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We investigate the structure of trapped Bose-Einstein condensates (BECs) with long-range anisotropic
dipolar interactions. We find that a small perturbation in the trapping potential can lead to dramatic
changes in the condensate’s density profile for sufficiently large dipolar interaction strengths and trap
aspect ratios. By employing perturbation theory, we relate these oscillations to a previously identified
‘‘rotonlike’’ mode in dipolar BECs. The same physics is responsible for radial density oscillations in
vortex states of dipolar BECs that have been predicted previously.
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The study of ultracold atomic and molecular gases is
notable for its connection to denser condensed matter
systems. Ultracold gases can show a strong resemblance
to condensed matter systems such as vortex lattices, super-
fluids, and Mott insulators. Part of the attraction to these
analogies is the ability to control an ultracold atomic or
molecular gas, allowing researchers to explore regions of
parameter space that are difficult to access in a naturally
occurring system.

A recent example of this connection between ultracold
gases and ‘‘conventional’’ condensed matter systems arises
in dilute Bose-Einstein condensates (BECs) consisting of
dipolar particles. An early theoretical study investigated a
gas of dipoles that are free to move in a plane, but are
confined in the direction orthogonal to the plane and that
are polarized in this same direction. This system is pre-
dicted to exhibit an anomalous dispersion relation that
possesses a minimum at a characteristic momentum, remi-
niscent of the roton dispersion well known in superfluid He
[1]. Moreover, the depth of this minimum is controlled by
the strength of the dipolar interaction (proportional to the
square of the dipole moment and the density). If this
interaction is large enough, the roton minimum can be-
come degenerate with the ground state.

In experiments, however, the gas is confined, leading to
a discrete excitation spectrum rather than a continuous
dispersion relation. Nevertheless, signatures of the roton
excitation have been identified in calculations with fully
three-dimensional trap geometries [2]. Certain excitations
exhibit nodal structures on the same length scale as the free
rotons. Moreover, the excitation energies of these modes
drop rapidly as the dipolar interaction strength increases.
We note that the first dipolar BECs (DBECs) have already
been created using atomic 52Cr [3–6] while molecular
BECs (promising far larger dipoles and tunable dipole
moments) are the target of active experimental work.

In this Letter we explore another aspect of roton physics
that may be observable in dipolar gases. It has previously

been suggested that boundaries in superfluid 4He, includ-
ing vortex cores, should give rise to radial density oscil-
lations whose length scale is characteristic of the roton
wavelength [7–9]. More recently, calculations of vortex
states in a DBEC in a highly oblate trap have exhibited
similar radial structures [10], raising the question of the
relation between these structures and rotons in this system.
(Progress has also been made in the understanding of the
vortex state in a DBEC in the Thomas-Fermi regime.
However, in this regime the vortex does not manifest a
radial ripple [11,12].)

Our objective in the present work is to explore this
relationship. Whereas the complete description of super-
fluid He is complicated by strong interactions, this is not
the case in a DBEC, where the gas is dilute enough that a
mean-field approach should work quite well [13]. Indeed,
we find that the main effect generating the radial density
oscillations is the perturbation caused by the centrifugal
potential of the vortex state. This perturbation contami-
nates the ground state with the lowest-lying excited state,
which, in the limit of strong interactions, is the roton
excitation. We demonstrate this effect by applying a per-
turbation theory to the nonlinear mean-field equations; the
perturbative approach is in good agreement with our full
numerical calculations.

At very low temperatures, N bosons trapped in an ex-
ternal potential U�r� may be described within mean-field
theory by the nonlocal Gross-Pitaevskii equation (GPE):
 �
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where ��r� is the condensate wave function (with unit
norm), r is the distance from the trap center, m is the
boson’s mass, and V�r� r0� is the two-particle interaction
potential. We consider the case of a cylindrical harmonic
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trap, for which the external potential is U�r� �
1
2m!

2
���2 � �2z2�, where � � !z=!� is the trap aspect

ratio. The interaction potential has the form [14]

 V�r� r0� �
4�@2as
m

��r� r0� � d2 1� 3cos2�

jr� r0j3
; (2)

where as is the s-wave scattering length, d is the dipole
moment, and � is the angle between the vector r� r0 and
the dipole axis. The first term in V�r� r0� is the familiar
contact potential, while the second term is the long-range
anisotropic dipole-dipole potential. This potential de-
scribes interactions of dipoles that are polarized along
the trap axis, as could be achieved in an experiment by
applying a strong external field. For the sake of illuminat-
ing purely dipolar effects, we set as � 0 in this work, a
limit that can potentially be achieved experimentally in
52Cr [15].

Because of the azimuthal symmetry of both the trapping
potential and the dipole-dipole potential, the ground state
solutions of Eq. (1) may be written in the form ��r; t� �
 ��; z�eik’, where k is the quantum number representing
the projection of orbital angular momentum about the
trap’s axis [16]. The k � 0 solutions of Eq. (1) correspond
to rotationless BECs, while the k � 1 solutions correspond
to BECs with singly quantized vortices. The radial struc-
ture of the vortex is the same as that of a rotationless BEC
in a trap with a central potential representing the centrifu-
gal force: indeed, by inserting the vortex form written
above into Eq. (1), one obtains
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The centrifugal potential @2k2=2m�2 is responsible for the
vortex core (i.e., vanishing density at � � 0).

Following the systematic mapping of the structure and
stability of k � 0 DBECs in oblate traps [2], here we
undertake to characterize the structure and stability of a
k � 1 vortex in DBECs. To characterize the dipolar inter-
action strength we introduce the dimensionless parameter

D � �N � 1� md
2

@
2aho

, where aho �
����������������
@=m!�

q
is the radial

harmonic oscillator length. The DBEC possesses dynamic
stability when all of the excited-state Bogoliubov–
de Gennes (BdG) eigenenergies are real-valued. As was
found for k � 0 condensates in Ref [2], we find that for the
vortex state there also exists, at any finite aspect ratio, a
critical value ofD � Dcrit above which the k � 1 DBEC is
dynamically unstable to small perturbations, while below it
the vortex is dynamically stable. We assume that the trap
itself is nonrotating, so that the vortex is not the lowest
energy state and therefore is not thermodynamically stable.
However, here we are interested in the question of the

dynamical stability, which is relevant for a closed system
at T � 0.

We findDcrit for various trap aspect ratios by solving the
linearized BdG equations, as was done in Ref. [17].
Figure 1 illustrates the regions of dynamical stability for
k � 1 and k � 0 DBECs at trap aspect ratios that are
relevant to this Letter. We concentrate here on a specific
region in parameter space where we find ripples in the
DBEC density profiles, as illustrated in the insets.
Whereas previously the ripple was reported for a trap
with aspect ratio �� 100 and required the existence of a
negative scattering length [10], we find that vortices with
ripple structure exist also at milder trap aspect ratios of
�� 17 and with purely dipolar interactions (as � 0).

It is natural to hypothesize that the appearance of the
ripple in the vortex structure is related to a roton mode
which is excited by the centrifugal potential of Eq. (3).
This raises the interesting question, could such a ripple also
be observed in the ground (nonvortex) state of DBEC
perturbed by an external potential at the center of the
trap? Such a perturbation may be realized experimentally
by applying a blue-detuned laser along the trap axis, taking
the form U0�r� � A exp���2=2�2

0�, where A is the height
of the Gaussian and �0 is its width.

For sufficiently oblate traps, k � 0 DBECs exhibit radial
density oscillations in the presence of such Gaussian po-
tentials. Figure 2 illustrates the radial profiles of k � 0
DBECs in a harmonic trap with aspect ratio � � 17 and
with a Gaussian potential having A � @!� and �0 �

0:2aho. To give a concrete example, for 52Cr atoms in a

FIG. 1 (color online). The red (thin) dotted line marks the
maximum dipole strength, for a given trap aspect ratio �, below
which a rotationless (k � 0) DBEC is dynamically stable. The
colored regions represent the dynamically stable region for a k �
1 DBEC, while the pink (darker) region is where radial oscil-
lations with local minima are observed. The inset (a) is an
isodensity surface plot of a k � 0 DBEC perturbed by a small
Gaussian potential centered on the trap axis, while the inset (b) is
an isodensity surface plot of a k � 1 DBEC. The presence of
radial oscillations is clear in both cases.
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harmonic trap with radial frequency !� � 2�� 100 Hz,
this translates to having a beam width of �0 � 280 nm. In
this trap, an interaction strength of D � 181:2, very near
the point on instability for a k � 0 DBEC in a trap with the
above aspect ratio, may be achieved with �104 000 52Cr
atoms. It is seen that in this case even a small Gaussian
perturbation makes a dramatic change in the DBEC density
profile. The radial oscillations near Dcrit are much more
pronounced than for a smaller DBEC with D � 100. This
is suggestive of the roton presence in this structure, since
the roton is expected to emerge with increasing dipolar
interaction strength (i.e., increasing density for a fixed
dipole moment) [1,9,17]. As was shown in Ref. [2], the
roton mode undergoes a significant decrease in energy with
increase inD until it achieves zero energy atDcrit, marking
the point of dynamical instability for the k � 0 condensate.
Beyond this Dcrit, the roton energy is purely imaginary.
Examining the nature of the roton itself within BdG theory
tightens up its relationship with the observed structure
discussed above.

For a k � 0 condensate, the coupled BdG equations
reduce to a single equation, given by

 

~G ~F jfi � !2jfi: (4)

Here, ~G � P�G���P and ~F � P�F���P, where P �
I � j�ih�j is the projection operator into the space or-
thogonal to ground state wave function j�i. Also, G �
H0 � C and F � H0 � C� 2X, where H0 is the zero-
interaction Hamiltonian, C describes a direct interaction,
and X describes an exchange interaction between the
Bogoliubov quasiparticle with eigenvector jfi and the

condensate. All of these operators are defined as in
Ref. [17]. The eigenvector jfi is given by jfi �
jui � jvi, where fu; vg are the familiar Bogoliubov eigen-
functions. The ! appearing on the right-hand side of
Eq. (4) is the energy eigenvalue corresponding to jfi.

In Eq. (4), it is understood that the linear space on which
~F and ~G act, and to which jfi belongs, is orthogonal to j�i.
Thus, we eliminate a nonphysical solution with eigenvalue
zero [18]. The justification for working in this reduced
linear space is that it can be shown that all physical
excitations obey hfj�i � 0 [16].

It seems natural to assume that the roton mode domi-
nates the structure of the perturbed DBEC near instability
because its energy is much lower than the energies of the
other BdG modes. To explicitly demonstrate this, one
needs to formulate a perturbation theory of the nonlinear
GPE with respect to external potential perturbation.

To do so, we begin by writing a perturbation to the
trapping potential as U ! U�U0, where U0 is the small
perturbation. The response of the condensate wave func-
tion to this perturbation is then j�i ! j�i � j�0i. We
insert these expressions into Eq. (1), linearize in the primed
quantities, and obtain the equation

 

~Fj�0i � �PU0j�i: (5)

To solve Eq. (5), we introduce a basis defined by the
eigenvalue equation

 

~Fj’ni � "nj’ni (6)

and use its eigenfunction solutions to expand j�0i in the
j’ni basis. Plugging these expansions back into Eq. (5) and
working to first order gives the expression for the wave
function perturbation,

 j�0i � �
X
n

h’njU
0j�i

"n
j’ni: (7)

This derivation involves the use of the orthogonality con-
dition h�0j�i � 0 and the fact that h’nj�i � 0. The final
expression is formally identical to that of the usual pertur-
bation theory of the linear Schrödinger equation.

The connection between the BdG roton mode and the
perturbative modes is clear in the limit that the roton mode
becomes degenerate with the ground state. In this limit, the
roton energy! goes to zero. In Eq. (4), this means that ~G ~F
has eigenvalue zero. Now, note that the operator G is
positive semidefinite. (Its lowest eigenvalue is zero, with
eigenfunction j�i. This is indeed the ground state, since
j�i is nodeless). Accordingly, the operator ~G that, by
definition, acts on the linear space orthogonal to j�i is
positive definite. It then follows that any solution of
~G ~F jfrotoni � 0 must also satisfy ~Fjfrotoni � 0. Thus,
j’0i � jfrotoni is a solution of Eq. (6) with eigenvalue "0 �
0. Since j�0i is written as an expansion in j’ni with
weights proportional to 1="n, the eigenfunction j’0i with
eigenvalue "0 � 0 makes a contribution to j�0i that

FIG. 2 (color online). Radial profiles of the k � 0 DBEC
subject to the perturbing potential U0�r� �
@!� exp	��2=2�0:2aho�

2
 in a trap with aspect ratio � � 17.
The red dash-dotted line represents the trapping potential at z �
0, the black solid line represents the radial profile of the DBEC at
D � 100, and the blue dotted line represents the radial profile at
D � 181:2, near the point of dynamic instability for the k � 0
DBEC. The ‘‘+’’ signs represent the perturbation theory results
and the thin dotted lines represent the unperturbed radial profiles
at the corresponding dipole strengths.
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strongly overwhelms the contributions of the other eigen-
functions. Thus, in the limit that the roton energy goes to
zero, j�0i is dominated by the BdG roton mode jfrotoni.

To show that j’0i becomes identical to BdG roton mode
jfrotoniwhen the roton energy goes to zero, Fig. 3 shows the
radial profiles of both of these excited modes for a rota-
tionless DBEC with dipole strength D � 181:2 in a trap
with aspect ratio � � 17, which is very near the point of
instability. Additionally, Fig. 2 illustrates the accuracy with
which this perturbation theory predicts the wave function
of a DBEC when perturbed by a Gaussian potential, as
discussed earlier in this Letter.

Recall that the k � 1 solution of the GPE gave rise to a
centrifugal potential in the radial part of Eq. (3). This
potential is constant along the trap axis and decreases
quickly in the radial direction. So, just as the Gaussian
potential perturbs the DBEC and gives rise to ripples on its
density profile, we expect similar behavior for trapped
DBECs with a centrifugal potential, i.e., DBECs with
vortex structure. To treat the centrifugal potential with
our perturbation theory, we introduce a radial cutoff that
is chosen to be much smaller than the spatial extent of the
vortex core itself. We find that for large � there is good
agreement between our perturbation theory and the results
of our exact calculations. Just as is the case for a Gaussian
perturbing potential, the roton mode is responsible for the
rich structure observed in the k � 1 vortex state of a DBEC
close to instability.

In conclusion, we have developed a perturbation theory
for the GPE and have applied it to DBECs perturbed both
by thin Gaussian potentials centered on the trap axis and by
centrifugal potentials. This theory allows us to relate the
radial oscillations observed on the exact ground state pro-
files of perturbed DBECs to the roton mode observed in the
BdG spectrum of rotationless DBECs. For 52Cr and the trap
parameters discussed in this Letter, the length scale of the
oscillations is �2 �m. This is in comparison to the length
scale of the predicted ripple in the 4He vortex, which is of
the order of 1 Å, and has not been resolved experimentally
up to now.
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FIG. 3 (color online). Radial profiles of excitations on a rota-
tionless DBEC with dipole strength D � 181:2 in a trap with
aspect ratio � � 17. The solid blue line represents the BdG roton
mode while the red marks represent the F-operator eigenfunction
with eigenvalue �; j’0i.
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