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A scattering model is developed for ultracold molecular collisions, which allows inelastic processes, chemical
reactions, and complex formation to be treated in a unified way. All these scattering processes and various
combinations of them are possible in ultracold molecular gases, and as such this model will allow the rigorous
parametrization of experimental results. In addition we show how, once extracted, these parameters can be related
to the physical properties of the system, shedding light on fundamental aspects of molecular collision dynamics.
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I. INTRODUCTION

Ultracold samples of molecules can be exquisitely con-
trolled at the quantum state level, allowing fundamental
physical and chemical process to be studied with unprece-
dented precision. This control has been used to study
state-to-state chemistry with full quantum state resolution for
all reactants and products [1], to probe the potential-energy
surface with exquisite resolution [2,3], and to study the role of
nuclear spins in molecular collisions [4,5], More recently an
experiment has managed to probe the intermediate complex
of an ultracold reaction [6] as such it is now possible to
track the complete chemical process from reactants, through
intermediates, to products.

Understanding the fundamental physical and chemical
process of ultracold molecular collisions is also important be-
cause ultracold gases are fragile systems prone to collisional
processes that can transfer their atomic or molecular con-
stituents into untrapped states or else release large amounts
of kinetic energy, leading to trap loss and heating. An alter-
native mechanism for loss in an ultracold molecular gas was
proposed [7,8], namely a half-collision process in which the
reactant molecules share energy in rotational and vibrational
degrees of freedom, spending a long time lost in resonant
states of a four-body collision complex rather than promptly
completing the collision process. This idea of transient com-
plex formation, colloquially dubbed “sticking,” takes on an
added significance for ultracold molecular collisions where
the number of available exit channels can be very small com-
pared to the number of resonant states.

Initial experiments on nonreactive ultracold molecules
such as NaRb [9,10] and RbCs [11] observed two-body col-
lisional losses, even though these species are nonreactive and

are in their quantum-mechanical ground state and so have no
available inelastic loss channels. As these complexes were not
directly observed it remained an open question whether these
experiments have produced long-lived collisional complexes
and what the loss mechanism was. However, a subsequent
experiment on RbCs [12] showed that turning on or off the
trapping light that confines the molecules can increase or
decrease the losses of the molecules. This confirmed the
hypothesis of a theoretical study [13] that the nonreactive
molecules first form tetramer complexes, and then the com-
plexes are lost due to light scattering in the optical dipole trap.
In addition, an experiment on chemically reactive ultracold
molecules such as KRb succeeded in directly observing the
corresponding ions of the intermediate complex K2Rb2 [6], as
well as of the products K2 and Rb2 of the chemical reaction.
Just as for nonreactive molecules the trapping light has a
strong effect on the losses of reactive molecules as well as on
the lifetime of the transient complex [14], leading to the same
conclusion as [12,13]. It is therefore clear that any theoretical
treatment of ultracold molecular collisions must be flexible
enough to account for the formation of the complexes.

These experiments can be described by a model that as-
sumes an absorption probability pabs for any two molecules
that get within a certain radius [15], without ascribing any
particular mechanism to the absorption. Energy and electric
field dependence of two-body loss rates are well fit by the
resulting formulas. For example, the reactive molecules in the
KRb experiment vanish with unit probability pabs = 1 with or
without electric field [4,16,17]. The nonreactive species NaRb
and RbCs vanish with probabilities 0.89 [18] and 0.66 [11],
respectively, in zero electric field. Notably, when an electric
field is applied to NaRb, its absorption probability climbs
to pabs = 1 [10]. Assuming the origin of this loss is due to
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complex formation, the increased loss with electric field may
be attributed to the increased density of accessible states of
the complex and/or coupling of these states to the continuum
scattering channels. It is therefore conceivable that complex
formation may be a phenomenon that can be turned on or off
as desired.

While the influence of light scattering on molecular colli-
sions is undeniable, it should be possible for the molecules to
be confined in “box” traps where the molecules remain mostly
in the dark encountering trapping light only at the peripheries
of the trap [19]. In this case, loss due to complex formation
would allow a more direct probe of the fundamental four-body
physics of the collision.

In this paper we propose a phenomenological model of col-
lisional losses, based on the theory of average cross sections
[20], that encompasses both direct collisional losses and loss
due to complex formation. As such this model serves not only
to parametrize experimental measurements, but also allows
those parameters to be related to the physical properties of
the system, potentially shedding light on the dynamics of the
molecular complex.

II. THEORY

The theory must be flexible enough to describe the various
outcomes available when two molecules collide: elastic scat-
tering of the reactants, inelastic scattering, where the reactants
emerge with the same chemical identity but in different inter-
nal states, reactive scattering into various product states, and
absorption into the collision complex. Moreover, depending
on the experiment, the various outcomes of the collision may
or may not be observed. Note that within this model formation
of a collision complex will always be regarded an outcome in
and of itself; we do not consider where the complex ultimately
decays to.

A. Molecular scattering, observed, and unobserved processes

To this end, we define a flexible system of notation as
illustrated in Fig. 1. This figure shows schematically the
distance r between two collision partners (which may be
reactants or products), and the various possible outcome chan-
nels. Channels whose outcome is observed by a particular
experiment are labeled by roman letters while channels whose
outcome is unobserved are labeled by greek letters. The chan-
nels labeling observed processes are further differentiated as
follows. Channels labeled a, b, c, . . . correspond to the elas-
tic and inelastic channels of the reactants, while channels
labeled k, l, m, . . . correspond instead to channels of a dif-
ferent molecular arrangement and correspond to the product
channels of a chemical reaction. Note that the unobserved
processes may include both inelastic scattering as well as
chemical reactions: the criterion is simply that this outcome
is not observed.

By convention, we take a to label the incident channel.
The list of channels i will of course depend on the details
of a particular experiment. In some experiments all the final
states can be measured so that there are no channels denoted
by greek letters, while in others none of the final states can
be measured so that there are no channels denoted by roman

FIG. 1. Schematic showing potential-energy curves V versus in-
termolecular distance r (both in arbitrary units), outlining the various
scattering processes and channel labels. Direct and indirect scatter-
ing processes are shown by red and blue arrows, respectively. The
incoming channel is labeled a; inelastic scattering channels that can
be observed in an experiment are denoted by roman letters b, c, . . .;
reactive scattering channels that can be observed in an experiment are
denoted by roman letters k, l, m, . . .; inelastic or reactive channels
that are unobserved in a given experiment are denoted by letters
ρ, σ, τ, . . .. Finally a dense forest of resonant states of the collision
complex labeled by μ with a mean level spacing d (in arbitrary units)
is shown in the well of the potential.

letters (except the incident channel a). In some experiments
inelastic channels are measured but reactive ones are not, or
vice versa. Therefore, one has to determine which processes
are labeled as observed or unobserved processes for a partic-
ular experiment of interest. In Sec. II D, we will detail how
these unobserved processes can be gathered into an overall,
absorption term.

The observed and unobserved processes are those that are
expected to produce inelastic scattering or chemical reactions
immediately, that is, without forming a collision complex,
shown in Fig. 1 by the red arrow labeled direct scattering.
Typically, the results of these processes release kinetic energy
greater than the depth of the trap holding the molecules, and
hence lead to what we term direct loss. By contrast, indirect
scattering processes which proceed via complex formation,
shown in Fig. 1 by the blue arrows, will not immediately lead
to trap loss. Molecules lost into the collision complex require a
second step to leave the trap which consists of either absorbing
a photon of trapping light, colliding with another molecule,
or decaying into an allowed channel of reactants or products.
The present theory will not explicitly address this second step,
focusing only on the formation of the complex.

B. Scattering cross sections for various processes

A set of linearly independent scattering wave functions
corresponding to these various processes can be written in the
channel state representation as

� j = r−1
∑

i

φi(τ )Fi j (r), (1)

where j runs up to the number of channels, the functions φ(τ )
form a basis set for the motion in all coordinates, τ , except the
intermolecular distance, r, and the elements Fi j form a radial
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wave function matrix F [21–23]. Applying the usual scatter-
ing boundary conditions at asymptotic separations between
the collision partners the radial wave function F defines, up
to a normalization, the scattering matrix S

lim
r→∞ F ∼ ψ−(r) − ψ+(r)S, (2)

where ψ± are diagonal matrices with elements

ψ±
i (r) = 1√

ki
exp[±i(kir − π li/2)], (3)

and ki is the asymptotic wave vector and li is the partial wave
for channel i. Corresponding to each S-matrix element is the
state-to-state probability of a scattering process from channel
a to channel i, with i = a, b, c, . . . , k, l, m, . . . , ρ, σ, τ, . . .

given by

pa→i = |Sia|2. (4)

As the S matrix is unitary, we have for each incident channel
a

1 =
∑

i = a, b, c, . . . ,
k, l, m, . . .

|Sia|2 +
∑

i=ρ,σ,τ,...

|Sia|2

≡ pobs + punobs, (5)

where we have separated the scattering matrix into an ob-
served block (i running on roman letters) and unobserved
block (i running on greek letters).

The probability for observed processes, pobs, can be further
subdivided into elastic, inelastic, and reactive parts pobs =
pel + pin + pre, with

pel = pa→a = |Saa|2,
pin =

∑
i=b,c,...

pa→i =
∑

i=b,c,...

|Sia|2,

pre =
∑

i=k,l,m,...

pa→i =
∑

i=k,l,m,...

|Sia|2. (6)

There is of course no reason to subdivide unobserved pro-
cesses in this way.

In general, if some processes are unobserved, then from
Eq. (5), the observed block of the scattering matrix will appear
subunitary: ∑

i=a,b,c,...,k,l,m,...

|Sia|2 � 1. (7)

The amount by which this sum falls short of unity will be
a measure of the unobserved probability, which in general is
recast into an overall absorption probability pabs. Therefore,

pabs ≡ punobs = 1 − pobs = 1 − pel − pin − pre. (8)

In the next subsection we will see that collisions result-
ing in complex formation can also be properly included in
the absorption probability. It is also convenient to define a
quenching probability which is the sum of the inelastic, re-
active, and absorption probabilities

pqu = pin + pre + pabs = 1 − pel = 1 − |Saa|2. (9)

Finally, the corresponding state-to-state cross section is given
by

σa→i = g
π

k2
|δai − Sia|2, (10)

where g = 2 if the identical collision partners are initially
in the same quantum-mechanical state and 1 otherwise. The
cross sections corresponding to these processes are given by

σel = g
π

k2
|1 − Saa|2,

σin = g
π

k2
pin,

σre = g
π

k2
pre,

σabs = g
π

k2
pabs,

σqu = σin + σre + σabs. (11)

C. Complex formation and highly resonant collisions

The treatment so far has ignored the possibility of complex
formation. The collision complex is comprised of a dense
forest of resonant states, depicted schematically in Fig. 1
by horizontal lines. These states, denoted μ, are potentially
numerous and complicated and are therefore best character-
ized by statistical quantities such as their mean level spacing
d (equivalently mean density of states ρ = 1/d) and their
coupling matrix elements Wiμ to the open channels. For the
purposes of the theory it is assumed that the lifetime of the
complex is long compared to the mean collision time, so
that complex formation and decay can be considered distinct
events. This assumption appears to be validated by the obser-
vation of K2Rb2 complexes in KRb + KRb ultracold reactions
[6] and by the measure of their lifetimes [14]. In this case,
losses due to complex formation can also occur. Complex for-
mation can therefore be considered as an unobserved process,
as defined in the previous section. We will see that the theory
of highly resonant collisions can recast this type of loss into a
phenomenological absorption term, included in the definition
(8) for the unobserved processes.

The key concept for understanding highly resonant colli-
sions and the corresponding complex formation can be found
in the compound nucleus (CN) model introduced by Bohr for
understanding nuclear collisions [24]. This theory postulates
that a compound state involving all the nucleons forms im-
mediately when a particle (such as a neutron) encounters the
nucleus. These compound states have long lifetimes which
lead to a dense set of narrow resonances in the cross section
as a function of energy. Since Bohr’s initial insight, the statis-
tical theory of highly resonant scattering has been developed
considerably [20,25–30]. We draw heavily on this literature in
what follows.

The essential simplification of the statistical theory is the
assumption that the density of states is too great for any of
the individual resonances to be resolved; therefore, scattering
observables can be replaced by suitable averages [20,27]. The
virtue of this approach can be illustrated using an example
with a single channel, where the cross sections for elastic and
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absorption scattering are given by

σel = g
π

k2
|1 − S|2, σabs = g

π

k2
(1 − |S|2), (12)

the overall absorption process accounting for all but the elastic
process, similar to what can be seen in Eq. (11) and Eq. (8).
If all the incident flux were reflected then |S|2 = 1 and there
would be no absorption. If only a part of the flux were re-
flected |S|2 would be less than unity, due to absorption. For
indirect processes like complex formation there is no true
absorption; eventually the molecules reemerge and complete a
scattering event. However, long-lived complexes can give the
appearance of absorption if the lifetime of the complexes is
long enough, and moreover leads to true loss if the complex is
destroyed by a photon or by a collision with another molecule.
These effects are accounted for in the following. The lifetime
and subsequent decay of the complex is not treated within the
model we detail here.

In the statistical theory of scattering, the average of any
energy-dependent quantity f (E ) can be defined as

〈 f (E )〉 = 1

Z

∫
dε f (ε) D(E ; ε), (13)

where D(E ; ε) is the distribution, centered at E , that defines
the average, and Z = ∫

dε D(E ; ε). D is often taken to be
either a Lorentzian function or else a finite step function cen-
tered at E . In any event, here D is assumed to be broad enough
to contain many resonances. In these terms and factoring out
the explicit momentum dependence, an average cross section
can be written [27]:

〈σ 〉 = g
π

k2
〈k2σ 〉 . (14)

To calculate the average elastic cross section then requires
taking the average 〈|1 − S|2〉. Using the definition for the
variance for a variable X ,

�X ≡ 〈|X |2〉 − | 〈X 〉 |2, (15)

we obtain

〈|1 − S|2〉 = |1 − 〈S〉 |2 + �S. (16)

The average elastic cross section can therefore be written in
the form

〈σel〉 = g
π

k2
〈|1 − S|2〉

= g
π

k2
|1 − 〈S〉 |2 + g

π

k2
�S

≡ σse + σce. (17)

These two contributions comprise a mean cross section, de-
noted the “shape elastic” cross section, and a contribution
from the fluctuations, denoted the “compound elastic” cross
section [20,27]. Since the lifetime of a collisional process is
proportional to the energy derivative of the S matrix [31–34],
writing the cross section in this way elegantly separates out the
cross section for direct scattering, the shape elastic part, from
indirect scattering, the compound elastic part. Meanwhile, the
average absorption cross section is

〈σabs〉 = g
π

k2
(1 − 〈|S|2〉). (18)

The essence of the CN model is to associate elastic scatter-
ing with just the shape elastic part of the elastic cross section
and include the compound elastic part in the absorption cross
section. This is achieved by simply making the replacement
S → 〈S〉 in Eq. (12). The elastic cross section in the CN model
is therefore

σ̃el = g
π

k2
|1 − 〈S〉 |2 = σse, (19)

while the absorption cross section is

σ̃abs = g
π

k2
(1 − | 〈S〉 |2)

= g
π

k2
(1 − 〈|S|2〉) + g

π

k2
�S

= 〈σabs〉 + σce, (20)

again using the definition of the variance. As desired, simply
by replacing S in Eq. (12) with 〈S〉, the compound elastic part
now appears in the absorption cross section.

D. Generalized theory of average cross sections

Generalizing the averaging procedure above to the multi-
channel case, one incorporates the effect of resonant complex
formation by energy averaging the appropriate cross sections
over many resonances [35],

〈σa→i〉 = g
π

k2
〈|Sia|2〉

= g
π

k2
| 〈Sia〉 |2 + g

π

k2
�Sia

≡ σ dir
a→i + σ ind

a→i. (21)

Doing so defines two components of the scattering. The first
component associated with an energy-smooth S matrix 〈S〉
is direct scattering, which is scattering from channel a to i
which proceeds without forming a collision complex—this
is the generalization of the “shape elastic” cross section in
the single channel example above. The second component
associated with the energy fluctuations of the S matrix �S
is indirect scattering, which is also scattering from channel
a to i but which proceeds via a collision complex—this is
the generalization of the “compound elastic” cross section in
the single channel example above. As such this approach is
completely general and can equally well treat systems which
proceed purely directly, purely indirectly, or any combination
thereof. For ultracold collisions of alkali-metal dimers, which
we are primarily interested in here, the potential-energy sur-
face is barrierless, meaning in principle there is no reason why
direct reactions should not occur [4,36,37].

More insight can be gained into the distinction between
direct and indirect processes by considering the time behavior
of an incident wave packet [27], which follows directly from
the definition of the cross sections in Eq. (21). σ dir is defined
to vary slowly with energy, whereas σ ind contains all the rapid
variation in the cross section due to any resonances. The com-
ponent of the wave packet associated with direct scattering
therefore has a time behavior similar to a scattering problem
on the same potential in the absence of any resonances. On
the other hand, the component of the wave packet associated
with indirect scattering has a time behavior similar to the long
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lifetime of a resonant state. As such the indirect component of
the wave packet will come out delayed compared to the direct
component.

Following the prescription of the CN model, the cross
sections for any process whose outcome is observed are asso-
ciated with the corresponding direct scattering cross section.
The elastic, inelastic, and reactive cross sections are therefore
given by

σ̃el ≡ σ dir
el = g

π

k2
|1 − 〈Saa〉 |2,

σ̃in ≡ σ dir
in = g

π

k2

∑
i=b,c,...

| 〈Sia〉 |2,

σ̃re ≡ σ dir
re = g

π

k2

∑
i=k,l,m,...

| 〈Sia〉 |2. (22)

These are presented as total cross sections; for example, σ̃in

is the total inelastic cross section and includes all inelastic
scattering of molecules that is observed. If individual inelastic
channels are resolved experimentally, they correspond to indi-
vidual terms of this sum and the same for reactive scattering.

Direct processes to channels that are not observed con-
tribute to the absorption cross section, σ̃abs, and their total
contribution is formally given by

σ̃ dir
abs ≡ σ dir

abs = g
π

k2

∑
i=ρ,σ,τ,...

| 〈Sia〉 |2. (23)

The cross section for complex formation also contributes to
the absorption cross section, and is simply the total cross
section for all indirect processes. As such it is given by

σ̃ ind
abs ≡ σ ind

el + σ ind
in + σ ind

re + σ ind
abs

= g
π

k2

∑
i = a, b, c, . . . ,

k, l, m, . . . ,

ρ, σ, τ, . . .

�Sia. (24)

The total absorption cross section is then the sum of the direct
and the indirect contributions

σ̃abs = σ̃ dir
abs + σ̃ ind

abs . (25)

This is the generalization of Eq. (20). In this theory, the matrix
elements of the highly resonant S matrix Sia (and therefore
also �Sia) are presumed to be unknown. Information about
absorptive scattering will be inferred from the subunitarity of
the energy averaged S matrix, 〈S〉, in the observed channels.
Appropriate forms of these effective S matrices will be derived
in Sec. II F.

It should be emphasized that by treating the complex as an
absorption process we are describing only the phenomenon
of molecules combining to form a collision complex. Eventu-
ally such a complex would decay producing outcomes in any
available channel, but a full treatment of this process would
require detailed understanding of the decay mechanism of the
complex, or equivalently the full S matrix on a fine enough
energy grid that the appropriate averages given in Eq. (21)
could be meaningfully performed.

Finally, it is often useful to define a quenching cross sec-
tion, which describes scattering into any channel other than
the incident channel, regardless of what that channel is. The

quenching cross section is therefore given by

σ̃qu = σ̃in + σ̃re + σ̃abs = g
π

k2
(1 − | 〈Saa〉 |2). (26)

The corresponding rate coefficients β̃ to the cross sections
given above are obtained by replacing 1/k2 by h̄/μk, where
μ is the reduced mass of the colliding molecules.

Hereafter, we adopt the perspective of CN theory: S matri-
ces will be averaged over many resonances and the resulting
mean values will be used to evaluate cross sections.

E. Threshold behavior

To facilitate applying the CN model to ultracold molecular
scattering it is useful to separate the effects of averaging and
absorption from threshold effects due to low collision ener-
gies. The S matrix defined in Eq. (2) is, in general, energy
dependent, which leads to the usual Bethe-Wigner threshold
laws for the cross section [38,39]. This energy dependence is
unrelated to the microscopic interactions between the collid-
ing molecules at small r that dictate the molecular scattering
processes. As such these processes are better parametrized by
energy-independent short-range quantities. To do so, we em-
ploy the ideas and methods of multichannel quantum defect
theory (MQDT) [40–52], which has been successfully applied
in various ways and with various notations to the problem of
ultracold scattering. At present, the version of this theory most
commonly applied in ultracold collisions is the Mies-Julienne
version, whose notation we follow here [44,45].

Scattering theory is usefully described in terms of real-
valued, asymptotic reference functions in each channel. These
functions are solutions to a single-channel Schrödinger equa-
tion, with some predetermined potential. They therefore do
not represent free plane waves, but possess a phase shift ξi;
their asymptotic form is

fi(r) = 1√
ki

sin(kir − π li/2 + ξi ),

gi(r) = 1√
ki

cos(kir − π li/2 + ξi). (27)

In terms of these functions, the asymptotic wave function can
be written

lim
r→∞ F ∼ f + gR, (28)

where f and g are diagonal matrices with elements fi and gi.
Equation (28) defines the reactance matrix R. The scattering
matrix in Eq. (2) is then given by

Si j = eiξi

(
1 + iR
1 − iR

)
i j

eiξ j (29)

for general running indexes i, j. Defined in this way the scat-
tering matrix still has an energy dependence due to threshold
effects. MQDT gets around this by choosing a new set of
reference functions, f̂i, ĝi, defined by WKB-like boundary
conditions at short range, in the classically allowed region
of channel i (details of these wave functions are given in
Ref. [44]). For our purposes here the key property of these
reference functions is that they are related in a standard-
ized way to the usual energy-normalized asymptotic reference
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functions by the transformation(
fi

gi

)
=

(
C−1

i 0
Ci tan λi Ci

)(
f̂i

ĝi

)
, (30)

where Ci(E ) and tan λi(E ) are explicitly energy-dependent
factors, with E being the total energy of the system. The
dependence of Ci and tan λi with energy has been given
explicitly near threshold [53], enabling analytical scattering
formulas to be constructed.

The pair of reference functions f̂i and ĝi are used as
follows. Supposing that strong channel couplings lead to a
complicated many-channel scattering wave function, never-
theless there is an intermolecular distance r0 beyond which
the channels are essentially uncoupled (this radius is indicated
schematically in Fig. 1). The wave function at radii r > r0 can
then be written

F(r > r0) ∼ f̂ + ĝY , (31)

in terms of a short-range reactance matrix Y . Because of
the carefully chosen normalization of f̂i and ĝi, Y does not
carry the energy dependence characteristic of the threshold
behavior. From the standpoint of the threshold Y can be con-
sidered constant (later, we will incorporate an explicit energy
dependence due to resonant states). The threshold energy de-
pendence is then restored via the transformation

R = C−1[Y −1 − tan λ]
−1

C−1, (32)

where C and tan λ are the appropriate diagonal matrices de-
fined in [44]. Alternatively, the energy-independent reference
functions can be written in terms of incoming and outgoing
waves

f̂ ±
i = ĝi ± i f̂i. (33)

The scattering wave function can then be represented at short
range by a scattering matrix S̄, defined via

S̄ = 1 + iY
1 − iY

(34)

with inverse transformation

Y = i
1 − S̄

1 + S̄
. (35)

The bar notation refers to the S matrix at short range. In the
next section we will apply the statistical theory approach to
highly resonant scattering from nuclear physics to replace S̄
with a suitably energy averaged version, 〈S̄〉, that is itself
energy independent and includes the absorption effect due to
the unobserved and indirect absorption processes.

F. Short-range S-matrix accounting for absorption processes

This section details the construction of the short-range
energy-averaged scattering matrix S̄abs, which accounts for
any absorption processes that may be present in a given ex-
periment. The elements S̄abs

i j of this matrix are indexed by the
observable channels i, j = a, b, c, . . . , k, l, m, . . . . It is con-
structed so that it may be subunitary to account for absorption
due to the two effects described above—direct absorption and
complex formation.

The derivation of this matrix proceeds in three steps: the
first constructs an effective, subunitary S matrix S̄unobs that
accounts phenomenologically for direct absorption to unob-
served channels, based on an optical potential; the second
constructs an energy smooth S matrix that accounts for ab-
sorption due to complex formation by averaging a highly
resonant S-matrix S̄res; finally, both types of absorption are
combined to obtain a matrix S̄abs for the combined absorption
processes. S̄abs will then be used in the next section to com-
plete the construction of the matrix 〈S̄〉.

1. Absorption due to unobserved channels

Flux entering in any channel that vanishes due to unob-
served processes is conveniently modeled by incorporating a
complex-valued optical potential in each channel

Vi(r) + h̄2li(li + 1)

2mrr2
− i

γi(r)

2
, (36)

where Vi is the real-valued potential in the absence of such
absorption for channel i [15,54,55]. Vi therefore incorporates
the appropriate long-range interaction terms for a given sys-
tem [49], and could for example include a dipole-dipole term
[56]. In the absence of an exact treatment of the short-range
interactions using a full potential-energy surface and a full
collisional formalism, the influence of the optical potential
γi is to create a new linear combination of asymptotic func-
tions. Specifically, the short-range Y matrix in Eq. (31) can be
replaced in each channel by a purely imaginary quantity iyi

[55]. The wave function in this channel now reads

f̂i + ĝi iyi, (37)

for a real-valued parameter yi, which we term the unobserved
absorption coefficient in channel i. The optical potential repro-
duces the overall phenomenological loss from channel a to all
the unobserved channels ρ, σ, τ, . . .. Recasting the wave func-
tion in terms of incoming and outgoing waves from Eq. (33)
gives

f̂i + ĝi iyi =( f̂ +
i + f̂ −

i )
1

2i
+ ( f̂ +

i − f̂ −
i )

iyi

2

=
[

f̂ −
i − f +

i

(
1 − yi

1 + yi

)]
i

2
(1 + yi ). (38)

Here the factor i
2 (1 + yi ) represents an overall normalization,

such that the coefficient of the outgoing wave term in the
square brackets gives the short-range scattering matrix

S̄unobs
i j =

(
1 − yi

1 + yi

)
δi j . (39)

This is a unique overall term for the channel i as the unob-
served channels ρ, σ, τ . . . are not explicitly enumerated in
Eq. (36). We note that S̄unobs is by definition independent of
energy and as such does not need to be energy averaged.

The coefficients yi are purely phenomenological parame-
ters of the theory. By considering 0 � yi � 1, as Ref. [15]
does, S̄unobs is in general subunitary, becoming unitary when
yi = 1. A special case of this result is in the incident channel,
where i = a. In this case, |S̄unobs

aa |2 is the probability that the
molecules incident in channel a are not lost to the unobserved
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process. Then, the (short-range) unobserved absorption prob-
ability is given by

p̄unobs = 1 −
(

1 − ya

1 + ya

)2

= 4ya

(1 + ya)2 . (40)

2. Absorption due to complex formation

The next step is to include the possibility for the scattering
wave function to span the region of the resonances, resulting
in indirect absorption due to resonant complex formation. The
indirect processes all couple to the dense forest of resonant
states μ which results in a highly resonant short-range scat-
tering matrix, here denoted S̄res. As described in Sec. II C, we
average the resonant matrix to get an energy-smooth scatter-
ing matrix 〈S̄res〉.

In order to determine the average of S̄res we exploit the
chaotic nature of highly resonant collisions [57–61], and treat
S̄res statistically using random-matrix theory (RMT) [62,63].
Here we only sketch the essential steps of the derivation; see
Ref. [35] and references therein for a more complete treat-
ment. We first introduce an effective Hamiltonian H eff for the
resonances,

H eff
μν = Eμδμν − iπ

∑
i

WμiWiν (41)

in the diagonal representation, which describes the dynamics
of the resonances [35,64]. Equation (41) is based on a par-
titioning of the Hilbert space into a bound state space and
a scattering channel space, introduced by Feshbach [28–30].
While Eq. (41) is complete the effort involved in computing
all the parameters, especially for the large number of bound
states that we are interested in here, makes this approach
impractical [29]. Following RMT, we therefore consider the
parameters as purely statistical quantities. Generally in statis-
tical theories the energies Eμ of the resonances are assumed to
form a distribution whose nearest-neighbor spacing statistics
satisfy the Wigner-Dyson distribution with mean level spacing
d and the coupling matrix elements Wiμ, between a channel i
and a resonant state μ, are assumed to be Gaussian random
variables with vanishing mean and second moment

〈WμiWν j〉 = δμνδi j ν
2
i , (42)

where νi is the magnitude of the bound state-scattering chan-
nel coupling for channel i. However, we will not need to
specify the distributions for our present purposes.

In terms of the MQDT reference functions f̂i, ĝi defined
above resonant scattering will result in a short-range Y res

matrix

F ∼ f̂ + ĝY res, (43)

similar to Eq. (31) with the running indices i, j =
a, b, c, . . . , k, l, m, . . .. It is assumed that all the resonant
states have outer turning points at distances r < r0, so that
Y res contains the full structure of the resonances and therefore
takes the form [35]

Y res
i j = π

∑
μ

WiμWμ j

E − Eμ

. (44)

In the weak-coupling limit, νi 	 d , the resonances are iso-
lated and can, if desired, be described in terms of resonant
widths given by γμ = 2π

∑
i |Wiμ|2.

In order to average over many resonances, we use the
statistical independence of the coupling matrix elements,

〈WiμWμa〉 = δiaν
2
i , (45)

to assert that 〈Y res〉 is diagonal. This implies that 〈S̄res
i j 〉 = 0 if

i 
= j, which confirms that Y res contains no direct contribution
to the scattering and describes purely resonant scattering as
desired. Moreover, the average of Y res over many isolated
resonances is equivalent to the average over a single represen-
tative resonance. As the resonances are separated on average
by a spacing energy d this average becomes

〈
Y res

ii

〉 = 1

d

∫ Eμ+d/2

Eμ−d/2
dE

πν2
i

E − Eμ

. (46)

Evaluating this integral in the principal value sense gives

〈
Y res

ii

〉 ≈ πν2
i

d
lim

t→0+
P

∫ ∞

−∞
dE

exp(itE )

E

= i
π2ν2

i

d
, (47)

where the contour is closed on the upper half of the complex
plane. Therefore, in each channel, the wave function account-
ing for indirect absorption due to complex formation is given
by

f̂i + ĝi ixi, (48)

in terms of a real-valued parameter

xi = π2ν2
i

d
, (49)

which we term the indirect absorption coefficient in channel
i. Although coming from an entirely different mechanism, the
form of the wave function in Eq. (48) is exactly the same as
that for unobserved absorption given by Eq. (37). Similarly,
this leads to a short-range scattering matrix in each channel i
that corresponds to indirect absorption

〈
S̄res

i j

〉 =
(

1 − xi

1 + xi

)
δi j . (50)

This is a unique term for the channel i due to the fact that
the off-diagonal elements are zero. Again specializing to the
case of the incident channel, i = a, the (short-range) indirect
absorption probability in channel a is given by

p̄res = 1 −
(

1 − xa

1 + xa

)2

= 4xa

(1 + xa)2 . (51)

The unobserved and indirect absorption cases are formally
similar. In both cases, the short-range scattering matrix is
given by an absorption coefficient yi and xi in each channel
i. For unobserved processes the absorption coefficient yi is a
purely phenomenological fitting parameter, whereas for indi-
rect processes the indirect absorption coefficient xi contains
information about the complex itself, namely, the ratio of
bound states–scattering channel coupling to the mean level
spacing. The form of xi is reminiscent of Fermi’s golden rule

033306-7



CROFT, BOHN, AND QUÉMÉNER PHYSICAL REVIEW A 102, 033306 (2020)

FIG. 2. Interplay of the dimensionless indirect and unobserved
absorption coefficients x and y on the dimensionless absorption co-
efficient z given by Eq. (55).

as it connects the average scattering matrix to the square of the
bound-continuum matrix element ν2

i and the density of states
ρ = 1/d . It should be noted that this result is quite general,
and need not rely on the assumption of weak coupling. Equa-
tion (49) can be derived in a number of ways: using a Born
expansion of the S matrix [35,65], via the replica trick [66], or
using the supersymmetry approach [67,68].

3. Total absorption

As the unobserved and indirect cases are formally similar,
we can combine both processes to recover the total absorp-
tion process in Eq. (25). The resulting short-range scattering
matrix is given by

S̄abs = S̄unobs 〈S̄res〉 (52)

so that

S̄abs
i j =

(
1 − yi

1 + yi

)(
1 − xi

1 + xi

)
δi j . (53)

The two kinds of effects can be consolidated into a unified
form

S̄abs
i j =

(
1 − zi

1 + zi

)
δi j (54)

in terms of an effective absorption coefficient

zi = xi + yi

1 + xiyi
(55)

that combines both unobserved and indirect types of absorp-
tion. Figure 2 illustrates Eq. (55) and the interplay of the
different values xi and yi. Notice that if either yi or xi should
be zero, then zi automatically reverts to the other one.

Once again, specializing to the case of the incident channel
i = a, the (short-range) absorption probability in the incident
channel a as defined in Eq. (8) is then given by

p̄abs = 1 −
(

1 − za

1 + za

)2

= 4za

(1 + za)2 . (56)

Therefore, even in the presence of both types of absorption, if
the only observable fact is that absorption has occurred, then
a value za (or an equivalent parametrization) can be extracted,
as has been done in several studies [11,15,18,69–73].

Finally, the coefficients z, y, or x can also depend implicitly
on different experimental tools of control such as an electric
field E [10], a magnetic field B, or the intensity of surrounding
electromagnetic waves, whether it is due to the surround-
ing trapping laser [13], red-detuned photoassociation [74],
or blue-detuned shielding [75–77]. Therefore, the coefficients
should carry such dependence so that z = z(E, B, I ), similarly
for x and y. We omit this dependence to simplify the notations
in the following, unless stated otherwise.

G. Complete short-range S matrix

We now combine the short-range absorption scattering ma-
trix S̄abs, which gathers the unobserved direct processes and
all the indirect processes, with a short-range direct scatter-
ing matrix S̄0 that includes all the direct processes (elastic,
inelastic, and reactive) to obtain 〈S̄〉—which is the energy
average of the physical short-range S matrix of the system of
interest S̄.

The starting point is a short-range unitary scattering matrix
S̄0 that contains all the direct processes such as the molecular
elastic, inelastic, and reactive scattering in the absence of any
absorption due to unobserved channels or complex formation.
For example, S̄0 could be obtained from a scattering calcu-
lation containing only asymptotically open channels. As S̄0

contains no resonances it is by definition energy insensitive
and there is no need to take its energy average. S̄0 is defined
at r0 by a wave function of the form

f̂ − − f̂ +S̄0 (57)

restricting, as usual, the indices i, j of the matrices to the ob-
served channels i, j = a, b, c, . . . , k, l, m, . . .. Starting with
this foundation, we transform S̄0 to include the effect of the
absorption processes contained in S̄abs.

Generically, a short-range process, 1, makes itself apparent
through the linear combination of outgoing waves that accom-
pany a certain flux of incoming waves; thus process 1 defines
the long-range wave function at r > r0,

F1 = [ f − − f +S1]N , (58)

where f − and f + are diagonal matrices consisting of incom-
ing and outgoing channel wave functions, respectively, and N
is a overall normalization matrix that is not relevant to our pur-
poses here. We are interested in how the linear combination of
f − and f + would change if a second short-range process, for
example, absorption, would be introduced.

To this end, we first diagonalize S1 so as to write it in terms
of its eigenphases δα ,

(S1)i j =
∑

α

〈i|α〉 exp(2iδα ) 〈α| j〉 . (59)

It is then possible to define the square root of this matrix,(
S1/2

1

)
i j =

∑
α

〈i|α〉 exp(iδα ) 〈α| j〉 . (60)
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The wave function in the presence of process 1 can then be
written

F1 = [
f −S−1/2

1 − f +S1/2
1

]
S1/2

1 N , (61)

thus effectively defining a new set of incoming and outgoing
reference functions f −S−1/2

1 and f +S1/2
1 . We now introduce

a second short-range scattering process, which changes the
boundary condition of the wave function at the asymptotic
matching radius r0. This new scattering wave function, due
to both processes, can be written as a linear combination
of the new incoming and outgoing waves defining a second
scattering matrix S2

F1,2 = [(
f −S−1/2

1

) − (
f +S1/2

1

)
S2

]
, (62)

where we have left off another arbitrary normalization. Fi-
nally, factoring out S−1/2

1 gives

F1,2 = [
f − − f +S1/2

1 S2S1/2
1

]
S−1/2

1 . (63)

This identifies the joint scattering matrix for both processes
together as

S1,2 = S1/2
1 S2S1/2

1 . (64)

Notice that when we shut off process 1 by setting S1 = I
we get S1,2 = S2, the scattering matrix in the absence of
process 1. Consider for example a single channel, with S1 =
exp(2iδ1), S2 = exp(2iδ2); then Eq. (64) simply asserts that
the phase shifts add. This approach to combine S matrices can
be applied recursively to include other processes as desired.

Using Eq. (64) can combine S̄0 and S̄abs:

〈S̄〉 = (S̄0)
1/2

S̄abs(S̄0)
1/2

. (65)

Equation (65) is the main result of the paper and is quite
general. Of course, from Eq. (52), S̄abs in Eq. (65) can reduce
to either S̄unobs or 〈S̄res〉 if only unobserved or indirect absorp-
tion is present. Therefore, the size of the matrix considered
in Eq. (65) can be as high as the number of elastic, inelastic,
and reactive channels that are observed in an experiment being
modeled.

III. TWO-CHANNEL CASE

Rather than study any particular system, in order to gain
insight we consider the case with just two open channels con-
sisting of an incident channel a and one additional observed
channel b, with channel a higher in energy as illustrated in
Fig. 3. We emphasize that while we label the second chan-
nel with a b, which identifies the channel with an inelastic
scattering process, it could equally well be labeled k, and
be identified with a reactive scattering process. Whatever the
nature of the scattering to channel b is, we contemplate the
scattering process a → b and the influence that absorption has
on this process.

Upon reaching short range r = r0, each channel experi-
ences some kind of absorption with coefficient za, zb, whose
exact origin we do not worry about here. It could consist
of direct scattering to unobserved channels, or to complex
formation, or some combination of both. In the absence of
these processes the two channels would be somehow coupled

FIG. 3. Schematic showing the two-channel case. Potential-
energy curves are plotted versus intermolecular distance r (both in
arbitrary units). The two channels are labeled a and b, while the
coupling between the channels is characterized by the dimensionless
quantity w. At short range, absorption from direct and/or indirect
processes is described by an effective dimensionless absorption co-
efficient za, zb in each channel.

and scattering from one to the other could occur when they
are both open. Using the convention in [15,52], we select
reference functions f̂ and ĝ in each channel so that the diag-
onal matrix elements of the short-range matrix Y vanish [78];
as such the scattering length in each channel may appear in
the MQDT parameters C and tan λ introduced in Sec. II E.
The short-range matrix Y 0 is therefore defined by a single,
real-valued, off-diagonal coefficient w via

Y 0 =
(

0
√

w√
w 0

)
. (66)

This notation uses the letter w to designate the coupling be-
tween the observed channels, since y was already used above
to denote the unobserved absorption coefficient. This matrix
Y 0 gives the form of the unitary short-range matrix S̄0 that
characterizes the direct inelastic or reactive scattering as

S̄0 = 1 + iY 0

1 − iY 0 = 1

1 + w

(
1 − w 2i

√
w

2i
√

w 1 − w

)
(67)

as also given in Ref. [52]. Written in this way, we could of
course regard scattering from a to b as yet another absorption
process, writing S̄0

aa = (1 − w)/(1 + w) and identifying an
inelastic or reactive absorption coefficient w. However, here
we are interested in the prospect of observing the molecular
product directly, and so to treat the scattering matrix element
S̄0

ab explicitly. From Eq. (54), we have

S̄abs =
(

1−za
1+za

0
0 1−zb

1+zb

)
. (68)

To construct the complete short-range matrix 〈S̄〉 using
Eq. (65), we require the square root of S̄0, which is given by

(S̄0)
1/2 = 1√

1 + w

(
1 i

√
w

i
√

w 1

)
, (69)
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from which we obtain

〈S̄〉 = (S̄0)
1/2

S̄abs(S̄0)
1/2

= 1

1 + w

(
ra − w rb i

√
w(ra + rb)

i
√

w(ra + rb) rb − w ra

)
, (70)

using the shorthand notation ri = (1 − zi )/(1 + zi ), i = a, b.
The expression in Eq. (70) is quite general. It is however
instructive to make the assumption that za = zb = z; that is,
the two channels experience the same absorption, to simplify
results and gain intuition. In this case the short-range matrix
〈S̄〉 simplifies to

〈S̄〉 = 1

(1 + w)(1 + z)

(
(1 − w)(1 − z) 2i

√
w(1 − z)

2i
√

w(1 − z) (1 − w)(1 − z)

)
.

(71)
Notice that, in a case where channel b was not observed,
this model would return to the single matrix element 〈S̄〉aa =
(1 − q)/(1 + q), written in terms of an effective absorption
coefficient

q = w + z

1 + wz
(72)

that describes composite absorption from the combination of
inelastic or reactive scattering to an unobserved channel with
absorption due to complex formation. This nicely illustrates
the flexibility of the model to treat channels as either observed
or unobserved, as required.

To see the basic interplay between direct scattering and
absorption, it is worthwhile to consider the probabilities for
various outcomes, shorn of the additional complications of
threshold effects. Equation (71) encodes the following three
types of probability.

(i) The elastic scattering probability due to a direct process
for the incident channel a,

p̄el = | 〈S̄aa〉 |2 = (1 − w)2(1 − z)2

(1 + w)2(1 + z)2 . (73)

(ii) The probability to enter in channel a and emerge in
channel b due to a direct process,

p̄in = | 〈S̄ba〉 |2 = 4w

(1 + w)2

(1 − z)2

(1 + z)2 . (74)

(iii) The absorption probability due to unobserved channels
and/or complex formation

p̄abs = 1 − | 〈S̄aa〉 |2 − | 〈S̄ba〉 |2

= 4z

(1 + z)2 , (75)

where we recover Eq. (56).
These various probabilities are shown in Fig. 4 as a

function of the interchannel coupling w and the absorption
coefficient z. As seen in the top figure, the elastic probability
is quite low unless both w or z have a low value. In the
other panels the influence of each process on the other can
be appreciated. The middle panel shows that direct scattering
only happens with appreciable probability when the absorp-
tion coefficient z is small, below around 0.2. On the other
hand, the absorption probability is indifferent to coupling
strength w as can be seen on the bottom panel and implied by

FIG. 4. Top to bottom: short-range probabilities for elastic scat-
tering, inelastic scattering, and absorption versus the dimensionless
quantity w which characterizes the interchannel coupling and the
dimensionless absorption coefficient z.

Eq. (75), which is independent of w. This kind of absorption is
a one-way journey: incident flux that gets to short range is lost
and will not emerge from channel b. Note that the coefficients
w and z are not interchangeable and do not play equivalent
roles in the theory. One observable actually pertains to seeing
the scattering end in a particular observable channel, whereas
the other is simply absorption.

So far, we have just dealt with the short-range scattering
matrix 〈S̄〉. In order to get the asymptotic S matrix, 〈S〉, we
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need to include threshold effects using MQDT. The QDT
parameters Ca and tan λa in Eq. (32) are known analytically
for s-wave threshold collisions for a 1/r6 long-range potential
[15,53]

C−2
a ≈ kā[1 + (sa − 1)2],

tan λa ≈ 1 − sa, (76)

where sa = a/ā, a being the scattering length in channel a,
ā = 2πR6/�(1/4) is the Gribakin-Flambaum length [52,79],
and R6 = (2μC6/h̄2)

1/4
is the van der Waals length. We fur-

ther assume that channel b is far from threshold, as such
Cb = 1 and tan λb = 0. Following the approach outlined in
Sec. II E, 〈S〉 and the corresponding cross sections and rate
coefficients can be obtained from 〈S̄〉 and the QDT parameters
in each channel.

We first consider the case where no exit channel is explic-
itly observed. In this case the quenching coefficient q in (72)
plays the role of an absorption coefficient. Then q can directly
replace y in the quenching formulas of Ref. [52]. For example,
the physical quenching probability is

pqu � p̄qu
C−2(1 + q)2

(1 + q C−2)2 + q2 tan2 λ
. (77)

Here the factor p̄qu = 4q/(1 + q)2 is the probability for
quenching given that the molecules get close together, while
the final factor modifies this probability due to the quantum
reflection effects that modify the molecules’ chances of get-
ting close together. This effect has been discussed at length
elsewhere [52] and we do not repeat the discussion here.

In terms of the elastic and quenching rate coefficient, we
have from Eq. (26) and Eq. (28) of Ref. [52]

β̃el = g
4π h̄

μ
kā2

s2
a + (

w+z
1+wz

)2
(2 − sa)2

1 + (
w+z

1+wz

)2
(sa − 1)2

,

β̃qu = g
4π h̄

μ
ā

(
w + z

1 + wz

)
1 + (sa − 1)2

1 + (
w+z

1+wz

)2
(sa − 1)2

. (78)

Of course, when z = 0, two channels with inelastic collisions
but no absorption, β̃qu identifies with

β̃in = g
4π h̄

μ
āw

1 + (sa − 1)2

1 + w2(sa − 1)2 (79)

or when w = 0, one channel with absorption but no coupling
to inelastic channels, β̃qu identifies with

β̃abs = g
4π h̄

μ
āz

1 + (sa − 1)2

1 + z2 (sa − 1)2
, (80)

which are the equations found previously in Ref. [52].
As a simple illustration of the relation between direct

scattering and absorption, Fig. 5 shows several representative
cross sections for the two-channel case. For concreteness, we
show cross sections for molecules with the mass and C6 coef-
ficient of NaRb. In this case, there are several undetermined
coefficients, za, zb, sa, sb, and w; likely too many to make a
meaningful fit to the NaRb data. For this illustration we have
somewhat arbitrarily set zb = 0.5, set the incident channel
scattering length to sa = 1.0, and set the interchannel cou-
pling to w = 1.0, which would give the maximum inelastic

FIG. 5. Example cross sections for NaRb molecules colliding in
an excited state, for two different values of za = 0.2 (left panel) and
0.8 (right panel). Shown for the two-channel case are the quenching
(blue dashed) and inelastic (red dotted) cross sections as computed
from Eqs. (73), (74), and (71), fixing the dimensionless quantities
za = 0.5, sa = 1.0, and w = 1.0. For comparison, the black curve
shows the cross section for the single-channel case (w = 0) with an
absorption coefficient za and phase factor sa.

scattering in the absence of absorption. Note that the phase
parameter sb in the final channel is irrelevant, as this channel
is assumed far from threshold.

The left and right panels in the figure give results for
absorption coefficients in the incident channel of za = 0.2 and
za = 0.8, respectively. In each panel, results from an explicitly
two-channel model are shown in color. Specifically, the blue
and red curves describe the quenching and inelastic cross
sections, respectively. Unsurprisingly, the total quench cross
section is greater than the cross section for inelastic scattering
alone. As a comparison, the black line shows the cross section
that results if we use a one-channel scattering model with the
same absorption coefficient z = za and phase parameter s = sa

in that channel. It is seen that the inelastic process alters the
quenching cross section significantly. The right panel repeats
this calculation, for a larger incident channel absorption co-
efficient za = 0.8. This larger value of za both raises the total
quenching cross section and reduces the relative cross section
for inelastic scattering.

In practice, if both the quenching and inelastic cross sec-
tions were measured, their energy-dependent cross sections
(or temperature-dependent rate coefficients) could be simul-
taneously fit by formulas such as these, yielding consistent
values of the absorption coefficients w, za, and zb, and the
incident phase parameter sa.

IV. APPLICATION TO VARIOUS EXPERIMENTAL
SITUATIONS

Cast in terms of the present theory it is interesting to draw
some tentative conclusions about the experiments that have
been performed so far. Quantitative description will likely
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require further information, yet the basic formulas Eq. (56)
and Eq. (55) may guide our thinking. Note that in this section
we remove the subscript a of the absorption coefficients, for
clarity.

A. Collisions of endothermic processes

The most basic collision of ultracold molecules is one
in which both molecules are in their absolute ground state
and are not chemically reactive at a temperature low enough
such that all other channels are asymptotically closed. This
was achieved in collisions of NaRb molecules [9] and RbCs
molecules [11]. In this case the presumed losses are due to
complex formation, as such z reduces to x. Light is present
in these experiments and may strongly affect the molecular
losses [12]; therefore, x should in general depend on I , which
is the intensity of the trapping laser.

Knowing the energy dependence of the loss cross sec-
tion enables one to extract the absorption coefficients from
experimental data. Thus, for NaRb collisions, the fitted pa-
rameter gave x(I ) = 0.5 [18], while for RbCs collisions it
gave x(I ) = 0.26(3) [11], at the specific laser light intensities
of these experiments. While the intensity dependence of x
remains unknown, we can make the following assumption. If
the light absorption is saturated with intensity we assume that
any complex that is formed decays immediately. In this case
the value of x is a measure of the formation of the complex,
and represents a direct measure of the ratio between the mean
bound state-scattering channel coupling and the mean level
spacing of resonances in the complex at the specific laser
light intensities. Interpreting the mean coupling as a mean
width, via ν2 = γ /2π , Eq. (49), would give the ratio of mean
resonance width γ to mean level spacing d , γ /d = 2x/π .
The ratio would be γ /d = 0.32 for NaRb and γ /d = 0.17
for RbCs. Thus the theory produces from the data a concrete
prediction that can be used to test a microscopic theory of
molecular collisions. This interpretation relies on the assump-
tion that the measured x in the presence of the light truly
represents the complex formation. This assumption would of
course not be necessary if the measurement were repeated in
a box trap.

Even under this assumption, the comparison between em-
pirical and calculated values of γ /d is complicated by the
presence of external fields in the experiment, as x can also
depend on those fields in addition to the intensity, so that
x = x(E, B, I ). For a pure field-free case (no electric field
nor magnetic field), a coupled representation scheme can be
used to estimate d when the total angular momentum quantum
number J and its laboratory projection M are conserved [80].
However, even though the electric field is zero, the NaRb and
RbCs measurements are performed in a nonzero magnetic
field. It seems therefore appropriate to include in the micro-
scopic estimates collections of states with different values of
J that are mixed by the field. It remains uncertain, however,
how many values of J are relevant to the estimate of γ /d for
a given magnetic-field value. It should also be noted that the
application of an electric field appears to alter the absorption
coefficient, raising it to the universal value x(E > 0) = 1 [10],
indicating that the electric field increases the strength of chan-
nel coupling, the density of resonant states, or perhaps both.

B. Chemically reactive collisions

An alternative set of experiments, spanning the past
decade, has measured loss in ultracold KRb molecules, dis-
tinguished from NaRb or RbCs in that the KRb + KRb →
K2 + Rb2 reaction is exothermic. In the pioneering experi-
ments [4], the products were not observed; therefore, reactive
scattering contributed to the unobserved processes described
by the coefficient y in addition to the x in the endothermic
case. In general, these experiments exhibit loss consistent
with an absorption coefficient z(I ) = 1 from Eq. (55), cor-
responding to loss of all molecules that get close enough to
react or form a collision complex [17]. However, Eq. (55)
does not lead to the identification of the separate mechanism
for unobserved (chemical reaction in that case) and indirect
(complex formation) processes. Nevertheless, the existence
of both processes has been verified experimentally, by the
identification in REMPI spectroscopy of both the products K2

and Rb2, and the intermediaries K2Rb+
2 [6]. From Eq. (55),

we note that in this parametrization z(I ) = 1 can occur only
if x(I ) = 1 or y(I ) = 1. It seems likely that indirect loss from
complex formation does not occur with unit probability, that
is, x(I ) is likely less than unity, since this is certainly the case
for the nonreactive species NaRb and RbCs (see above). The
difference in energies that renders the KRb reaction exother-
mic, a mere 10 cm−1, is decided at long range as the products
recede from one another, and likely has little bearing on the
complex itself and the couplings that determine the value of
x(I ). We therefore provisionally conclude that the loss of KRb
molecules with unit probability is mainly due to the unob-
served loss (chemical reactions) compared to indirect loss and
that y(I ) � z(I ) � 1.

An additional possibility occurs for vibrationally excited
states of NaRb [9]. These molecules experience loss due to
complex formation when in their ground state, but in their
first vibrationally excited state they also have sufficient en-
ergy to inelastically deexcite or to chemically react. In this
experiment, neither the inelastic nor the reactive products are
observed. Therefore, inelastic and reactive processes should
be regarded as unobserved absorption processes. The total
loss is therefore described by the absorption coefficient z(I ) of
Eq. (55). Here x(I ) would characterize the loss due to complex
formation, which in the simplest interpretation can be taken as
the same as for the nonreactive ground-state scattering, x(I ) =
0.5, while y(I ) characterizes the losses due to the inelastic and
reactive processes. From the data of the NaRb experiment in
v = 1, the total absorption coefficient z(I ) = 0.93 has been
extracted [18]. From Eq. (55) we infer that the unobserved
absorption coefficient is y(I ) = 0.8. This value, lying close to
unity, emphasizes that the unobserved absorption coefficient,
responsible for losses due to inelastic collisions and chemical
reactions, takes a high value close to unity, just as in the KRb
case.

V. CONCLUSION

When ultracold molecules collide, a likely outcome is a
transformation that releases energy and sends the molecules
fleeing from the trap, effectively destroying the gas. But for
ultracold alkali-metal dimers this destruction need not be
immediate, if the molecules first form a collision complex.
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Various fates await the molecules upon collisions: elastic
scattering, inelastic scattering, reactive scattering, or resonant
complex formation. In the work we have detailed a simple
quantum-defect model capable of treating all these myriad
processes on an equal footing.

In the absence of full scattering matrices, the model
captures the essence of these various processes, providing
parametrizations of the various cross sections. The model
is flexible enough to account explicitly for those processes
that are ultimately observed, and to account implicitly for
those that are not. The result is a framework capable of be-
ing adapted to fit the available data for a given experiment,
relating the observables to a small set of parameters. These
parameters, in turn, represent a tangible goal for microscopic
theories of the four-body dynamics.

The theory as presented treats only the first step of the scat-
tering process: molecules colliding and heading off on one of

the paths—elastic, inelastic, reactive, or complex formation.
In particular, the theory does not treat the possible decay of
the complex; to do so will require a more detailed treatment of
the decay rate and product distribution of the complex—work
that is currently in progress.
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