρPSD

ρPSD − 1

)
= −1

6

(
T

TF

)−3

, (22)

where Li3(z) is the trilogarithmic function.
To effectively simulate the evaporation trajectory following

a lowering of the trap depth, we opt to use a position space
cutoff scheme. That is, a molecule is taken as evaporated from
the trap if it falls past the outer turning point along z or goes
past a position that is six times the thermal width of the initial
cloud from the trap minimum:

|rν − rν,min| > 6

√
kBT0

mω2
ν (0)

(23a)

or z < 1.2zmax, (23b)

where T0 is the initial equilibrium temperature, rν,min is the
position of the trap minimum along axis ν, and zmax < 0 is
the trap local maxima along z. The criteria above allow us to
account for the anisotropic molecular loss in space, as results
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FIG. 4. xODT potential-energy surface V (r), plotted as a func-
tion of coordinates x and z along y = 0, utilizing the trap parameters
of Table I.

from the gravitational trap sag seen in Fig. 4. Furthermore,
the Gaussian trap profiles in the transverse directions imply
that if molecules are too far away from the trap minima, they
will no longer experience a large enough restorative potential,
nor collisions, to return toward the trap center and are thus
effectively evaporated away.

We point out that while Eevap provides a useful guide for
experiments, it does not guarantee to achieve the highest
phase-space density amongst other schemes with possibly
lower predicted efficiencies. For instance, a rapid decrease
in the trap depth would still allow favorable evacuation of
hot molecules and a seemingly efficient decrease in total en-
ergy. Unfortunately, the subsequent sample would have had
no time to thermalize during the fast quench, disallowing
the thermal tails of the distribution from being repopulated
for further evaporative cooling beyond the initial evacua-
tion. It is therefore useful to also track the final T/TF and
ρPSD achieved, toward the goal of deeply degenerate Fermi
gases.

TABLE I. Parameter values for the potential confining of a gas
of fermionic 23Na 40K molecules. h denotes Planck’s constant.

Parameter Symbol Value Unit

Beam 1 vertical width W1,z 57.5 µm
Beam 1 horizontal width W1,⊥ 113 µm
Beam 1 wavelength λ1 1064 nm
Beam 1 power P1 0.242 W
Polarizability in beam 1 α1 2.79 × 10−3h m2Hz/W
Beam 2 vertical width W2,z 45 µm
Beam 2 horizontal width W2,⊥ 156 µm
Beam 2 wavelength λ2 1064 nm
Beam 2 power P2 0.253 W
Polarizability in beam 2 α2 2.79 × 10−3h m2J/W

In-simulation thermometry

To mimic the experimentally extracted values of T , we uti-
lize a Fermi-Dirac fit to the y-integrated simulation ensemble,
likened to the optical density (D) from absorption imaging of
the molecular cloud [20,49,50]:

D(x, z) = Dmax

Li2(−ζ )
Li2

(
−ζ e

− x2

2σ2
x

− z2

2σ2
z

)
, (24)

where Dmax is the peak optical depth, σi are the distribution
widths, ζ is the fugacity, and Li2(z) is the dilogarithmic func-
tion. In time-of-flight imaging, the distribution widths will
evolve in time for every time-of-flight instance as

σν =
√

1 + ω2
νt2

TOF

ων

√
kBTν

m
, (25)

over the time interval tTOF. In the long-time limit, this time
dependence changes the density images from position to mo-
mentum space distributions, since rν → vνtTOF and σν →
tTOF

√
kBT/m, rendering

D(x, z)|tTOF→∞ = D(vx, vz )

= Dmax

Li2(−ζ )
Li2

( − ζ e− m(v2
x +v2

z )
2kBT

)
, (26)

where vν is the velocity along axis ν.
Leaving T and ζ as float parameters, D(vx, vz ) is then

fitted to the simulation distribution, obtained by constructing
an appropriately normalized 2D histogram from the simulated
particle ensemble, projected into the x, z plane. In practice,
obtaining the fugacity by fitting to the shape of the distribution
results in large errors with noisy data. So we opt to utilize
the relation in Eq. (22) and ζ = ρPSD(1 − ρPSD)−1 to infer
the fugacity, floating only T . If T > TF , we simply revert
to assuming a Boltzmann distributed gas, with temperature
related to the mean-squared momenta T = 〈p2〉/(3mkB).

V. NUMERICAL RESULTS

The simulation and measurement methods thus far de-
scribed are what we utilize to produce the data plotted in
Fig. 1, providing us a positive benchmark against actual exper-
imental data. Along with the parameters provided in Ref. [20]
and td = 2.5τ , the close agreement was achieved by utilizing
a two-body loss rate constant of βL = 10−12 cm3/s, and an
added background heating rate of κ = 100 nK/s as reported
by the experiment [51]. The added background heating was
simulated with momentum kicks during each simulation time
step, taking the momentum of particle k, and increasing by
pk → pk (1 + 2p−2

k mkBκ�t ), after the second Verlet integra-
tion step of Eq. (11).

Assurance of physically accurate simulations now mo-
tivates us to investigate tunable parameters for identifying
efficient evaporation schemes. In this study, evaporation sim-
ulations commence with the default laser parameters listed
in Table I, which results in the initial trap potential-energy
surface provided in Fig. 4. The plot is a slice along the y = 0
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FIG. 5. Simulated evaporation efficiency Eevap as a function of a
constant two-body loss rate βL (red data in main plot). Error bars are
the linear fit uncertainties. The inset gives the PSD trajectories as a
function of time (gray scale curves) for each simulated value of βL .
All simulation data points (circles) are interpolated with solid lines
to guide the eye.

plane, showing a trap depth of ≈2.5 µK. Lowering of the
trapping beam power proceeds with td = 2τ .

A. Dependence on two-body loss

A major factor that limits the efficiency of evaporat-
ing molecular samples to quantum degeneracy is two-body
collisional losses. Even with microwave shielding applied,
inelastic collisions can still occur as a result of couplings
between the dressed adiabatic channels. Occurring primarily
in the region of higher density, such losses inevitably cause a
flattening of the momentum distribution peak which results in
antievaporative heating [48]. For a systematic study, we first
explore the dependence on Eevap as a function of temperature-
independent two-body loss rate values: βL = 1, 2, 4, 8, 16, 32
(10−12 cm3/s). Forced evaporation commences at T = 1.1TF

and occurs over 500 ms, followed by a hold time of 100 ms
to allow the sample to thermalize. A low of T ≈ 0.6TF is
reached in these simulations, placing the gas only weakly in
the quantum degenerate regime [52]. As expected, we observe
a trend of decreasing efficiency with increasing two-body loss
from our simulations as shown in Fig. 5.

In actuality, the two-body loss rate has a temperature de-
pendence inherited from the energy dependence of the integral
inelastic cross section σinel. For the typical temperatures of
∼200 nK at which evaporation is expected to commence, the
inelastic collision rate generally decreases with decreasing
temperature. The trend of Fig. 5 therefore serves as a theoreti-
cal worst case one might expect with two-body loss, which we
will use to explore evaporation in deeply degenerate samples
later in the paper.

FIG. 6. Plot of the elastic (dashed red) and inelastic (solid black)
cross sections as a function of collision energy on a log-log scale.
The microwave Rabi frequency and detuning are both set at 50 MHz.

Now extending our simulation to more faithful depictions
of physical realizations, we incorporate inelastic scattering
with σinel obtained from full scattering calculations. For
completeness, we briefly outline these calculations
here, which closely follow the approaches detailed in
Refs. [14,15,25,53]. We treat the NaK molecules as rigid
rotors, considering only the lowest two rotational levels
(a total of four rotational states) in our calculation. In
the presence of a circularly polarized microwave field,
all molecules are prepared in their highest dressed state.
Consequently, we only need to consider the scattering
of symmetrized two-molecule states, where it turns out
that only seven of these are mutually coupled. To account
for the short-range loss, we include an attractive van der
Waals term −C6/r6, with C6 = 5 × 105 a.u. [54], and a
capture boundary condition [55–57] imposed at r = 50 a0.
Using the log-derivative method [58], the scattering wave
functions are numerically propagated to a large distance rM

(>105 a0) and then matched with asymptotic solutions to
obtain the scattering K matrix. The elastic and inelastic cross
sections are then computed from the K matrix.

We utilize up to � = 11 partial waves to ensure conver-
gence of our scattering calculations. These calculations were
performed at several well-chosen logarithmically spaced col-
lision energies, from which we interpolate these values to
construct a smooth function of σinel vs E for Monte Carlo sam-
pling. The incident angular dependence of inelastic scattering
is not treated in this work.

Within the range of microwave parameters studied, the
two-body loss rate is shown to be exceptionally low with
circularly polarized microwaves at � = 2π × 50 MHz and
comparably large detuning. By setting � = 2π × 50 MHz,
we find that σinel remains up to four orders of magnitude
smaller than σel as seen given in Fig. 6 (refer to Table II
for the microwave relevant parameters). For collision energies
�200 nK, the inelastic cross section is seen to scale as

√
E ,

resulting in a two-body loss rate that scales as T , consistent
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TABLE II. Microwave parameters and resultant dipole scales. a0

is the Bohr radius, D is a Debye, and kB is Boltzmann’s constant.

Parameter Symbol Value Unit

Microwave frequency � 2π × 50 MHz
Microwave detuning � 2π × 50 MHz
Effective dipole moment d 0.56 D
Effective dipole length ad 2740 a0

Effective dipole energy Edd/kB 732 nK

with p-wave dominated loss in identical fermions [59]. Fur-
thermore, σel only has a weak dependence on E and so is
well approximated by its energy-independent value at thresh-
old. Favorably, we can infer from Fig. 6 that if evaporation
commences at T = 200 nK, the initial two-body loss rate con-
stant is around βL ≈ 2 × 10−13, expected to allow for efficient
evaporation with Eevap > 2.5 (see Fig. 5).

B. Trap sequences for efficient evaporation

Having fixed the microwave parameters, we look to study
experimentally tunable trap parameters and their effect on
Eevap. By varying the laser power, experiments can achieve
various final potential depths at different rates. In practice,
we take that the laser power of both xODT beams is lowered
simultaneously, so that the ratio of final to initial trap power,

rP = Pi(τ )

Pi(0)
, (27)

changes equally for both beams 1 and 2, over a time interval τ

with the time dependence in Eq. (20). To obtain the functional
dependence of Eevap on these parameters, we run simulations
for τ = 0.1, 0.5, 1, 1.5, 2, 2.5, 3 s and p = 0.6 to 0.9 in steps
of 0.05. In addition to forced evaporation, we also include a
100 ms hold time after τ at the same trap depth. Although still
resulting in some amount of plain evaporation, the added hold
time allows the evaporated sample to further thermalize for
more accurate thermometry. A single-body molecular lifetime
of 9 s is also included.

Starting all numerical experiments with an initial temper-
ature of T = 200 nK and N = 20 000 molecules [TF (0) ≈
175 nK], the resulting variation of Eevap(rP, τ ) is visualized in
Fig. 7. From this plot alone, a cursory glance indicates that
rapid evaporation with τ = 0.1 to a final relative power of
rP = 0.8 is optimal with regards to Eevap. But as alluded to at
the start of this section (IV), this apparent gain in efficiency is
not very useful in practice, only achieving a meager increment
of ρPSD from ∼0.1 (T/TF ≈ 1.1) to 0.2 (T/TF ≈ 0.85) [see
subplot (a) of Fig. 8, plotting T/TF as a function of rP and τ ].

In the hopes of achieving deeply degenerate gases, per-
haps more appropriate is to first choose target parameters
for the molecular sample. For instance, one might aim to
achieve molecule numbers of N > 8000 and a final temper-
ature of T/TF < 0.4. These targets are indicated with light
blue crosses in Fig. 8. Between the two common squares in
subplots (a) and (b), Fig. 7 tells us that this final molecular
sample is most efficiently achieved by setting τ = 1 s and

FIG. 7. Evaporation efficiency Eevap, as a function of the final
relative power rP and evaporation time τ .

rP = 0.6, with a predicted efficiency of Eevap ≈ 2.2. For com-
parison, Bose-Einstein condensation of dipolar molecules was
recently achieved with Eevap ≈ 2.0 [21], while atomic samples
can reach much higher efficiencies of Eevap ≈ 3.5 with their
low two-body losses [60].

For a more experiment-agnostic guide, we can express the
identified optimal evaporation time τopt in terms of the inverse
standard collision rate at the start of evaporation. For elastic
scattering, this is found to be τcoll(0) ≈ 1.8 ms, which gives
the comparison τopt ≈ 555.6τcoll (0). As for the initial inelas-
tic collision time, we find τinel(0) = 〈nσinelvr〉−1 ≈ 11.6 s,
granting us τopt ≈ 0.1τinel(0). So, generally speaking, if evap-
oration can occur more than 10 times faster than inelastic
collisions do, but around 550 times slower than elastic ones,
evaporative cooling from T/TF ≈ 1 is slated to achieve deep
Fermi degeneracy.

VI. PROSPECTS FOR EVAPORATION
TO p-WAVE SUPERFLUIDITY

Although a triumph for molecular experiments, tem-
peratures of T < 0.4TF have already been experimentally
achieved in Ref. [20], albeit with lower molecular numbers
than those predicted as achievable here. Hence a natural next
step is to push the molecular gas into deeper quantum de-
generate regimes. With T � 0.1TF predicted to be the critical
temperature required to achieve p-wave superfluidity of a
strongly interacting molecular gas [25], we attempt a prelim-
inary analysis with our evaporation simulator for achieving
such temperatures with a microwave-shielded NaK gas. Even
with perfect microwaves and arbitrarily stable lasers, the
curse of inelastic collisions continues to plague the quest
for colder molecular samples. For small T/TF in particular,
Pauli blocking suppresses elastic thermalizing collisions [26]
but not inelastic ones, since ultracold inelastic collisions
lead to exothermic loss of molecules from the trap, outside
which is void of a Fermi sea of molecules. The result is a
marked decrease in the evaporation efficiency. To this end,
we explore the possibilities for further evaporative cooling
in low-temperature samples after the evaporation sequence in
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FIG. 8. (a) Measured temperature ratio T/TF and (b) molecule number N at the end of each evaporation trajectory, as a function of the in
final relative power rP and evaporation time τ .

Sec. V B. In particular, we aim to find bounds on allowable
two-body loss rates where cooling through forced evaporation
still overcomes antievaporative heating from inelastic loss.

Following an initial forced evaporation ramp that leaves the
gas at T = 0.35TF with N = 9000 molecules (refer to Fig. 8),
we apply a secondary evaporation ramp from a trap depth of
150 nK to 80 nK in 800 ms. To systematically tune inelastic
collisions, we once more adopt a temperature-independent
two-body loss rate (see Sec. V A) and vary it from βL = 10−14

to βL = 10−11 cm3/s. The resulting slopes of T/TF vs N
for logarithmically spaced βL values are plotted in Fig. 9,
from which we find that βL ≈ 2 × 10−12 sets a break-even
point below which further cooling can be achieved in spite of

FIG. 9. Slope of T/TF vs N/104 for various values of βL (red data
in main plot). Error bars are the linear fit uncertainties. The lower
left inset shows the simulated T/TF vs N/104 trajectories during
forced evaporation for 800 ms, labeled by the upper right legend.
All simulation data points (circles) are interpolated with solid lines
to guide the eye.

antievaporative heating. The actual T/TF vs N time traces are
given in the bottom left inset of Fig. 9 (with a corresponding
legend in the top right), showing that T < 0.1TF is in fact
achievable when βL ∼ 10−13 cm3/s. With the current trap and
molecular parameters, the secondary evaporation ramp would
commence at T ≈ 30 nK, corresponding to a two-body loss
rate constant of around βL ≈ 3 × 10−14 cm3/s (see Fig. 6).
As such, we conjecture that the p-wave superfluid phase is
realizable in a 3D gas of microwave-shielded molecules by
evaporative cooling.

A more decisive study must include the Hartree-Fock dipo-
lar interaction terms that are expected to be significant at these
deeply degenerate temperatures, which our current simula-
tions do not. These effects are known to deform the Fermi gas
in phase space [61,62], possibly leading to dynamical effects
that could alter the evaporative cooling trajectories [63,64].
A pseudospectral scheme might be utilized to efficiently in-
corporate these effects [65], but we cater such inclusions to
a future publication. Furthermore, at the low temperatures
attained in the second ramp sequence, we found it difficult
to satisfy the conditions of Eq. (17), so a bootstrap sampling
of the in-simulation distribution to increase Nsim is done to
maintain them (see Appendix C for details). Nevertheless,
this work presents a pathway to understanding and achieving
a strongly interacting molecular Fermi gas at unprecedented
depths of quantum degeneracy.

VII. OUTLOOK AND CONCLUSIONS

We have numerically studied evaporative cooling in a
three-dimensional gas of 23Na 40K molecules, made strongly
dipolar and collisionally stable by applying circularly po-
larized microwaves. We employ a direct simulation Monte
Carlo solver, which permits efficient sampling of both elas-
tic and inelastic collisions amongst molecules, incorporating
Pauli blocking effects due to fermionic quantum many-body
statistics. Along with an accurate model of the trap potential,
evaporation process, and experimentally utilized thermom-
etry, our simulation has shown favorable agreement with
experimental data.
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We then utilized our simulator to study optimal schemes
for evaporation, primarily through varying the duration of
forced evaporation and the final trap depth. In doing so, we
find that the evaporation efficiency on its own may not be
a comprehensive metric for informing experiments attempt-
ing deeply degenerate samples. Instead, we propose that the
target thermodynamic state of the gas should also be consid-
ered as a constraint, over which the evaporation efficiency
can be optimized to achieve it. Finally, we explored the
possibilities of evaporative cooling in the deeply degenerate
regime down to temperatures of T � 0.1TF . Our preliminary
analysis shows promise for a molecular Fermi gas to reach
this regime if two-body losses are sufficiently suppressed,
although nonequilibrium Hartree-Fock dipolar effects have
yet to be incorporated.

We note that, throughout this study, the initial molecule
numbers and dipole moments tend to have evaporation occur
close to or weakly in the hydrodynamic regime. Although a
deeply hydrodynamic sample is expected to lower evapora-
tion efficiency [66] due to hydrodynamic excitations [67,68],
we have found that evaporation can still reach efficiencies
of up to Eevap � 2 in our current regime, proven suffi-
cient to achieve Bose-Einstein condensation of bosonic NaCs
molecules [21]. Future works could explore the effect of
performing evaporation from the dilute to hydrodynamic
regimes and the dependence on microwave-induced dipolar
interactions.
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APPENDIX A: HARMONIC TRAP APPROXIMATION

Around the trap minima, VODT can be expanded up to
second order in spatial coordinates as

Vharm(r) =
∑

ν

Aνr2
ν , (A1)

dropping all constant and linear terms, which leaves the har-
monic coefficients as

Ax = α1P1λ
2
1

(
W 4

1,y + W 4
1,z

)
π3W 5

1,yW
5

1,z

+ 4α2P2

πW 3
2,xW2,z

, (A2a)

Ay = 4α1P1

πW 3
1,yW1,z

+ α2P2λ
2
2

(
W 4

2,x + W 4
2,z

)
π3W 5

2,xW
5

2,z

, (A2b)

Ay = 4α1P1

πW 3
1,yW1,z

+ 4α2P2

πW 3
2,xW2,z

. (A2c)

This permits us to define harmonic trap frequencies as

ω2
ν = 2Aν

m
. (A3)

APPENDIX B: TRAPPING FORCE

Given the trapping potential in Eq. (5), the effective force
felt by each molecule is given as F = −∇V (r), which we
compute in this section explicitly. For convenience, we further
decompose VODT(r) by defining each cross propagating beam
individually:

VODT,1(r) = −
2α1P1 exp

(
− 2y2

w2
1,y (x)

− 2z2

w2
1,z (x)

)
πw1,y(x)w1,z(x)

, (B1a)

VODT,2(r) = −
2α2P2 exp

(
− 2x2

w2
2,x (y)

− 2z2

w2
2,z (y)

)
πw2,x(y)w2,z(y)

. (B1b)

Then taking the gradients of each term, we obtain

−∇VODT,1(r)

VODT,1(r)
=

⎛
⎜⎜⎜⎜⎝

2
x + 4π4

x

(
W 6

1,yy2(
π2W 4

1,y+λ2
1x2

)2 + W 6
1,zz2(

π2W 4
1,z+λ2

1x2
)2

)
− π2

x

(
W 4

1,y+4W 2
1,yy2

π2W 4
1,y+λ2

1x2 + W 4
1,z+4W 2

1,zz2

π2W 4
1,z+λ2

1x2

)
4π2W 2

1,yy

π2W 4
1,y+λ2

1x2

4π2W 2
1,zz

π2W 4
1,z+λ2

1x2

⎞
⎟⎟⎟⎟⎠, (B2a)

−∇VODT,2(r)

VODT,2(r)
=

⎛
⎜⎜⎜⎜⎝

4π2W 2
2,xx

π2W 4
2,x+λ2

2y2

2
y + 4π4

y

(
W 6

2,xx2(
π2W 4

2,x+λ2
2y2

)2 + W 6
2,zz2(

π2W 4
2,z+λ2

2y2
)2

)
− π2

y

(
W 4

2,x+4W 2
2,xx2

π2W 4
2,x+λ2

2y2 + W 4
2,z+4W 2

2,zz2

π2W 4
2,z+λ2

2y2

)
4π2W 2

2,zz

π2W 4
2,z+λ2

2y2

⎞
⎟⎟⎟⎟⎠, (B2b)

−∇Vg(r) = −mg. (B2c)

Although the expressions above are algebraically nondivergent, a linear coordinate in the denominator for the first three gradients
above might result in numerical instabilities. As such, we also present the first-order Taylor expansion with respect to the unstable
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coordinate in the relevant vector components:

[∇VODT,1(r)]x ≈ 2α1P1

πW1,yW1,z

(
1

W 4
1,y

− 4y2

W 6
1,y

+
(
W 2

1,z − 4z2
)

W 6
1,z

)
λ2

1

π2
exp

(
− 2y2

W 2
1,y

− 2z2

W 2
1,z

)
x + O(x2), (B3a)

[∇VODT,2(r)]y ≈ 2α2P2

πW2,xW2,z

(
1

W 4
2,x

− 4x2

W 6
2,x

+
(
W 2

2,z − 4z2
)

W 6
2,z

)
λ2

2

π2
exp

(
− 2x2

W 2
2,x

− 2z2

W 2
2,z

)
y + O(y2). (B3b)

We utilize these linearized gradients instead of those in
Eq. (B2), for close-to-zero values of the respective coordinates
in Monte Carlo simulations.

APPENDIX C: BOOTSTRAP SAMPLING
FROM THE IN-SIMULATION ENSEMBLE

The conditions in Eq. (17) are difficult to satisfy when
the simulation reaches temperatures of T � 0.3TF , but can
be adequately accommodated by increasing Nsim [see (17a)].
However, increasing Nsim from the start of evaporation can
be computationally expensive and thus impractical. We work
around this issue by increasing Nsim only when the (17) con-
ditions are no longer met, occurring after N has already been
greatly reduced from evaporation.

We increase Nsim to satisfy (17) by sampling from the
energy distribution fE (E ), inferred from the in-simulation
ensemble, where E (r, p) = p2/(2m) + V (r) is the single-
particle energy. By constructing a histogram with the
simulated particle energies over an appropriately chosen en-
ergy grid, we interpolate this discrete distribution with a

Gaussian process (GP) model [69] to obtain an approximate
but continuous representation of fE (E ). We utilize a GP model
trained with a Matérn- 5

2 kernel to prevent overfitting the his-
togram’s statistical fluctuations from Monte Carlo sampling
noise. New simulation particles are then sampled from the
GP model of fE (E ) until (17) are satisfied once more, follow-
ing which numerical time evolution is resumed. Utilizing the
energy distribution for bootstrap sampling of new simulation
particles implicitly invokes the assumption of ergodicity [70],
which should be well satisfied with the large collisional cross
sections between microwave-shielded NaK molecules. Impor-
tantly, the parameter ξ must be updated after the bootstrap
sampling to preserve physically accurate collision rates.

One might be concerned that having Nsim exceed N causes
simulation particle loss to no longer be faithful to actual
molecular loss. However, we remind the reader that simula-
tion particles represent discretized segments of the molecular
distribution in phase space and are merely a means for ap-
proximating the continuous profile of f (r, p). Evaporation
with Nsim �= N is, therefore, still a consistent approximation
of Boltzmann equation dynamics.
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