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Ultracold collisions of the lithium monoxide radical
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Ultracold collisions of LiO molecules in the 2�3/2 ground state are considered, under the influence of
either an external magnetic or electric field. Inelastic collisions are shown to be suppressed in the presence
of modest laboratory-strength magnetic and electric fields. The rate of elastic collisions that rethermalize the
thermal distribution and the corresponding low rate of heating state-changing collisions suggest that quantum
degeneracy or even molecular Bose-Einstein condensation of LiO gas may be attainable, provided that the initial
temperatures in the millikelvin range are achievable.
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I. INTRODUCTION

Among many successful methods for producing ultra-
cold molecular gases [1] magnetic trapping is making rapid
progress. Advances in Zeeman deceleration [2–6] have led
to trapped samples that are dense enough for molecular col-
lisions to be observed [7,8]. This work leads to exciting
possibilities like magnetically controlling chemical reactivity
of paramagnetic species [9–12] or creating quantum degener-
ate molecular samples by evaporative cooling.

The experiment in Ref. [7] successfully measured the ratio
of elastic- to inelastic-scattering rates for a sample of oxygen
molecules, at a temperature of ≈800 mK. The observed ratio,
γ = Kelastic/Kinelastic ≈ 4–8, proves too small by at least an
order of magnitude to successfully carry off evaporative cool-
ing, as was anticipated in earlier theoretical studies [9,13,14].
For efficient evaporative cooling, the required value of γ is
expected to be ≈100 or greater [15]. Such a ratio has been
sought in various paramagnetic species with varying degrees
of success.

In anticipation that the variety of magnetically trapped
and colliding species will continue to expand, we make here
an initial investigation into the collisional behavior of the
paramagnetic species LiO, which possesses a 2�3/2 electronic
ground state. This molecule also has hyperfine structure due
to the nuclear spin of Li, whereby the stretched state has
magnetic quantum numbers |FMF 〉 = |33〉. This state is sub-
ject to two-body collisions that can transfer the molecules to
lower-energy Zeeman states, or else change their parity, thus
releasing energy and leading to trap loss and heating. These
are the processes that contribute to the loss rate Kinelastic. For-
tunately, the molecules are not chemically reactive at ultralow
temperature, as the reaction 2LiO → Li2 + O2 is endothermic
by 9260 K. Thus the fine-structure state-changing collisions
are the only loss to worry about.

Within a model of ultracold scattering in which the rel-
evant losses are driven primarily by the long-range electric

dipole-dipole interaction between molecules, we estimate
Kinelastic and Kelastic for this radical. It should be emphasized
that this model incorporates direct transitions to untrapped
states within the manifold of rotational ground states of the
molecules and disregards the possible influence of a Fano-
Feshbach resonance to excited rovibrational states. It thus
represents a resonance-free background estimate of the colli-
sion rates. Within this model, over a range of modest magnetic
field, Kinelastic appears to be a decreasing function of field,
whereby inelastic scattering can be suppressed [16,17]. More-
over, the relatively large dipole moment of LiO emphasizes
the elastic-scattering rate. As a result, the ratio γ can ex-
ceed 100 up to temperatures of hundreds of microkelvin,
putting evaporative cooling potentially in reach of the new
technology.

II. MODEL

The basic model for ultracold collisions of 2� molecules,
with interactions driven by dipole-dipole forces, has been
developed elsewhere [16–18]. Here we summarize the salient
parts. The two-body Hamiltonian is

H = T + Vdisp + Vd + H1 + H2, (1)

where T is the kinetic energy, Vdisp is a long-range dispersion
interaction, Vdd is the dipole-dipole interaction between the
molecules. The Hamiltonians of the separated molecules are
given by

Hi = Hrot,i + Hso,i + H�,i + Hhf,i + HZ,i + HS,i, (2)

whose terms describe, respectively, the rotation, spin-orbit,
Lambda-doubling, hyperfine, Zeeman, and Stark interactions
of molecule i.
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A. The zero-field effective Hamiltonian for LiO

The Hamiltonian of each molecule is evaluated in a Hund’s
case-(a) basis set. Before incorporating the hyperfine inter-
action, this set has as quantum numbers the total electronic
orbital and spin angular-momentum projections � and �

along the molecular axis, with the sum � = � + �; as well
as the total angular momentum J and its projection M on the
laboratory fixed axis. For the 2� states of LiO, these basis sets
are denoted by the shorthand

|�〉|�, J, M〉 = |�, S, �; �〉|�, J, M〉. (3)

In zero electric field the energy eigenstates are states of good
parity, denoted p = e or f , and given for the ground state by
the linear combinations

|2�|�|(e/ f ); JM〉

= 1√
2

(|�|〉|�|, J, M〉 ∓ | − |�|〉| − |�|, J, M〉). (4)

In the J = 3/2 ground state of interest here, the fine-
structure states are given by 2�1/2 and 2�3/2, of which 2�3/2

is the lower-lying state because the spin-orbit coupling con-
stant for the ground vibrational state is negative, as it is for
OH and SH. Relative to this ground state, the first rotational
excitation with J = 5/2 is higher in energy by ≈8.7 K, given
the rotational constant B = 1.73 K [19], while the first fine-
structure excited state is higher in energy by an energy on
the scale of the fine-structure constant |A| = 111.94 cm−1 ∼
160 K [19]. For the sub-Kelvin collision energies we deal
with, we therefore ignore these excited states as being inac-
cessible final channels and consider J = 3/2, |�| = 3/2 to
be good quantum numbers. The rotationally excited chan-
nels would interfere with the ground-state rotational manifold
of channels when the dipole interaction energy d/R3 be-
comes comparable to the rotational energy splitting of 8.7 K,
which occurs on a length scale ≈64a0. We therefore disregard
these channels as further modifying the already unknown
short-range interactions. Given the small scale of the Lambda-
doublet splitting, �� = 5.4 × 10−4 K [20], this interaction
must be incorporated, at least in low electric fields.

It must be noted that this approximation disregards the pos-
sibility of resonant scattering to the (possibly very numerous)
Fano-Feshbach resonances that correlate to excited rotational
thresholds. Inclusion of these channels would greatly in-
crease the computational burden and is not contemplated here.
Therefore, in this sense the results presented represent a kind
of background scattering, setting a baseline for those transi-
tions that occur directly without entering the resonant state.
Within this background approximation, we are able to assess
the influence of the fine structure and applied electric and
magnetic fields on the direct-scattering processes, as driven
by long-range dipolar interactions between the molecules.

Each component of the doublet (4) is further split by
magnetic hyperfine structure, due to 7Li nuclear spin I = 3/2
(the spin of the 16O nucleus is 0), into hyperfine components
characterized by the total angular momentum �F = �J + �I . The
nuclear-spin states are described by coupled basis functions

|F, MF 〉, defined in the usual way,

|η, F, MF ; p〉
=

∑
M,MI

|2�|�|(e/ f ); JM〉|I, MI〉〈J, M, I, MI |F, MF 〉, (5)

with η denoting the other quantum numbers not given explic-
itly. The hyperfine Hamiltonian is diagonal in this basis. For
the 2�3/2 state, J = 3/2 rotational level the corresponding
energies are adopted from Refs. [19,20].

B. Zeeman and Stark interactions

The Zeeman effect arises from interaction between mag-
netic dipoles and an external magnetic field. For each LiO
molecule the main terms are given by [21]

HZ = −μB
(
gL �L · �B + gS �S · �B)

, (6)

where μB is the Bohr magneton, and gL = 1, gS = 2.002 319
[22] are the corresponding g factors for individual type of
angular momentum. Additional g factors due to rotational
Zeeman effect, the electronic spin anisotropic Zeeman effect,
the nuclear-spin Zeeman effect, and parity-dependent contri-
butions for a � state are typically three orders of magnitude
weaker and are neglected here. The �B vector is assumed to be
aligned along the laboratory Z axis that defines the quantiza-
tion of MF . Matrix elements of this Hamiltonian in our basis
are given in Ref. [16]. Significantly, the Zeeman Hamiltonian
is diagonal in the parity quantum number p.

The Stark Hamiltonian for the molecular-dipole–electric-
field interaction is given by

HS = −�d · �E, (7)

where �E is the electric field, which defines the space-fixed Z
axis in the absence of a magnetic field; and d = 6.84 D is the
electric-dipole moment. Matrix elements of this Hamiltonian
are also derived elsewhere [16–18]. This interaction preserves
the parity of the molecules for fields below a characteristic
value E0 = 5��/6d ≈ 2.7 V/cm for |M| = 3/2, while at
higher fields the parity states mix, until the signed values of
� become good quantum numbers at large electric fields.

The Zeeman and Stark energies for the J = 3/2 ground
state are shown in Figs. 1 and 2, respectively. In either case,
when the field is zero, the states are appropriately labeled by
the total spin F (not all values of F are shown explicitly, to
simplify the diagram).

In magnetic fields above B ≈ 10 gauss (Fig. 1) the rota-
tional angular momentum M decouples from the nuclear spin,
whereby M is a good quantum number for describing states.
Also in this instance of zero electric field, the parity label e or
f remains a good quantum number. Within this classification,
the additional states would be identified by the value of MI

(not shown).
In electric fields above E ≈ 5 V/cm, the molecules also de-

couple from nuclear spins and overcome the Lambda-doublet
interaction. In this case reasonable quantum numbers are the
signed values of M and �, as shown.
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FIG. 1. Zeeman energies of the hyperfine and �-doublet levels
for J = 3/2 of the 2�3/2 state of the LiO molecule at zero electric
field. At low fields, states are indexed by total spin F (not all of which
are displayed, for clarity), along with the parity. At high fields, states
are indexed by the projection of the molecule’s rotation, M, and the
parity. The hyperfine state of interest for magnetic trapping, |3, 3; f 〉,
is highlighted.

C. Quantum scattering calculation

At ultralow collision energies, the molecular dynamics is
dominated by long-range forces. In the case of neutral di-
atomic molecules that possess an electric-dipole moment, the
most relevant interaction between the molecules the dipole-
dipole interaction, given by

Vd
( �R) = −

√
30d2

4πε0R3

∑
q,q1,q2

(
2 1 1
q −q1 −q2

)

×C2−q(θφ)C1q1 (n̂1)C1q2 (n̂2).
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FIG. 2. Stark energies of the hyperfine and �-doublet levels for
J = 3/2 of the 2�3/2 state of the LiO molecule at zero magnetic
field. At low fields, states are indexed by total spin F , (not all of
which are displayed, for clarity), along with the parity. Each line is
doubly degenerate for |MF |. At high fields, the states are indexed by
the projections M and � of the rotational angular momentum on the
laboratory and molecular axes, respectively. The hyperfine state of
our interest |3, 3; f 〉 is highlighted.

Here the C’s are reduced spherical harmonics, (θ, φ) are the
spherical angles of the vector �R joining the centers of mass
of the two molecules, and n̂i is the orientation of the axis of
molecule i.

In addition, the leading term of the multipolar expansion
comes from an attractive dispersion interaction, which we take
to be isotropic,

Vdisp = −C6

R6
. (8)

For a highly polar molecule such as LiO, the dominant
contribution to C6 arises from coupling to higher-lying ro-
tational states. This allows us to estimate the value C6 =
1.99 × 105 a.u. for (LiO)2. Details of the short-range forces
are disregarded in the model, which simply declares a hard-
wall boundary condition on the wave function at a radius
R = 30a0. We have estimated the influence of changing this
initial hard wall condition at R0 and have found that a shift
by several Bohr radii leaves the resulting cross sections al-
most unchanged within several percent in the energy and field
range discussed below. The model does not require absorb-
ing boundary conditions at this radius, inasmuch as the LiO
molecules are not chemically reactive at zero temperature.

The complete basis includes the zero-field states of each
molecule, along with the partial-wave state |LML〉. This basis
is symmetrized with respect to the exchange of bosons, as
denoted by the subscript S. Basis states in general read

|n〉 = P12{|η1F1, MF1 ; p1〉|η2F2, MF2 ; p2〉|LML〉}, (9)

where P12 denotes the operator that exchanges the identical
bosonic molecules. For the case that the initial state consists
of bosons in identical internal states, as we consider here, the
partial waves are restricted to even values of L.

Matrix elements of the Hamiltonian in this basis are
given explicitly in Refs. [16,18]. Matrix elements of the
dipole-dipole interaction have particular parity selection rules.
Specifically, in zero electric field a state where both molecules
have the same initial parity p1 = p2 = p (as we will as-
sume below) are coupled directly only to those where both
molecules change parity. Vice versa, in the high-electric-field
limit, where � is a good quantum number, the dipole-dipole
interaction preserves the signed value of � [13].

In the laboratory frame the projection of the total angular
momentum Mtot = MF1 + MF2 + ML is conserved throughout
the collision. Considering the weak-field-seeking molecular
states in a magnetic or electric field and a scattering process
incident on an s partial wave, this projection quantum number
Mtot equals six. Calculations of the collision cross section
require the inclusion of partial waves up to L = 16 for con-
vergence purposes. The entire basis set allowed by the Mtot

conservation condition can be truncated by applying propen-
sity rules that preferably select channels with a low value of
ML, as was explored in Ref. [17]. Imposing |�ML| � 4, the
total number of channels is here reduced to 1002.

We perform exact coupled-channels calculations for LiO-
LiO scattering, employing the log-derivative propagator
method [23]. These calculations are performed on a radial
grid with step size 1.0a0 and propagated to matching distance
R = 15 000a0, where the solutions are matched to spherical
Bessel functions. Cross sections σ as functions of collision
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FIG. 3. Rate constants for elastic (solid curve) and inelastic
(dash-dotted curve) scattering, along with their ratio (dotted curve,
right-hand axis) as a function of temperature at B = 90 G. The
collision is initiated in the states |3, 3; f 〉 of the molecules.

energy are computed from the S-matrix elements for pro-
cesses in which both molecules remain unchanged (elastic)
or at least one molecule converts its internal state to another
(inelastic). The rate constants K (T ) for collisions at a given
temperature T are then derived from the total cross sections by
averaging the rate coefficient viσ over a Maxwellian velocity
distribution of initial velocities vi, assuming that the system
is found in thermodynamic equilibrium. This is done by com-
puting the cross sections on an energy range of 5 × 10−12 K
to 5 K.

III. RESULTS AND DISCUSSION

Considering the possibility of magnetic traps of ultra-
cold molecules, now approaching the mK regime [7], we
are interested in weak-magnetic-field-seeking states, such
as the spin-stretched state with |F1MF1; p1〉|F2MF2; p2〉 =
|33; f 〉|33; f 〉. For parity f , this is the state of highest energy
in the ground-state manifold and is indicated by the heavy line
in the Zeeman diagram of Fig. 1.

Our primary goal is to assess the stability of the ultracold
LiO gas against two-body inelastic collisions, while preserv-
ing a high elastic collision rate that can guarantee thermal
equilibrium of the gas. The figure of merit for calculations
is then the elastic and inelastic collisions rates and, more
importantly, their ratio γ = Kelastic/Kinelastic. Ideally this ratio
is on the order of γ ≈ 100 or higher for effective evaporative
cooling to occur.

A set of collision rates are shown in Fig. 3 at fixed values
of electric (E = 0 V/cm) and magnetic field (B = 90 G). At
the lowest temperatures these rates exhibit the usual Wigner
threshold laws, Kelastic ∝ √

T , Kinel ∝ const.
Significantly, the ratio of elastic-to-inelastic collision rates

γ remains ≈100 or higher over a broad temperature range,
from 0.3 mK down to 1 pK, even exceeding several thousands
near μK temperatures. The computed rate constants indicate
that evaporative cooling may be plausible for this species,
provided that the molecules can be initially lowered to mK
temperatures. As a much more optimistic conclusion, once
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FIG. 4. Rate coefficients for elastic and inelastic scattering as a
function of magnetic field for incident channel of |3, 3; f 〉 molec-
ular state. The collision energy is fixed at the value Ec = 1 mK
(black curves, solid for elastic and dashed for inelastic) and Ec =
0.3 mK (green curves, dash-dotted for elastic and dash-dash-dotted
for inelastic).

the gas attains μK temperatures, the two-body inelastic rate is
fairly small, meaning that the gas may be collisionally stable.

At collision energies of about mK, the ratio of elastic over
inelastic processes not only drops below 100, it also and be-
comes rather sensitive to the applied magnetic field, as shown
in Fig. 4. The inelastic rate is seen to drop rapidly for small
fields, up to about B = 10 gauss, at which point the Zeeman
interaction dominates over the hyperfine structure. At low
fields, a number of hyperfine levels are roughly equally likely
to be populated after a collision. However, at higher fields we
find that the collisions are subject to more restrictive propen-
sity rules. Indeed, for fields above ≈100 gauss, the dominant
loss channels appear to be those where the final parity has
changed from f to e for both molecules (a consequence of the
channel coupling of the dipole-dipole interaction), while the
laboratory-frame projection of spin, M, is unchanged. There is
additional, minor, inelastic scattering to channels with e parity
and small changes of M.

Another feature of the inelastic rate in Fig. 4 is a minimum
near B = 90 gauss, which indeed is what prompted us to con-
sider collision rates at this field in Fig. 3. This appears to be
not fundamental, but somewhat fortuitous. The dominant loss
channels happen to have an interference minimum under the
circumstances shown. While such minima can be described
in the distorted-wave Born approximation [16], they cannot
be predicted without detailed knowledge of short-range phase
shifts. Finding such a minimum empirically would of course
be useful for minimizing the inelastic rates.

A similar overall behavior occurs when an electric field is
applied, irrespective of the application of a small magnetic
field (Fig. 5). For very small fields, the inelastic rates rise
when E < E0 [13]. Then there is a drop as propensity rules
favor a small number of exit channels, those with � conserved
and �M � 2. Figure 5 indicates that small electric field of
several hundred V/cm can act to suppress inelastic collisions
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at Ec = 1 mK, but the suppression does not come particularly
close to achieving the desired goal of γ ≈ 100.

IV. CONCLUSION

In this paper we studied the ultracold collisions of po-
lar LiO molecules in their ground electronic rovibrational
state, focusing on the weak-field-seeking state in an external

magnetic or electric field. Relatively weak fields may have a
profound influence on the collision dynamics when applied
separately. We have shown that this molecular species possess
a sudden drop in inelastic collisions at values of the applied
magnetic field that are even in the order of tens of G, thus
improving the elastic-to-inelastic rates to their favorable ra-
tios, provided that the temperatures of the trapped gas are
achievable by laser cooling. The electric field can assist in
increasing this ratio of efficiency; however, it does not suf-
ficiently control the suppression of inelastic rates. The rate
of elastic collisions that rethermalize the thermal distribution,
accompanied by a low rate of heating state-changing colli-
sions, indicate that quantum degeneracy or even molecular
Bose-Einstein condensation of LiO gas may be feasible.

The method proposed in the paper seems sufficiently gen-
eral to be applicable to collisions of other polar molecules
in degenerate electronic states. These interpretations of the
scattering behavior have, thus far, disregarded the influence of
resonant scattering where the radicals are temporarily trans-
ferred via collisions into rotationally excited states. These
resonances will, of course, enrich the detailed response of
scattering to external fields, with the possibility to both en-
hance and diminish the relevant collision rates. Investigation
of these effects remain to be incorporated into future studies.
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