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Abstract

We test a non-equilibrium approach to study the behaviour of a Bose—Fermi
mixture of alkali atoms in the presence of a Feshbach resonance between bosons
and fermions. To this end we derive the Hartree—Fock—Bogoliubov (HFB)
equations of motion for the interacting system. This approach has proven very
successful in the study of resonant systems composed of Bose particles and
Fermi particles. However, when applied to a Bose—Fermi mixture, the HFB
theory fails to identify even the correct binding energy of molecules in the
appropriate limit. Through a more rigorous analysis we are able to ascribe this
difference to the peculiar role that noncondensed bosons play in the Bose—Fermi
pair correlation, which is the mechanism through which molecules are formed.
We therefore conclude that molecular formation in Bose—Fermi mixtures is
driven by three-point and higher-order correlations in the gas.

1. Introduction

Feshbach resonances have been recently discovered in ultracold mixtures of bosonic fermionic
alkali atoms [1, 2]. Together with the achievement of degenerate states of such systems [3-5],
this experimental feat has opened investigative opportunities for the study of new ultracold
regimes. From the theoretical point of view, on the other hand, studies of Bose—Fermi mixtures
to date have been mostly limited to nonresonant physics, focusing mainly on mean-field
effects in trapped systems [6—13], phases in optical lattices [14—17], or equilibrium studies of
homogeneous gases, focusing mainly on phonon-induced superfluidity or beyond-mean-field
effects [18-23].

This paper introduces a time-dependent theory of the Bose—Fermi mixture that accounts
for the resonant interaction. In systems where the resonant interaction is between two bosons
[24-26] or between two fermions [27-33], the theory of ‘resonant superfluidity’ has already
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been articulated. This theory is, so far, a big success. In the Bose case, it quantitatively
describes the coherent conversion of bosonic atoms into bosonic pairs and back. Indeed,
Ramsey interferometry on this system, coupled with this theoretical analysis, has produced
the most accurate interaction potentials yet between ultracold rubidium atoms [9]. In the
Fermi case, the theory has produced important qualitative insights into the crossover regime
between weakly-interacting Cooper pairs on one hand and Bose-condensed molecules on the
other [27-34].

It seems worthwhile, therefore, adapting the same level of theory to the resonant Bose—
Fermi mixture. In this paper we formulate the problem by writing down the relevant equations
of motion at the level of Hartree—Fock—Bogoliubov (HFB) approximation. The equations
of motion are suitably number and energy conserving, as are their counterparts in boson of
fermion systems. However, in sharp contrast to these systems, the HFB theory applied to
the Bose—Fermi resonance does not provide quantitatively reasonable results. Specifically we
show, by direct numerical solution, that the theory cannot reproduce the binding energy of a
Bose—Fermi molecule, even in the limit of low density.

The source of this difficulty lies in the approximate treatment of three-body correlations
in the theory. The molecules, after all, are composed of two atoms, so the atom—atom—
molecule correlation function is of central importance in determining properties of the
resulting molecules. In the HFB theory, this three-body correlation function is approximated
in terms of two-body correlation functions, which is adequate for Bose—Bose and Fermi—Fermi
resonances, but not for the Bose—Fermi mixture. Ultimately, the critical missing piece will
turn out to involve the noncondensed bosonic atoms.

This paper is organized as follows: we begin our discussion in section 2 by introducing
the Hamiltonian of the system, and justifying such choice. We then proceed to outline
the Bogoliubov—Born—Green—Kirkwood—Yvon (BBGKY) formalism used to derive the HFB
equations of motion, and show the form they take in free space. In section 3 we present our
results, by first analysing the equations by physical and analytical insight, and then presenting
numerical results in support of our conclusions.

Section 4 approaches the problem from an alternative, perturbative point of view, relevant
to low fermionic densities. From this analysis it is clear that molecular binding energies will
not be recovered without adequately accounting for the noncondensed bosons, thus pointing
to their need for a higher-order theory.

2. Theoretical formalism

2.1. The Hamiltonian

We are interested primarily in the effects of resonant behaviour on the otherwise reasonably
understood properties of the system. To this end we use a model which, in the last few years,
has become one of the standards in the literature, and which was used to study the effect of
resonant scattering in systems composed of bosons [24—26] and fermions [27-32]. Because
there is already a significant literature explaining the details involved in the choice of the
appropriate model Hamiltonian, we only outline the extent of the approximation involved in
such a choice.

An accurate approach to the problem would have to incorporate several scattering
channels, since the resonance in question is a consequence of the intertwined behaviour
of the complex internal structures of the atoms. In a field theoretical sense that would imply
having to consider vector fields for the bosons and fermions with as many components as
there are spin states involved in the interaction, and a nonlocal interaction tensor of adequate
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size, to account for all coupling between such components. Fortunately, if we assume that the
resonances in the system are sufficiently far from each other, such that it is possible to define
a ‘background,” or away from resonance behaviour, we can focus on only one resonance at
a time, which in turn makes it possible for an effective two-channel model to describe the
resonance. Furthermore, since the closed channel threshold is energetically unaccessible at the
temperatures of interest, we can ‘integrate out’ the closed channel components of the fermion
and boson field, in favour of fermion fields which we identify as representative of the motion
of one boson and one fermion, and which we dub into the ‘molecular field.” In the appropriate
limit the molecular field identifies bound states between fermions and bosons. We emphasize
that the molecular field is a theoretical artifice that alleviates the need to treat relative motion
of two atoms on the natural scale of the interaction (tens of Bohr radii). However, this model
is appropriate for the study of the systems in hand, typically composed of 10'24°K atoms
per cubic centimetre, whereby the characteristic length scale associated with the many-body
system is of the order of the inverse Fermi wavenumber, (thousands of Bohr radii), implying
an average interparticle distance, which is given by ( ) 13 IF, of the same order. Last, since
the coupling terms in the Hamiltonian represent an effective interaction, we can choose its
functional form, and we do so by choosing to deal with contact interactions, which simplify
the calculations immensely.
The resulting Hamiltonian has the following form:

H = Hy+ H;, (D
where
H():Z 5&;& +ZeBbTb +Z +v I,c,, Y Z b[, —q erqb b
p pp 9 @)
Voe at . A . o
H; = 7 ; bl a,,b p+— \/_ Z Cc a_p+q/2bp+q/2 +h.C.).

Here a,, b » are the annihilator operators for, respectively, fermions and bosons, ¢, is the
annihilator operator for the molecular field [27, 31, 32]; y = 4ma;/my, is the interaction term
for bosons, where g;, is the boson—boson scattering length; and Vi, v, and g are parameters
related to the Bose—Fermi interaction, yet to be determined. Also we define single particle
energies €% = p2 /2mg, where m,, indicates the mass of bosons, fermions, or pairs, and V as
the volume of a quantization box with periodic boundary conditions.

2.2. Two-body scattering parameters

The first step is to find the values for Vyg, v, g in terms of measurable parameters. We will, for
this purpose, calculate the two-body T-matrix resulting from the Hamiltonian in equation (2).
Integrating the molecular field out of the real time path integral [41], leads to the following
Bose—Fermi interaction Hamiltonian

1
2bod,
H; % = v (ng+

2
— v) > alb! a,b_,. 3)
p

This expression is represented in centre-of-mass coordinates, and E is the collision energy of
the system. From the above equation we read trivially the zero energy T-matrix in the saddle
point approximation

2
T = (ng - ‘%) , )
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which corresponds to the Born approximation. We Emphasize that this approximation is only
valid at exactly zero energy, and it does not, therefore, describe the correct binding energy as a
function of detuning, and will be improved in the many-body treatment in section 4. However,
with this approach we obtain an adequate description of the behaviour of scattering length as
a function of detunig, which allows us to relate the parameters of our theory to experimental
observables via the conventional parameterization [25, 27]

2w AB
T(B) = m—bfdbg <1 - m) s (5)

where ay, is the value of the scattering length far from resonance, A p is the width, in magnetic
field, of the resonance, myy is the reduced mass and By is the field at which the resonance is
centred.

The identification of parameters between equations (4) and (5) proceeds as follows: far
from resonance, |B — By| 3> Ap, the interaction is defined by a background scattering length,
via Vg = 2:1::3. Relating magnetic field dependent quantity B — By to its energy-dependent
analogue v requires defining a parameter 3 = dv/d B, which may be thought of as a kind of
magnetic moment for the molecules. It is worth noting that v does not represent the position
of the resonance nor the binding energy of the molecules, and that, in general §p is a field-
dependent quantity, since the thresholds move quadratically with field, because of nonlinear
corrections to the Zeeman effect. For current purposes we identify §p by its behaviour far from
resonance, where it is approximately constant. Careful calculations of scattering properties
using the model in equation (2), however, leads to the correct Breit—Wigner behaviour of the
two-body T-matrix, as we show in section 4.

Finally we get the following identifications:

27Tab
Vg = mbfg 8 =/ VoedpAp v =45(B — Bo). (6)

For our calculations we use the 511G resonance in the *°K—3"Rb system, the parameters we
use in the calculations to follow are a,, = —202a9, §p = 5.1 x 109 K/G,and Ay = 1G.

2.3. The formalism

‘We now move on to the many-body analysis, and derive the Heisenberg equations of motion
for the many-body system. The way this is done is to find equation of motion for correlation
functions, f;(xy, ..., xs), which represent the probability of finding s particles at positions
X1, ..., Xs. As it turns out, the equation of motion for the correlation function f; will depend
on the function f,, which in turn will depend on f3, and so on all the way to fy, where N
is the total number of particles in the system. This is known as a Bogoliubov—Born—Green—
Kirkwood—Yvon (BBGKY) hierarchy [35]. In practice we will be concerned with momentum
space correlation functions, but the idea is the same.

Given the large number of particles in the system, it is impossible to calculate equation
of motions for all correlation functions, and we need to invoke an approximation. In practice,
correlation functions are often calculated only up to two-body correlations, s = 2. This is
justified under the assumption that interactions are suitably ‘weak.” Higher-order correlations
are included in an approximate way by considering not the actual atomic constituents, but rather
combinations called quasiparticles. The quasiparticles are defined to be noninteracting, so
that their higher-order correlation functions can be written in terms of second order correlation
functions [41].

Using this qualitative idea we proceed to develop a more formal understanding. In
statistical field theory, given an operator O, and Hamiltonian H, we define the thermal average
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of O with respect to H as (O)y = 1/ZTr{Oe PH}, where B = (kzpT)~! is the inverse
temperature, and Z = Tr{e ##} is the partition function. In this framework, the one-particle
correlation function is defined as the thermal average of the number operator with respect to
the Hamiltonian of the system.

In the quasiparticle representation, we define the annihilation operator for quasiparticles
as a, reminding ourselves that it is a complicated function of a, at, b, bt ¢, ¢f. In momentum
space, the one-particle correlation function in this representation will then be (a,1a2) g,
where Hg, is the (noninteracting) quasiparticle Hamiltonian.

Now we introduce the real approximation, namely that the quasiparticles can be written
as linear combinations of all possible products of two operators (except for averages involving
one fermionic and one bosonic operator, which are easily shown to vanish). The procedure is
then to find the Heisenberg equations of motion for these pairs of operators, and then averaging
over the quasiparticle Hamiltonian

i
ot
which being Gaussian allows us to invoke Wick’s theorem to decompose all higher-order
correlations in one-particle correlations, thus truncating the BBGKY hierarchy.

(O)n, = ([0, H]) n,» (7

2.4. The equations of motion

Before generating Heisenberg equations, we need to take a little care in the treatment of the
Bose field, to properly treat the condensed part. To this end we perform the usual separation of
mean field and fluctuations of the Bose field, substituting by (the zero-momentum component
of the Bose gas) with a c-number ¢ = (bo) p,,, and identifying it with the condensate amplitude,
while (b,x0)n,, = 0 are the fluctuations. We insert these definitions in the Hamiltonian in
equation (2), then proceed to calculate commutators.

Since we wish to limit our analysis to a homogeneous gas, we note that the correlation
functions fj(x, x’) can be written in terms of a relative coordinate y = x — x’. Thus in
momentum space fi(p) is the probability of finding a particle with momentum p in the gas,
or in other words it is the momentum distribution of the system.

Having taken all appropriate commutators, and applied Wick’s theorem, (for more details
on the procedure see [36], or appendix A for the derivation of a sample equation.), we obtain
the following self-consistent set of equations of motion for the system:

ih%p = Viogprod +y 2ps + Apg™) + gpiyr + v 1910 (8a)
h%ﬁg(p) =2y 3mlrp(p) (@™ + Ap)] (8b)
ih%xg(p) = [€f +2Vogpr + 4y (I¢° + B5) |k5(P) + ¥ Riis(p) + D($” + Ap) (8¢)
h%mv(p) = —2g3m(@nur(p)) (8d)
ih%mm = [e) +2Vog(ps +101)]cr (p) (8e)
B () = 263m e () 85

d
ihEKM(p) = [eﬁ? + V]KM(P) (8¢)



194 D C E Bortolotti et al

0
e (p) = (e — € = v+ Voa(B + 181 e (p) = 86" (e (p) = 1aa (p) Sh)

9
ihEKMF(p) = [ey +€)f + v+ Vog(Bp +101) Jkcmr (p) — glgicr(p) + ¢*iem(p)], (8i)

where 7p(p) = (b; 7éobp;éo) " is the momentum distribution of non-condensed bosons, and
qp

pp = f 2‘%[72773(17) is the density of noncondensed bosons; kg(p) = (bpz0bp0)h,, is the
anomalous distribution of bosonic fluctuations and Ap = [ zdn—"z p*kp(p) is the anomalous
density. Similarly ng y(p) are the fermionic and molecular distributions, py p are the
densities and kp p(p) and Ap p are the anomalous molecular and fermionic distributions
and densities. Finally nyr(p) = (c:[,ap)qu and kyr(p) = (cpap)n,, are the normal and
anomalous distribution for molecule—fermion correlation, with the associated densities py g
and AMF.

3. Analysis and results

Equations (8a)—(87) describe the complete self-consistent set of HFB equations for the resonant
BF mixture. Inspection of these equations, however, allows us to simplify the set quite
dramatically, without sacrificing almost any of the physics thereby contained. First, we note
that the evolution of the anomalous fermionic densities «y r(p), kr(p) and k3 (p) is entirely
decoupled from the evolution of all other quantities, and can therefore be considered separately.
This implies that, since we are mainly interested in the evolution of the normal densities, we
can eliminate without approximation all the anomalous ones.

The next thing we note is that the evolution of the normal and anomalous bosonic averages
is completely independent of the resonant interaction, and is controlled only by the background
interactions between bosons and with fermions. For typical background interaction strengths,
and cold enough temperatures, it is well established that the role of noncondensed bosons is
minor, and the system is well described at the Gross—Pitaevskii level of approximation.

We can therefore write the following reduced set of equations:

ih%qﬁ = (Voglr +v101)¢ + 2035 (9a)
h%np(p) = —2gIm(¢pnur(p)) (9b)
B (p) = 28 Im (@ () 9¢)
ih%nw(p) =[el — el — v+ Voeld|*nur (p) — 6" (e (p) — na (p)). (9d)

Together with the prospect of simulating time-dependent experiments, such a set of equations
allow us to calculate many characteristics of the system, which we could use to understand
further physics or, more importantly at this stage, to test the theory against our knowledge of
the system in various limits.

A relevant quantity we can calculate to this end is the binding energy of the molecules.
This can be done by an instantaneous jump of the detuning from large and positive values,
where we know the equilibrium distributions very well, to some other arbitrary value. The
system thus perturbed oscillates at a specific characteristic frequency, which identifies as the
(unique) pole of the HFB many-body T-matrix of the system. For negative detunings, as
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Figure 1. The top panel represents the time evolution of the population of condensed atoms after
detuning is suddenly shifted from infinitely positive to —5.1 K (—0.1 G magnetic detuning). The
bottom panel shows the absolute value of Fourier transform of said time evolution. the main peak
in this graph represents the computed value of the binding energy, which we see is about 5.4 x
107 K. The system under consideration is composed of fermionic densities of 10'?> cm™ for a
constant density ratio of five bosons per fermion.

shown below, this pole corresponds to the binding energy of the molecules, dressed by the
interactions in the system.

Figure 1 shows a representative example of time evolution of the condensate population
(number conservation guarantees that all three populations oscillate with the same frequency)
under the conditions described above. In this particular example, at time ¢t = O the
detuning is suddenly shifted to —5.1x 107 K, corresponding to a magnetic field detuning of
approximatively 0.1 G. The response of the population shows an envelope function, indicated
by the grey shaped area that arises from nonlinearities in the equations of motion. The inset
shows that under this envelope is a well-defined sinusoidal oscillation.

The nearly monochromatic character of the response is made clear by Fourier transforming
the time-dependent population. The Fourier Transform shown in the second panel of figure 1
is strongly peaked at 5.4 x 10~° K. Similarly, the position of the peak in the frequency
spectrum, for different final detunings, should map the molecular binding energy as a function
of magnetic field.

Figure 2 shows the results obtained by this method. This plot represents the binding
energy of the molecules, dressed by the interactions in the system. This dressing is expected
to be weaker for smaller densities of atoms and molecules. In this limit, we should thus recover
the two-body molecular binding energy, which can be calculated quite accurately from two-
body close coupling calculations (solid line in figure 2). Instead we see that the pole behaviour
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Figure 2. Plot representing the poles of the scattering T-matrix for the 511G 3’Rb—*'K Feshbach
resonance. The dotted line represents the ‘bare’ molecular detuning as a function of field, as defined
in the text. The solid black line is the correct binding energy of the molecular state, obtained by
means of full close coupling calculations, while the grey solid lines are the eigenenergies obtained
from equations (9a)—(9d), for different atomic densities. From top to bottom on the right the grey
lines refer to fermionic densities of 10! cm™3, 10! ¢cm™3 and 10'? cm ™3, for a constant density
ratio of five bosons per fermion. We note that for lower and lower densities the calculated binding
energy incorrectly approaches the bare detuning instead of the correct two-body binding energy.

approaches the bare detuning (dashed line in figure 2), indicating that the renormalization of
the binding energy obtained at the present level of approximation is inadequate to correctly
include the two-body physics. This behaviour is in sharp contrast to the Bose—Bose resonant
interaction, where the correct binding energy is preserved at the HFB level [24]. This is also
true for the Fermi—Fermi case [37].

This discrepancy is due to the fact that the creation of molecules requires the formation of
correlations between bosons and fermions, which, as shown in the following, cannot exist if
the density matrix is assumed to be Gaussian. Specifically what is required is a more careful
consideration of the noncondensed bosons

4. The importance of noncondensed bosons

The reason for the failure of the HFB theory is not immediately clear from the theory itself.
To bring out the inadequacy of this theory in the dilute limit, we now recast the problem in an
alternative perturbative form that can reproduce the correct behaviour in the two-body limit.
This path integral approach will also lay bare the role of noncondensed bosons.

What we will see in the upcoming analysis may be qualitatively understood in the
following simple terms. A molecule in the gas can decay into a pair of ‘virtual’ (i.e. non-energy
conserving) atoms, which can then meet again and reform the molecule. The incidence of
these events modifies the behaviour of the molecule, and an appropriate treatment of these
virtual excitations is therefore necessary to correctly include the two-body properties of the
molecules in the many-body theory. In particular, the molecules can decay forming a virtual
noncondensed boson, and the contribution of this set of events to the physics of the molecules
turns out to be very important. An appropriate theory would therefore consider the coupling
of the molecules to noncondensed bosons explicitly, which implies that one has to include
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in the equations of motion three point averages, such as <cj1a_ p1q/2P(pq /2)>. Since the HFB
theory disregards three point averages, it only contains molecule—atom—atom couplings of the
form (c;aq>¢o, where molecules can only decay forming a condensed boson.

It is straightforward to see that the HFB theory treats three-body correlation functions
differently depending on the quantum statistics of the constituents. For a Bose—Bose mixture,
the correlation function is approximated (schematically) by

{bbm) ~ (m)(b(—q)b(q)) +2(b){bm). (10)

The first term of the right of this expression allows explicitly for virtual bosonic pairs of
arbitrary momentum, provided that the molecular field {(m) accounts for most of the molecules,
which is assumed to be the case. Similarly, in a mixture of distinct fermions, the correlation
function reads

(fifam) = (m)(f1(q) f2(=q)), (11)

and the same argument applies, since the molecules are bosons.
For the Bose—Fermi mixture, on the other hand, the correlation function would be
approximated by
(bfm) =~ (b)(fm) + (f)(bm) + (m)(bf). (12)
The required virtual atom—atom pairs would arise from the third term on the right-hand side of
this expression. However, these molecules are fermions, which have no mean field, (m) = 0.
The only surviving term is then the first one, which accounts only for condensed bosons, and

somehow correlates the fermionic atoms to the fermionic molecules. This is only an indirect
way to get the bosons and fermions correlated.

4.1. Two-body scattering
The perturbative analysis begins by recasting the Hamiltonian in equation (2) in terms of a

two-body action, in centre-of-mass coordinates:

S, v, ¢, 0", 5,611 = Sple, "1+ Sely, ¥11+ Suls, 611+ Scly, v', ¢, 9%, 5,6, (13)
where the field ¢ represents the bosons, v the fermions and & the fermionic molecules, and
where

' dw 1 dw B
Ssl¢, 9’1 = / oo 2 (hw+€))gl ybuy + 5oy / 7 2 Pop-aPupraBorPop
P p.P'q

d
Srlv, 1/”] = / ﬁ Z (_ha) + E;f)‘ﬁi),p‘ﬁw,p
P
d
SM[S, ET] = / % Z (_hw + 611;/1 + U)Sl,péw,p (14)
p

. Vi d
SC[W’ I/va ¢7 ¢T7 %‘7 ST] = % / % Z wj),p—q¢l),p’+qu,p/¢w.p +8

d P.Pq
) / % Z (&5 pVo.q-pPop +cC),
pa

where ho is the frequency associated with the motion of the various fields.
As before we will then proceed to integrate out the molecular degree of freedom [41] to
get

, ; i dw do’ g? A
Selwo vl 9.8 = [ 2553 (Vo t 2 ) Sk pbur Vi (15)
PP’

2 2w —v
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where E is the collision energy between the fermions and the bosons. We then undergo the

inverse transformation to obtain
-1
2

” dw 8 "o
suts. g1 == [ 325 [wer —5—— ) sle,
P W= Smamy Y (16)

d
el v, ¢, 67,5, €1 = / o D (E Vo pup +e).
P

Here &’ represents the new effective (i.e. primed) molecules. The first line of figure 3 shows the
diagrams describing the resonant collisions between bosons and fermions. Here the continuous
lines refer to fermions, the squiggles to bosons and the broken lines to effective molecules.
Since we are looking for poles of the S-matrix, we can disregard the trivial fermion and boson
propagators, and proceed, as outlined in figure 3, to calculate the renormalized propagator for
&', denoted as M, represented there as a heavy broken line. This object coincides with the
T-matrix of the system, and shares its poles. Using the definition of the retarded molecular
self-energy £¥ given in figure 3, and calling the molecular propagator M, (again for £'), we
get the following Dyson series:

T=M=My— My=M"My+ M2 MV My — - --

17
= My — My=MM, an
where T is the T-matrix for the collision, and which has formal solution
1
T=M=—+— (18)

Myt EM
These quantities take the explicit form
&2

M()(E) = <ng + ﬁ)

STy [ TN I — "
21 Q) (ho — £ +i0°)(E — o — - +107)

where my; is the boson—fermion reduced mass, and A is an ultraviolet momentum cutoff
needed to hide the unphysical nature of the contact interactions; we will dwell more on that
shortly. Finally inserting equation (19) into equation (18), we obtain the following expression
for the T-matrix:

3/2

-1
T(E)=|: LY \/E+mbfA} . (20)

g 2
ng + v \/EJT

To show that this expression correctly represents the two-body T-matrix for two-channel
resonant scattering, we will compare it to the results we know from standard theoretical
treatments [38], which teach us that

T(E) = 0(S(E) — 1), 2n

1
MprA/ Zmbe

where S(E) is the S matrix given by

. UATVE
S(E) = ¢~ 2iv2miEa (1 _ __ArvE. ) (22)
E —e+ilVE
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Figure 3. Feynman diagrams representing the resonant collision of a fermion and a boson. Straight
lines represent fermions, squiggles bosons, and dashed lines represent the effective composite
fermions.

Here I'+/E is the width of the resonance, ¢ is a shift associated with the detuning with respect
to threshold of the resonance and ayr is the s-wave scattering length for the boson—fermion
collision; all of these quantities can be extracted from experimental observables, through
accurate two-body scattering calculations.

From the parameterization of the zero energy 7-matrix in equation (5), and the E — 0
limit of (21), we easily derive I' = /2mrans, AB. With these definitions we can relate
equations (21) and (20), to find a regularization scheme for the theory, by substituting the
nonobservable parameters g, v and V;,, by the A-dependent (renormalized) quantities g, ¥ and
V;g, such that the observable T-matrix will not be itself A dependent

Following [27] we compare equations (20) and (21), in the limit E — 0, where we have
(once we include the definitions of the bare quantities)

-1
(2)? 1 My A
vbg_g_:[_—ngr x ] : (23)
Vie— & T

Since we have one equation and three unknowns, we will have to insert some physics in the
system, analysing it one limit at a time. The first limit is far from resonance, where v — 0o

- 1
— T

We are now left with the task of defining the resonant quantities, and we have no
more leeway to make physically motivated simplifications. The equations which remain
are ambiguous, which leaves us with a set of possibilities for the choice of g and . One way
is to proceed as follows: insert equation (24) into (23), and solve for ¥, to get

o myg AV, mytA v
v=g2(1— - g)( 7'[t2 +?>. (25)

From inspecting the above equation we can choose a definition of g, which will also imply
one for v, and we get (reporting also equation (24) for completeness)

— 1 _ 1 _ _ mbfAng
ng = ng (1 _ mbfAng ) g = g <] mbfAng ) v=v+ gg 7T2 . (26)
— - =

Using these definitions of Vi, g and b, together with the policy of imposing A as the upper
limit of momentum integrals, will guarantee that observables will not depend on the choice of
A, as long as it is chosen to be bigger than momentum scales relevant to experiment.

4.2. Many-body generalization

Generalizing the above treatment from two to many particles, we must now account for the
fact that, in a many-body system the molecular self-energy is modified by the environment.
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Unlike in the scattering problem, the procedure outlined in the previous section is only an
approximation to the full many-body problem, but as some evidence seems to suggest, a pretty
good one [39, 40].

To perform this generalization, one needs to calculate the many-body self-energy using the
many-body free Green functions D&B (w, p) and GR,[B, respectively for bosons and fermions,
defined as [41]

1

DY w, = |o|* +
we () = Oy v 07

27

1
ho —ef + up +i0*sign(e/ — up)’

Gy (@, p) = (28)

where (1 p(r) s the bosonic (fermionic) chemical potential. The molecular self-energy becomes

M ., [(do d’q
YUBQ,p) =—ig" | 5=-5—5D0(q, 0©)Go(p—q, 2 — )
21 (27)
= 2"(Q. p) + T (Q. p) = —ig%9*Go(Q. p)
A @ 1
g [ e , (29)
p—kf (27'[) Q—Gq —Ep7q+,l,LF+/LB

the two terms in this expression represent contributions from condensed (23’“3(9, p)) and
noncondensed (Z}®(Q, p)) bosons, respectively.

The (approximate) many-body self-energy in equation (29) can be easily shown to reduce
to its correct two-body counterpart defined in equation (19), when the densities and chemical
potentials are set to zero. However, if the contribution due to the noncondensed bosons E}s\m
is omitted, then =MB clearly vanishes in the two-body limit, ¢ — 0. There would then be
no renormalization of the molecular propagator, and the pole of the T-matrix would coincide
with the bare detuning, as shown in figure 2.

We remind the reader that neglecting the noncondensed component of the bosonic field
was a perfectly well-justified approximation of equations (8a)—(8i), which implies that those
equations are already inadequate to reproduce the two-body binding energies in the low density
limit. Indeed the part of resonant term in the Hamiltonian containing the bosonic fluctuations
vanishes according to Wicks theorem, since it is an average of a three operator correlation
with respect to a density matrix which is Gaussian, in the HFB approximation. To correct this
problem we should extend the HFB approximation and explicitly include three, and possibly
higher, particle cumulants, finding some other way to truncate the BBGKY hierarchy. The
subtleties involved in such a calculation, however, are many, and nontrivial, and will be the
subject of the further work.

5. Conclusions

We have performed a study of the non-equilibrium behaviour in Bose—Fermi mixtures subject
to an interspecies Feshbach resonance, using the HFB approximation. We have found that this
approximation is not adequate to describe the system, which is quite remarkable since it has
become one of the standard approaches to resonant cold atom physics due to its successes in
Bose gases and two-component Fermi gases.

The reason of this failure is found in the way in which the theory treats noncondensed
bosons. This problem could be corrected by the explicit inclusion of three (and possibly higher)
point cumulants, which will allow for a mechanism through which bosons and fermions could
correlate to form molecules. This task, however is beyo.
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Appendix

In this appendix we will present a sample derivation of one of the equations of motion, namely
that for (876).
Starting with the Hamiltonian in coordinate space

H= f dx ') TF )y (x) + / dx o' () TE(x)g (x) + / dx ET0) T ()& (x)

+l d Y4 Vi [ dx 2 2
57 x[p ()" + Vig PO 1Y ()" +¢

x / dx (ET () (x)p (x) +c.c), (A.1)

where 7%(x) is the kinetic energy of molecules, bosons or fermions.

We then write the bosonic field in terms of its average and fluctuations around it
¢(x) = ¢o(x) + 6(x), where ¢y is a complex number. Inserting this expression in the
Hamiltonian, we get the following:

H= E0+/dx YITF (x) + Vgl (X)) (x) +/dx5T(x)TB(x)5(x)
+ f dx ') TY ()€ (x) +y / dx (4o () 718 (X) > + 5 (x)*8 (x)8 (x)
+ ()78 ()87 (x)) + [ dx (¢ (x)8(x) + go(x)8" (x))
< (L1000 + VW) 4 [ argi08 5 @5) +e0
+ g / dx 87 (0)8" ()8 (x)8 (x) + Vig / dx 8Py ()12

+g / dx[£(x) (o (x) +8(x))¢ (x) +c.c], (A2)

where Ej is a constant which depends on ¢y, and it is relevant for its motion, but does not
contribute to that of §'8.

The next step is to calculate the commutator [87(2)8(2), H], and to take its average,
thereby obtaining

(18'(2)8(2), H1) = TB () — TR (@) (8'(2)8(2)) + y[2lo () * (8T (2)8(2))
+#3(2)(87(2)87(2)) — 21901281 (2)8(2)) — 937 () (8(2)8(2))]

+¢o(2) (ywT @Npo(2))* + Vig / dx (8'(2)y' (x>w<x)>>
— ¢35 (2) <V(5(Z)>|¢0(Z)|2 + Voe / dx ()’ (Z)W(z)))

+ V/ dx[¢g (x) ((87(2)8 (28T (X)8 (x)8(x)) — (8T (¥)8(x)8(x)8' ()8 (2)))
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+ () ((87(2)8(2)8" ()87 (x)8(x)) — (87(x)87 ()8 (x)87(2)8()))]
+y((8"(2)81(2)8(2)8(2)) — (87(2)8"(2)8(2)8(2N))

+ Vo (8T (@8 @)W )Y (@) — (8728 (v (2)))
+g((E(HY(2)81(2)) — (€T @)Y (2)8(2))). (A3)

The next step is to apply Wick’s theorem to correlation functions of three or more
operators. This implies that all correlation functions of odd order will vanish. We then get

{18'(2)8(z), HY) = (T?(2) — TE(@)(8"(2)8(z)) + ¥ [2l0(z) (8! (2)8(2))
+¢3(2) (81 (2)81(2)) — 2190 ()28 (2)8(2)) — ¢ () (8(2)8(2))]
+y((87(2)87(2))(8(2)8(2)) +2(8"(2)8(2)) (87 (2)8(2))
—2(8(2)87(2))(87(2)8(2))) — (87(2)8"(2)) (8(2)8(2N))
X Vog (8'(2)8(2)) (9" () () — (8 (2)8 () (9" ()¢ (2))) (A.4)

In free space, ¢g becomes a constant, and all two-point correlations, which are functions
of z, 7/, become functions of z — 7/, so that in momentum space they become functions of a
single momentum. We thus obtain equation (85).
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