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A scattering model is developed for ultracold molecular collisions, which allows inelastic processes,
chemical reactions, and complex formation to be treated in a unified way. All these scattering
processes and various combinations of them are possible in ultracold molecular gases, and as such
this model will allow the rigorous parametrization of experimental results. In addition we show how,
once extracted, these parameters can to be related to the physical properties of the system, shedding
light on fundamental aspects of molecular collision dynamics.

I. INTRODUCTION

Ultracold samples of molecules can be exquisitely con-
trolled at the quantum state level, allowing fundamental
physical and chemical process to be studied with un-
precedented precision. This control has been used to
study state-to-state chemistry with full quantum state
resolution for all reactants and products [1], to probe the
potential energy surface with exquisite resolution [2, 3],
and to study the role of nuclear spins in molecular colli-
sions [4, 5], More recently an experiment has managed to
probe the intermediate complex of an ultracold ultracold
reaction [6] as such it is now possible to track the complete
chemical process from reactants, through intermediates,
to products.

Understanding the fundamental physical and chemical
process of ultracold molecular collisions is also impor-
tant because ultracold gases are fragile systems, prone
to collisional processes that can transfer their atomic or
molecular constituents into untrapped states or else re-
lease large amounts of kinetic energy, leading to trap loss
and heating. A new mechanism for loss in an ultracold
molecular gas was proposed [7, 8], namely a half-collision
process in which the reactant molecules share energy in
rotational and vibrational degrees of freedom, spending a
long time lost in resonant states of a four-body collision
complex rather than promptly completing the collision
process. This idea of transient complex formation, collo-
quially dubbed “sticking”, takes on an added significance
for ultracold molecular collisions where the number of
available exit channels can be very small compared to the
number of resonant states.

Initial experiments on non-reactive ultracold molecules,
such as NaRb [9, 10] and RbCs [11], observed two-body
collisional losses, even though these species are non-
reactive and are in their quantum mechanical ground
state, so have no available inelastic loss channels. As
these complexes were not directly observed, it remained
an open question whether these experiments have pro-

duced long-lived collisional complexes and what the loss
mechanism was. However, a subsequent experiment on
RbCs [12] showed that turning on or off the trapping light
that confines the molecules can increase or decrease the
losses of the molecules. This confirmed the hypothesis of
a theoretical study [13] that the non-reactive molecules
first form tetramer complexes, and then the complexes are
lost due to light scattering in the optical dipole trap. In
addition, an experiment on chemically reactive ultracold
molecules such as KRb succeeded in directly observing the
corresponding ions of the intermediate complex K2Rb2 [6],
as well as of the products K2 and Rb2 of the chemical
reaction. Just as for non-reactive molecules, the trap-
ping light has a strong effect on the losses of the reactive
molecules as well as on the lifetime of the transient com-
plex [14], sharing the same conclusion as [12, 13]. It is
therefore clear that any theoretical treatment of ultracold
molecular collisions must be flexible enough to account
for the formation of the complexes.

These experiments can be described by a model that
assumes an absorption probability pabs for any two
molecules that get within a certain radius [15], without
ascribing any particular mechanism to the absorption.
Energy and electric field dependence of two-body loss
rates are well-fit by the resulting formulas. For exam-
ple, the reactive molecules in the KRb experiment vanish
with unit probability pabs = 1 with or without electric
field [4, 16, 17]. The non-reactive species NaRb and RbCs
vanish with probabilities 0.89 [18] and 0.66 [11] respec-
tively, in zero electric field. Notably, when an electric
field is applied to NaRb, its absorption probability climbs
to pabs = 1 [10]. Assuming the origin of this loss is due to
complex formation, the increased loss with electric field
may be attributed to the increased density of accessible
states of the complex and/or coupling of these states to
the continuum scattering channels. It is therefore con-
ceivable that complex formation may be a phenomenon
that can be turned on or off as desired.

While the influence of light scattering on molecular
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collisions is undeniable, it should also be possible for
the molecules to be confined in “box” traps, where the
molecules remain mostly in the dark, encountering trap-
ping light only at the peripheries of the trap [19]. In this
case, loss due to complex formation would allow a more
direct probe of the fundamental four-body physics of the
collision.

In this paper we propose a phenomenological model of
collisional losses, based on the theory of average cross sec-
tions [20], that encompasses both direct collisional losses
and loss due to complex formation. As such this model
serves not only to parametrize experimental measure-
ments, but also allows those parameters to be related to
the physical properties of the system, potentially shedding
light on the dynamics of the molecular complex.

II. THEORY

The theory must be flexible enough to describe the
various outcomes available when two molecules collide.
These include elastic scattering of the reactants; inelastic
scattering, where the reactants emerge with the same
chemical identity but in different internal states; reactive
scattering into various product states; and absorption
into the collision complex. Moreover, depending on the
experiment, the various outcomes of the collision may
or may not be observed. Note that, within this model,
formation of a collision complex will always be regarded
an outcome in and of itself: we do not consider where the
complex ultimately decays to.

A. Molecular scattering, observed and unobserved
processes

To this end, we define a flexible system of notation as
illustrated in Fig. 1. This figure shows schematically the
distance r between two collision partners (which may be
reactants or products), and the various possible outcome
channels. Channels whose outcome is observed by a par-
ticular experiment are labelled by roman letters while
channels whose outcome is unobserved are labelled by
greek letters. The channels labelling observed processes
are further differentiated as follows. Channels labelled
a, b, c, . . . correspond to the elastic and inelastic chan-
nels of the reactants, while channels labelled k, l, m, . . .
correspond instead to channels of a different molecular
arrangement and correspond to the product channels of
a chemical reaction. Note that the unobserved processes
may include both inelastic scattering, as well as chemical
reactions: the criterion is simply that this outcome is not
observed.

By convention, we take a to label the incident channel.
In general, scattering events that initiate in channel a and
terminate in any channel i, where i serves as a running
index, are described by the elements Sia of a scattering
matrix S. The list of channels i will of course depend
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FIG. 1. Schematic outlining the various scattering processes
and channel labels. Direct and indirect scattering processes
are shown by red and blue arrows respectively. The incoming
channel is labelled a; inelastic scattering channels that can be
observed in an experiment are denoted by roman letters b, c,
. . .; reactive scattering channels that can be observed in an
experiment are denoted by roman letters k, l, m, . . .; inelastic
or reactive channels that are unobserved in a given experiment
are denoted by letters ρ, σ, τ , . . . Finally a dense forest of
resonant states labelled by µ of the collision complex, of, with
a mean level spacing d, is shown in the well of the potential.

on the details of a particular experiment. In some ex-
periments, all the final states can be measured so that
there are no channels denoted by greek letters, while in
others none of the final states can be measured so that
there are no channels denoted by roman letters (except
the incident channel a). In some experiments, inelastic
channels are measured but reactive ones are not, or vice
versa. Therefore one has to determine which processes
are labelled as observed or unobserved processes for a
particular experiment of interest. In Sec. II D, we will
detail how these unobserved processes can be gathered
into an overall, absorption term.

The observed and unobserved processes are those that
are expected to produce inelastic scattering or chemical
reactions immediately, that is, without forming a collision
complex, shown in Fig. 1 by the red arrow labelled direct
scattering. Typically, the results of these processes release
kinetic energy greater than the depth of the trap holding
the molecules, and hence lead to what we term direct loss.
By contrast, indirect scattering processes which proceed
via complex formation, shown in Fig. 1 by the blue arrows,
will not immediately lead to trap loss. Molecules lost
into the collision complex require a second step to leave
the trap, which consists of either absorbing a photon
of trapping light, colliding with another molecule, or
decaying into an allowed channel of reactants or products.
The present theory will not explicitly address this second
step, focusing only on the formation of the complex.
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B. Scattering cross sections for various processes

Corresponding to each S-matrix element is the state-
to-state probability of a scattering process from channel
a to channel i, with i = a, b, c, . . ., k, l, m, . . ., ρ, σ, τ ,
. . ., given by

pa→i = |Sia|2. (1)

As the S-matrix is unitary, we have for each incident
channel a

1 =
∑

i=a,b,c,...,
k,l,m,...

|Sia|2 +
∑

i=ρ,σ,τ,...

|Sia|2

≡ pobs + punobs, (2)

where we have separated the scattering matrix into an ob-
served block (i running on roman letters) and unobserved
block (i running on greek letters).

The probability for observed processes, pobs, can be
further subdivided into elastic, inelastic and reactive parts
pobs = pel + pin + pre, with

pel = pa→a = |Saa|2

pin =
∑

i=b,c,...

pa→i =
∑

i=b,c,...

|Sia|2

pre =
∑

i=k,l,m,...

pa→i =
∑

i=k,l,m,...

|Sia|2. (3)

There is of course no reason to subdivide unobserved
processes in this way.

In general, if some processes are unobserved, then from
Eq. (2), the observed block of the scattering matrix will
appear sub-unitary:

∑

i=a,b,c,...,k,l,m,...

|Sia|2 ≤ 1. (4)

The amount by which this sum falls short of unity will
be a measure of the unobserved probability, which in
general is recast into an overall, absorption probability
pabs. Therefore

pabs ≡ punobs = 1− pobs = 1− pel − pin − pre. (5)

In the next subsection we will see that collisions resulting
in complex formation can also be properly included in
the absorption probability. It is also convenient to define
a quenching probability, which is the sum of the inelastic,
reactive and absorption probabilities

pqu = pin + pre + pabs = 1− pel = 1− |Saa|2. (6)

Finally, the corresponding state-to-state cross section is
given by

σa→i = g
π

k2
|δai − Sia|2, (7)

where g = 2 if the identical collision partners are initially
in the same quantum mechanical state, and g = 1 other-
wise. The cross sections corresponding to these processes
are given by

σel = g
π

k2
|1− Saa|2,

σin = g
π

k2
pin,

σre = g
π

k2
pre,

σabs = g
π

k2
pabs,

σqu = σin + σre + σabs. (8)

C. Complex formation and highly resonant
collisions

The treatment so far has ignored the possibility of
complex formation. The collision complex is comprised of
a dense forest of resonant states, depicted schematically
in Fig. 1 by horizontal lines. These states, denoted µ, are
potentially numerous and complicated, and are therefore
best characterized by statistical quantities, such as their
mean level spacing d (equivalently mean density of states
ρ = 1/d) and their coupling matrix elements Wiµ to the
open channels. For the purposes of a theory on complex
formation, it is assumed that the lifetime of the complex
is long compared to the mean collision time, so that the
complex formation and decay are distinct events. This
assumption appears to be validated by the observation of
K2Rb2 complexes in KRb + KRb ultracold reactions [6]
and by the measure of their lifetimes [14]. In this case,
losses due to complex formation can also occur.

This process will be considered as an unobserved pro-
cess, as defined in the previous section. We will see that
the theory of highly resonant collisions can recast this
type of loss into a phenomenological absorption term, in-
cluded in the definition (5) as for the unobserved processes
discussed above. This will also enter as a parameter of
our theory in the following.

The key concept for understanding highly resonant
collisions and the corresponding complex formation can
be found in the compound nucleus (CN) model introduced
by Bohr for understanding nuclear collisions [21]. This
theory postulates that a compound state involving all the
nucleons forms immediately when a particle (such as a
neutron) encounters the nucleus. These compound states
have long lifetimes which leads to a dense set of narrow
resonances in the cross section as a function of energy.
Since Bohr’s initial insight, the statistical theory of highly
resonant scattering has been developed considerably [20,
22–27]. We draw heavily on this literature in what follows.

The essential simplification of the statistical theory is
the assumption that the density of states is too great for
any of the individual resonances to be resolved, there-
fore scattering observables can be replaced by suitable
averages [20, 24]. The virtue of this approach can be
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illustrated using an example with a single channel, where
the cross sections for elastic and absorption scattering are
given by

σel = g
π

k2
|1− S|2 σabs = g

π

k2
(1− |S|2), (9)

the overall absorption process accounting for all but the
elastic process, similar to what can be seen in Eq. (8) and
Eq. (5). If all the incident flux were reflected, then |S|2 = 1
and there would be no absorption. If only a part of the
flux were reflected |S|2 would be less than unity, due to
absorption. For indirect processes like complex formation,
there is no true absorption: eventually the molecules re-
emerge and complete a scattering event. However, long-
lived complexes can give the appearance of absorption if
the lifetime of the complexes is long enough, and moreover
leads to true loss if the complex is destroyed by a photon
or by a collision with another molecule. These effects
are accounted for in the following. The lifetime and
subsequent decay of the complex is not treated within the
model we detail here.

In the statistical theory of scattering, the average of
any energy-dependent quantity f(E) can be defined as

〈f(E)〉 =
1

Z

∫
dε f(ε)D(E; ε), (10)

where D(E; ε) is the distribution, centered at E, that
defines the average, and Z =

∫
dεD(E; ε). D is often

taken to be either a Lorentzian function or else a finite
step function centered at E. In any event, here D is
assumed to be broad enough to contain many resonances.
In these terms and factoring out the explicit momentum
dependence, an average cross section can be written [24]

〈σ〉 = g
π

k2
〈k2σ〉 . (11)

To calculate the average elastic cross section then requires
taking the average 〈|1− S|2〉. Using the definition for the
variance for a variable X

∆X ≡ 〈|X|2〉 − |〈X〉|2, (12)

we obtain

〈|1− S|2〉 = |1− 〈S〉|2 + ∆S. (13)

The average elastic cross section can therefore be written
in the form

〈σel〉 = g
π

k2
〈|1− S|2〉

= g
π

k2
|1− 〈S〉|2 + g

π

k2
∆S

≡ σse + σce. (14)

These two contributions comprise a mean cross section,
denoted the “shape elastic” cross section; and a contri-
bution from the fluctuations, denoted the “compound
elastic” cross section [20, 24]. Since the lifetime of a col-
lisional process is proportional to the energy derivative

of the S-matrix [28–31], writing the cross section in this
way elegantly separates out the cross section for direct
scattering, the shape elastic part, from indirect scatter-
ing, the compound elastic part. Meanwhile, the average
absorption cross section is

〈σabs〉 = g
π

k2
(1− 〈|S|2〉). (15)

The essence of the CN model is to associate elastic
scattering with just the shape elastic part of the elastic
cross section and include the compound elastic part in
the absorption cross section. This is achieved by simply
making the replacement S → 〈S〉 in Eq. (9). The elastic
cross section in the CN model is therefore

σ̃el = g
π

k2
|1− 〈S〉|2 = σse. (16)

while the absorption cross section is

σ̃abs = g
π

k2
(1− |〈S〉|2),

= g
π

k2
(1− 〈|S|2〉) + g

π

k2
∆S

= 〈σabs〉+ σce. (17)

again using the definition of the variance. As desired,
simply by replacing S in Eq. (9) with 〈S〉, the compound
elastic part now appears in the absorption cross section.

D. Generalized theory of average cross sections

Generalizing the averaging procedure above to the mul-
tichannel case, one incorporates the effect of resonant
complex formation by energy averaging the appropriate
cross sections over many resonances [32],

〈σa→i〉 = g
π

k2
〈|Sia|2〉

= g
π

k2
|〈Sia〉|2 + g

π

k2
∆Sia

≡ σdir
a→i + σind

a→i. (18)

Doing so defines two components of the scattering. The
first component, associated with an energy-smooth S-
matrix 〈S〉, is direct scattering which is scattering from
channel a to i which proceeds without forming a collision
complex—this is the generalization of the “shape elastic”
cross section in the single channel example above. The
second component, associated with the energy fluctua-
tions of the S-matrix ∆S, is indirect scattering which is
also scattering from channel a to i but which proceeds via
a collision complex—this is the generalization of the “com-
pound elastic” cross section in the single channel example
above.

Following the prescription of the CN model, the cross
sections for any process whose outcome is observed are
associated with the corresponding direct scattering cross
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section. The elastic, inelastic, and reactive cross sections
are therefore given by

σ̃el ≡ σdir
el = g

π

k2
|1− 〈Saa〉|2

σ̃in ≡ σdir
in = g

π

k2

∑

i=b,c,...

|〈Sia〉|2

σ̃re ≡ σdir
re = g

π

k2

∑

i=k,l,m,...

|〈Sia〉|2. (19)

These are presented as total cross sections, for example,
σ̃in is the total inelastic cross section and includes all
inelastic scattering of molecules that is observed. If indi-
vidual inelastic channels are resolved experimentally, they
correspond to individual terms of this sum; and the same
for reactive scattering.

Direct processes to channels that are not observed con-
tribute to the absorption cross section, σ̃abs, and their
total contribution is formally given by

σ̃dir
abs ≡ σdir

abs = g
π

k2

∑

i=ρ,σ,τ,...

|〈Sia〉|2. (20)

The cross section for complex formation also contributes
to the absorption cross section, and is simply the total
cross section for all indirect processes. As such it is given
by

σ̃ind
abs ≡ σind

el + σind
in + σind

re + σind
abs

= g
π

k2

∑

i=a,b,c,...,
k,l,m,...,
ρ,σ,τ,...

∆Sia. (21)

The total absorption cross section is then the sum of the
direct and the indirect contributions

σ̃abs = σ̃dir
abs + σ̃ind

abs. (22)

This is the generalization of Eq. (17). In this theory,
the matrix elements of the highly-resonant S-matrix Sia
(and therefore also ∆Sia) are presumed to be unknown.
Information about absorptive scattering will be inferred
from the sub-unitarity of the energy averaged S-matrix,
〈S〉, in the observed channels. Appropriate forms of these
effective S-matrices will be derived in Sec. II F.

It should be emphasized that by treating the complex
as an absorption process, we are describing only the phe-
nomenon of molecules combining to form a collision com-
plex. Eventually such a complex would decay producing
outcomes in any available channel, but a full treatment
of this process would require detailed understanding of
the decay mechanism of the complex, or equivalently the
full S-matrix on a fine enough energy grid that the appro-
priate averages given in Eqn. (18) could be meaningfully
performed.

Finally, it is often useful to define a quenching cross
section, which describes scattering into any channel other

than the incident channel, regardless of what that channel
is. The quenching cross section is therefore given by

σ̃qu = σ̃in + σ̃re + σ̃abs = g
π

k2
(1− |〈Saa〉|2). (23)

The corresponding rate coefficients β̃ to the cross sec-
tions given above are obtained by replacing 1/k2 in
Eqs. (22) by ~/µk where µ is the reduced mass of the
colliding molecules.

Hereafter, we adopt the perspective of CN theory: S-
matrices will be averaged over many resonances, and
the resulting mean values will be used to evaluate cross
sections.

E. Threshold Behavior

To facilitate applying the CN model to ultracold molec-
ular scattering, it is useful to separate the effects of av-
eraging and absorption from threshold effects due to low
collision energies.

Elements of the scattering matrix Sij quantify the
amount of incoming flux in channel j that leads to out-
going flux in channel i, where i, j = a, b, c, . . . , k, l, m,
. . . , ρ, σ, τ . . . . At asymptotic separations r between the
collision partners, the wave function is given by

lim
r→∞

Ψ = ψ−j (r)−
∑

i

Sij ψ
+
i (r), (24)

in terms of energy-normalized asymptotic incoming and
outgoing spherical waves

ψ±i (r) =
1√
ki

exp(±i(kir − πli/2)), (25)

where ki is the asymptotic wave vector for channel i. The
S-matrix defined in Eq. (24) is, in general, energy depen-
dent which leads to the usual Bethe-Wigner threshold
laws for the cross section [33, 34]. This energy dependence
is unrelated to the microscopic interactions between the
colliding molecules at small r that dictate the molecular
scattering processes. As such these processes are better
parametrized by energy-independent short-range quan-
tities. To do so, we employ the ideas and methods of
Multichannel Quantum Defect Theory (MQDT) [35–47],
which has been successfully applied in various ways and
with various notations to the problem of ultracold scatter-
ing. At present, the version of this theory most commonly
applied in ultracold collisions is the Mies-Julienne version,
whose notation we follow here [39, 40].

Scattering theory is usefully described in terms of
real-valued, asymptotic reference functions in each chan-
nel. These functions are solutions to a single-channel
Schrödinger equation, with some predetermined potential.
They therefore do not represent free plane waves, but
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possesses a phase shift ξi, their asymptotic form is

fi(r) =
1√
ki

sin(kir − πli/2 + ξi)

gi(r) =
1√
ki

cos(kir − πli/2 + ξi). (26)

In terms of these functions, the asymptotic wave function
can be written

lim
r→∞

Ψ = fj +
∑

i

Rij gi, (27)

where Rij are the elements of the reactance matrix R.
The scattering matrix in Eq. (24) is then given by

Sij = eiξi

(
1 + iR

1− iR

)

ij

eiξj (28)

for general running indexes i, j. Defined in this way, the
scattering matrix still has an energy dependence due to
threshold effects. MQDT gets around this by choosing a

new set of reference functions, f̂i, ĝi, defined by WKB-like
boundary conditions at short range, in the classically al-
lowed region of channel i (details of these wave functions
are given in Ref. 39). For our purposes here the key prop-
erty of these reference functions is that they are related
in a standardized way to the usual energy-normalized
asymptotic reference functions by the transformation

(
fi
gi

)
=

(
C−1
i 0

Ci tanλi Ci

)(
f̂i
ĝi

)
(29)

where Ci(E) and tanλi(E) are explicitly energy-
dependent factors, with E being the total energy of the
system. The dependence of Ci and tanλi with energy
has been given explicitly near threshold [48], enabling
analytical scattering formulas to be constructed.

The pair of reference functions f̂i and ĝi are used as
follows. Supposing that strong channel couplings lead
to a complicated many-channel scattering wave function,
nevertheless there is an intermolecular distance r0 beyond
which the channels are essentially uncoupled (this radius
is indicated schematically in Fig. 1). The wave function
at radii r > r0 can then be written

Ψ(r > r0) = f̂j +
∑

i

Yij ĝi, (30)

in terms of a short-range reactance matrix Y . Because of

the carefully chosen normalization of f̂i and ĝi, Y does
not carry the energy dependence characteristic of the
threshold behavior. From the standpoint of the threshold,
Y can be considered constant (later, we will incorporate
an explicit energy dependence due to resonant states).
The threshold energy dependence is then restored via the
transformation

R = C−1
[
Y −1 − tanλ

]−1
C−1, (31)

where C and tanλ are the appropriate diagonal matrices
defined in [39]. Alternatively, the energy-independent
reference functions can be written in terms of incoming
and outgoing waves

f̂±i = ĝi ± if̂i. (32)

The scattering wave function can then be represented at
short-range by a scattering matrix S̄, defined via

S̄ =
1 + iY

1− iY
(33)

with inverse transformation

Y = i
1− S̄
1 + S̄

. (34)

The bar notation refers to the S-matrix at short-range.
In the next section we will apply the statistical theory ap-
proach to highly resonant scattering from nuclear physics
to replace S̄ with a suitably energy averaged version, 〈S̄〉,
that is itself energy independent and includes the absorp-
tion effect due to the unobserved and indirect absorption
processes.

F. The short-range S-matrix accounting for
absorption processes

This section details the construction of the short-range
energy-averaged scattering matrix S̄abs, which accounts
for any absorption processes that may be present in a
given experiment. The elements S̄abs

ij of this matrix are
indexed by the observable channels i, j = a, b, c, . . . , k,
l, m, . . . . It is constructed so that it may be sub-unitary
to account for absorption due to the two effects described
above, direct absorption and complex formation.

The derivation of this matrix proceeds in three steps:
the first constructs an effective, sub-unitary S-matrix
S̄unobs that accounts phenomenologically for direct ab-
sorption to unobserved channels, based on an optical po-
tential; the second constructs an energy smooth S-matrix
that accounts for absorption due to complex formation by
averaging a highly resonant S-matrix S̄res; finally, both
types of absorption are combined to obtain a matrix S̄abs

for the combined absorption processes. S̄abs will then be
used in the next section to complete the construction of
the matrix 〈S̄〉.

1. Absorption due to unobserved channels

Flux entering in any channel that vanishes due to unob-
served processes is conveniently modeled by incorporating
a complex-valued optical potential in each channel

Vi(r) +
~2li(li + 1)

2mrr2
− i

γi(r)

2
, (35)
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where Vi is the real-valued potential in the absence of such
absorption for channel i [15, 49, 50]. In the absence of an
exact treatment of the short-range interactions using a full
potential energy surface and a full collisional formalism,
the influence of the optical potential γi is to create a new
linear combination of asymptotic functions. Specifically,
the short-range Y -matrix in Eq. (30) can be replaced in
each channel by a purely imaginary quantity iyi [50]. The
wave function in this channel now reads

f̂i + iyi ĝi, (36)

for a real-valued parameter yi, which we term the unob-
served absorption coefficient in channel i. The optical
potential reproduces the overall phenomenological loss
from channel a to all the unobserved channels ρ, σ, τ , . . .
Recasting the wave function in terms of incoming and
outgoing waves from Eq. (32) gives

f̂i + iyi ĝi =
1

2i
(f̂+
i + f̂−i ) +

iyi
2

(f̂+
i − f̂−i )

=
i

2
(1 + yi)

[
f̂−i −

(
1− yi
1 + yi

)
f+
i

]
. (37)

Here the prefactor i
2 (1 + yi) represents an overall normal-

ization, such that the coefficient of the outgoing wave term
in the square brackets gives the short-range scattering
matrix

S̄unobs
ii =

(
1− yi
1 + yi

)
. (38)

This is a unique, overall term for the channel i as the
unobserved channels ρ, σ, τ . . . are not explicitly enumer-
ated in Eq. (35). We note that S̄unobs is by definition
independent of energy and as such does not need to be
energy-averaged.

The coefficients yi are purely phenomenological param-
eters of the theory. By considering 0 ≤ yi ≤ 1, as Ref. 15
does, S̄unobs is in general sub-unitary, becoming unitary
when yi = 1. A special case of this result is in the incident
channel, where i = a. In this case, |S̄unobs

aa |2 is the prob-
ability that the molecules incident in channel a are not
lost to the unobserved process. Then, the (short-range)
unobserved absorption probability is given by

p̄unobs = 1−
(

1− ya
1 + ya

)2

=
4ya

(1 + ya)
2 . (39)

2. Absorption due to complex formation

The next step is to include the possibility for the scat-
tering wave function to span the region of the resonances,
resulting in indirect absorption due to resonant complex
formation. The indirect processes all couple to the dense
forest of resonant states µ which results in a highly res-
onant short-range scattering matrix, here denoted S̄res.
As described in Sec. II C, we average the resonant matrix
to get an energy-smooth scattering matrix 〈S̄res〉.

In order to determine the average of S̄res we exploit
the chaotic nature of highly resonant collisions [51–55],
and treat S̄res statistically using random-matrix theory
(RMT) [56, 57]. Here we only sketch the essential steps of
the derivation, see Ref. [32] and references therein for a
more complete treatment. We first introduce an effective
Hamiltonian Heff for the resonances,

Heff
µν = Eµδµν − iπ

∑

i

WµiWiν (40)

in the diagonal representation, which describes the dy-
namics of the resonances [32, 58]. Eq. (40) is based on
a partitioning of the Hilbert space into a bound state
space and a scattering channel space, introduced by Fes-
hbach [25–27]. While Eq. (40) is complete, the effort
involved in computing all the parameters, especially for
the large number of bound states that we are interested
in here, make this approach impractical [26]. Following
RMT, we therefore consider the parameters as purely
statistical quantities. Generally in statistical theories,
the energies Eµ of the resonances are assumed to form
a distribution whose nearest-neighbor spacing statistics
satisfy the Wigner–Dyson distribution with mean level
spacing d, and the coupling matrix elements Wiµ between
a channel i and a resonant state µ are assumed to be Gaus-
sian random variables with vanishing mean and second
moment

〈WµiWνj〉 = δµνδij ν
2
i . (41)

νi is the magnitude of the bound state-scattering channel
coupling for channel i. We will, however, not need to
specify the distributions for our present purposes.

In terms of the MQDT reference functions f̂i, ĝi defined
above, resonant scattering will result in a short-range Y res

matrix, defined as

Ψ = f̂j +
∑

i

Y res
ij ĝi, (42)

similar to Eq. (30) with the running indices i, j = a, b, c,
. . ., k, l, m, . . . It is assumed that all the resonant states
have outer turning points at distances r < r0, so that
Y res contains the full structure of the resonances and
therefore takes the form [32]

Y res
ij = π

∑

µ

WiµWµj

E − Eµ
. (43)

In the weak-coupling limit, νi � d the resonances are
isolated and can, if desired, be described in terms of
resonant widths given by γµ = 2π

∑
i |Wiµ|2.

In order to average over many resonances, we use the
statistical independence of the coupling matrix elements,

〈WiµWµa〉 = δiaν
2
i , (44)

to assert that 〈Y res〉 is diagonal. This implies that
〈S̄res
ij 〉 = 0 if i 6= j which confirms that Y res contains
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no direct contribution to the scattering and describes
purely resonant scattering as desired. Moreover, the aver-
age of Y res over many isolated resonances is equivalent to
the average over a single representative resonance. As the
resonances are separated on average by a spacing energy
d, this average becomes

〈Y res
ii 〉 =

1

d

∫ Eµ+d/2

Eµ−d/2
dE

πν2
i

E − Eµ
. (45)

Evaluating this integral in the principal value sense gives

〈Y res
ii 〉 ≈

πν2
i

d
lim
t→0+

P
∫ ∞

−∞
dE

exp(itE)

E

= i
π2ν2

i

d
, (46)

where the contour is closed on the upper half of the
complex plane. Therefore, in each channel, the wave
function accounting for indirect absorption due to complex
formation is given by

f̂i + ixi ĝi, (47)

in terms of a real-valued parameter

xi =
π2ν2

i

d
, (48)

which we term the indirect absorption coefficient in chan-
nel i. Although coming from an entirely different mecha-
nism, the form of the wave function in Eq. (47) is exactly
the same as that for unobserved absorption given by
Eq. (36). Similarly, this leads to a short-range scatter-
ing matrix in each channel i that corresponds to indirect
absorption

〈S̄res
ii 〉 =

(
1− xi
1 + xi

)
. (49)

This is a unique term for the channel i due to the fact that
the off-diagonal elements are zero. Again specializing to
the case of the incident channel, i = a, the (short-range)
indirect absorption probability in channel a is given by

p̄res = 1−
(

1− xa
1 + xa

)2

=
4xa

(1 + xa)
2 . (50)

The unobserved and indirect absorption cases are for-
mally similar. In both cases, the short-range scattering
matrix is given by an absorption coefficient yi and xi in
each channel i. For unobserved processes, the absorption
coefficient yi is a purely phenomenological fitting parame-
ter, whereas for indirect processes, the indirect absorption
coefficient xi contains information about the complex it-
self, namely, the ratio of bound states-scattering channel
coupling to the mean level spacing. The form of xi is rem-
iniscent of Fermi’s golden rule as it connects the average
scattering matrix to the square of the bound-continuum
matrix element ν2

i and the density of states ρ = 1/d. It

should be noted that this result is quite general, and need
not rely on the assumption of weak coupling. Eq. (48) can
be derived in a number of ways: using a Born expansion
of the S-matrix [32, 59]; via the replica trick [60]; or using
the supersymmetry approach [61, 62].

3. Total absorption

As the unobserved and indirect cases are formally simi-
lar, we can combine both processes to recover the total
absorption process in Eq. (22). The resulting short-range
scattering matrix is given by

S̄abs = S̄unobs 〈S̄res〉 (51)

so that

S̄abs
ii =

(
1− yi
1 + yi

)(
1− xi
1 + xi

)
. (52)

The two kinds of effects can be consolidated into a unified
form

S̄abs
ii =

(
1− zi
1 + zi

)
(53)

in terms of an effective absorption coefficient

zi =
xi + yi
1 + xiyi

(54)

that combines both unobserved and indirect types of
absorption. Fig. 2 illustrates Eq. (54) and the interplay
of the different values xi and yi. Notice that if either yi
or xi should be zero, then zi automatically reverts to the
other one.

Once again, specializing to the case of the incident
channel i = a, The (short-range) absorption probability
in the incident channel a as defined in Eq. (5) is then
given by

p̄abs = 1−
(

1− za
1 + za

)2

=
4za

(1 + za)
2 . (55)

Therefore, even in the presence of both types of absorption,
if the only observable fact is that absorption has occurred,
then a value za (or an equivalent parametrisation) can be
extracted, as has been done in several studies [11, 15, 18,
63–66].

Finally, the coefficients z, y or x can also depend im-
plicitly on different experimental tools of control such as
an electric field E [10], a magnetic field B, or the inten-
sity of surrounding electromagnetic waves, whether it is
due to the surrounding trapping laser [13], red-detuned
photo-association [67], or blue-detuned shielding [68–70].
Therefore, the coefficients should carry such dependence
so that z = z(E , B, I), similarly for x and y. We omit
this dependence to simplify the notations in the following,
unless stated otherwise.
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FIG. 2. Interplay of the indirect and unobserved absorption
coefficients x and y on the absorption coefficient z given by
Eq. (54).

G. The complete short-range S-matrix

We now combine the short-range absorption scattering
matrix S̄abs, which gathers the unobserved direct pro-
cesses and all the indirect processes, with a short-range
direct scattering matrix S̄0 that includes all the direct pro-
cesses (elastic, inelastic, reactive) to obtain 〈S̄〉—which is
the energy average of the physical short-range S-matrix
of the system of interest S̄.

The starting point is a short-range unitary scattering
matrix S̄0 that contains all the direct processes such as
the molecular elastic, inelastic and reactive scattering in
the absence of any absorption due to unobserved channels
or complex formation. For example S̄0 could be obtained
from a scattering calculation containing only asymptoti-
cally open channels. As S̄0 contains no resonances it is
by definition energy insensitive and there is no need to
take its energy average. S̄0 is defined at r0 by a wave
function of the form

f̂−j −
∑

i

S̄0
ij f̂

+
i (56)

restricting, as usual, the indices i, j to the observed chan-
nels i, j = a, b, c, . . . , k, l, m, . . . Starting with this
foundation, we transform S̄0 to include the effect of the
absorption processes contained in S̄abs.

Generically, a short-range process, 1, makes itself ap-
parent through the linear combination of outgoing waves
that accompany a certain flux of incoming waves, thus
process 1 defines the long-range wave function at r > r0,

Ψ1 = N
[
f− − S1f

+
]
, (57)

where f− and f+ are diagonal matrices consisting of in-
coming and outgoing channel wave functions, respectively,

and N is a overall normalization matrix that is not rele-
vant to our purposes here. We are interested in how the
linear combination of f− and f+ would change if a second
short-range process, for example absorption, would be
introduced.

To this end, we first diagonalize S1 so as to write it in
terms of its eigenphases δα,

(S1)ij =
∑

α

〈i|α〉 exp(2iδα) 〈α|j〉 . (58)

It is then possible to define the square root of this matrix,

(S
1/2
1 )ij =

∑

α

〈i|α〉 exp(iδα) 〈α|j〉 . (59)

The wave function in the presence of process 1 can then
be written

Ψ1 = NS
1/2
1

[
S
−1/2
1 f− − S1/2

1 f+
]
, (60)

thus effectively defining a new set of incoming and out-

going reference functions S
−1/2
1 f− and S

1/2
1 f+. We now

introduce a second short-range scattering process, which
changes the boundary condition of the wave function at
the asymptotic matching radius r0. This new scattering
wave function, due to both processes, can be written as
a linear combination of the new incoming and outgoing
waves, defining a second scattering matrix S2 by

Ψ1,2 =
[
(S
−1/2
1 f−)− S2(S

1/2
1 f+)

]
, (61)

where we have left off another arbitrary normalization.

Finally, factoring out S
−1/2
1 gives

Ψ1,2 = S
−1/2
1

[
f− − S1/2

1 S2S
1/2
1 f+

]
. (62)

This identifies the joint scattering matrix for both pro-
cesses together as

S1,2 = S
1/2
1 S2S

1/2
1 . (63)

Notice that when we shut off process 1 by setting S1 = I
we get S1,2 = S2, the scattering matrix in the absence
of process 1. Consider for example a single-channel, with
S1 = exp(2iδ1), S2 = exp(2iδ2) then Eqn. (63) simply as-
serts that the phase shifts add. This approach to combine
S-matrices can be applied recursively to include other
processes as desired.

Using Eq. (63) can combine S̄0 and S̄abs

〈S̄〉 =
(
S̄0
)1/2

S̄abs
(
S̄0
)1/2

. (64)

Eq. (64) is the main result of the paper and is quite
general. Of course from Eq. (51), S̄abs in Eq. (64) can
reduce to either S̄unobs or 〈S̄res〉 if only unobserved or
indirect absorption is present. Therefore, the size of
the matrix considered in Eq. (64) can be as high as the
number of elastic, inelastic and reactive channels that are
observed in an experiment being modeled.
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FIG. 3. The two-channel case. The two channels, labelled
a and b, are coupled by w. At short-range, absorption from
direct and/or indirect processes is described by an effective,
absorption coefficient za, zb in each channel.

III. THE TWO-CHANNEL CASE

Rather than study any particular system, in order to
gain insight we consider the case with just two open
channels, consisting of an incident channel a, and one
additional observed channel b, with channel a higher in
energy, as illustrated in Fig. 3. We emphasize that while
we label the second channel with a b, which identifies
the channel with an inelastic scattering process, it could
equally well be labelled k, and be identified with a reactive
scattering process. Whatever the nature of the scattering
to channel b is, we contemplate the scattering process
a → b and the influence that absorption has on this
process.

Upon reaching short range r = r0, each channel expe-
riences some kind of absorption with coefficient za, zb,
whose exact origin we do not worry about here. It could
consist of direct scattering to unobserved channels, or
to complex formation, or some combination of both, as
described above. In the absence of these processes, the
two channels would be somehow coupled and scattering
from one to the other could occur when they are both
open. Using the convention in [15, 47], we select reference

functions f̂ and ĝ in each channel so that the diagonal
matrix elements of the short-range matrix Y vanish [71],
as such the scattering length in each channel may ap-
pear in the MQDT parameters C and tanλ introduced in
Sec. II E. The short-range matrix Y 0 is therefore defined
by a single, real-valued, off-diagonal coefficient w, via

Y 0 =

(
0
√
w√

w 0

)
. (65)

This notation uses the letter w to designate the coupling
between the observed channels, since y was already used
above to denote the unobserved absorption coefficient.

This matrix Y 0 gives the form of the unitary short-range
matrix S̄0 that characterises the direct inelastic/reactive
scattering as

S̄0 =
1 + iY 0

1− iY 0
=

1

1 + w

(
1− w 2i

√
w

2i
√
w 1− w

)
(66)

as also given in Ref. [47]. Written in this way, we could
of course regard scattering from a to b as yet another
absorption process, writing S̄0

aa = (1 − w)/(1 + w) and
identifying an inelastic/reactive absorption coefficient w.
However here we are interested in the prospect of observ-
ing the molecular product directly, and so to treat the
scattering matrix element S̄0

ab explicitly. From Eq. (53),
we have

S̄abs =

( 1−za
1+za

0

0 1−zb
1+zb

)
. (67)

To construct the complete short-range matrix 〈S̄〉 using
Eq. (64), we require the square root of S̄0, which is given
by

(
S̄0
)1/2

=
1√

1 + w

(
1 i

√
w

i
√
w 1

)
, (68)

from which we obtain

〈S̄〉 =
(
S̄0
)1/2

S̄abs
(
S̄0
)1/2

(69)

=
1

1 + w

(
ra − w rb i

√
w(ra + rb)

i
√
w(ra + rb) rb − w ra

)
,

using the shorthand notation ri = (1−zi)/(1+zi), i = a,b.
The expression in Eq. (69) is quite general. It is however
instructive to make the assumption that za = zb = z,
that is, the two channels experience the same absorption,
to simplify results and gain intuition. In this case the
short-range matrix 〈S̄〉 simplifies to

〈S̄〉 =
1

(1 + w)(1 + z)

(
(1− w)(1− z) 2i

√
w(1− z)

2i
√
w(1− z) (1− w)(1− z)

)
.

(70)
Notice that, in a case where channel b were not observed,
this model would return to the single matrix element
〈S̄〉aa = (1− q)/(1 + q), written in terms of an effective
absorption coefficient

q =
w + z

1 + wz
(71)

that describes composite absorption from the combina-
tion of inelastic/reactive scattering to unobserved channel
with absorption due to complex formation. This nicely
illustrates the flexibility of the model to treat channels as
either observed or unobserved, as required.

To see the basic interplay between direct scattering and
absorption, it is worthwhile to consider the probabilities
for various outcomes, shorn of the additional complica-
tions of threshold effects. Eq. (70) encodes three types of
probability:
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• the elastic scattering probability for the incident
channel a,

p̄el = |〈S̄aa〉|2 =
(1− w)

2
(1− z)2

(1 + w)
2
(1 + z)

2 . (72)

• the probability to enter in channel a and emerge in
channel b due to a direct process,

p̄in = |〈S̄ba〉|2 =
4w

(1 + w)
2

(1− z)2

(1 + z)
2 . (73)

• the absorption probability due to unobserved chan-
nels and/or complex formation

p̄abs = 1− |〈S̄aa〉|2 − |〈S̄ba〉|2

=
4z

(1 + z)
2 , (74)

where we recover Eq. (55).

These various probabilities are shown in Fig. 4 as a func-
tion of the interchannel coupling w and the absorption
coefficient z. As seen in the top figure, the elastic proba-
bility is quite low, unless both w or z have a low value.
In the other panels the influence of each process on the
other can be appreciated. The middle panel shows that
direct scattering only happens with appreciable proba-
bility when the absorption coefficient z is small, below
around 0.2. On the other hand, the absorption probabil-
ity is indifferent to coupling strength w as can be seen
on the bottom panel and implied by Eq. (74) which is
independent of w. This kind of absorption is a one-way
journey: incident flux that gets to short range is lost and
will not emerge from channel b. Note that the coefficients
w and z are not interchangeable and do not play equiva-
lent roles in the theory. One observable actually pertains
to seeing the scattering end in a particular observable
channel, whereas the other is simply absorption.

So far, we have just dealt with the short-range scatter-
ing matrix 〈S̄〉. In order to get the asymptotic S-matrix,
〈S〉, we need to include threshold effects using MQDT.
The QDT parameters Ca and tanλa in Eq. (31) are known
analytically for s-wave threshold collisions for a 1/r6 long-
range potential [15, 48]

C−2
a ≈ kā(1 + (sa − 1)

2
),

tanλa ≈ 1− sa, (75)

where sa = a/ā, a being the scattering length in channel a,
ā = 2πR6/Γ(1/4) is the Gribakin-Flambaum length [47,

72], R6 = (2µC6/~2)
1/4

is the van der Waals length. We
further assume that channel b is far from threshold, as
such Cb = 1, tanλb = 0. Following the approach outlined
in Section II E, 〈S〉 and the corresponding cross sections
and rate coefficients, can be obtained from 〈S̄〉 and the
QDT parameters in each channel.

p̄el = |〈S̄aa〉|2

p̄in = |〈S̄ba〉|2

p̄abs = 1− |〈S̄aa〉|2 − |〈S̄ba〉|2
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FIG. 4. Top to bottom: short-range probabilities for elastic
scattering, inelastic scattering, and absorption, versus the
interchannel coupling strength w and absorption coefficient z.

We first consider the case, where no exit channel is
explicitly observed. In this case the quenching coefficient
q in (71) plays the role of an absorption coefficient. Then
q can directly replace y in the quenching formulas of
Ref. [47]. For example, the physical quenching probability
is

pqu ' p̄qu ×
C−2(1 + q)2

(1 + q C−2)2 + q2 tan2 λ
. (76)



12

Here the factor p̄qu = 4q/(1 + q)2 is the probability for
quenching given that the molecules get close together,
while the final factor modifies this probability due to
the quantum reflection effects that modify the molecules
chances of getting close together. This effect has been
discussed at length elsewhere [47] and we do not repeat
the discussion here.

In terms of the elastic and quenching rate coefficient,
we have from Eq. (26) and Eq. (28) of Ref. [47]

β̃el = g
4π~
µ
kā2

s2
a +

(
w+z
1+wz

)2

(2− sa)
2

1 +
(
w+z
1+wz

)2

(sa − 1)
2

β̃qu = g
4π~
µ

ā

(
w + z

1 + wz

)
1 + (sa − 1)2

1 +
(
w+z
1+wz

)2

(sa − 1)2

. (77)

Of course when z = 0, two channels with inelastic colli-
sions but no absorption, β̃qu identifies with

β̃in = g
4π~
µ

āw
1 + (sa − 1)

2

1 + w2(sa − 1)
2 (78)

or when w = 0, one channel with absorption but no
coupling to inelastic channels, β̃qu identifies with

β̃abs = g
4π~
µ

ā z
1 + (sa − 1)2

1 + z2 (sa − 1)2
(79)

which are the equations found previously in Ref. [47].
As a simple illustration of the relation between direct

scattering and absorption, Fig 5 shows several representa-
tive cross sections for the two-channel case. For concrete-
ness, we show cross sections for molecules with the mass
and C6 coefficient of NaRb. In this case, there are several
undetermined coefficients, za, zb, sa, sb, and w, likely too
many to make a meaningful fit to the NaRb data. For this
illustration we have somewhat arbitrarily set zb = 0.5, set
the incident channel scattering length to sa = 1.0, and
set the interchannel coupling to w = 1.0, which would
give the maximum inelastic scattering in the absence of
absorption. Note that the phase parameter sb in the final
channel is irrelevant, as this channel is assumed far from
threshold.

The left and right panels in the figure give results for
absorption coefficients in the incident channel of za = 0.2
and za = 0.8, respectively. In each panel, results from an
explicitly two-channel model are shown in color. Specif-
ically, the blue and red curves describe the quenching
and inelastic cross sections, respectively. Unsurprisingly,
the total quench cross section is greater than the cross
section for inelastic scattering alone. As a comparison,
the black line shows the cross section that results if we
use a one-channel scattering model with the same absorp-
tion coefficient z = za and phase parameter s = sa in
that channel. It is seen that the inelastic process alters
the quenching cross section significantly. The right panel
repeats this calculation, for a larger incident channel ab-
sorption coefficient za = 0.8. This larger value of za both

FIG. 5. Schematic cross sections for NaRb molecules colliding
in an excited state for two different values of za = 0.2 (left
panel) and 0.8 (right panel). Shown for the two-channel
case are the quenching (blue) and inelastic cross sections
as computed from Eqs. (72),(73), and (70), fixing za = 0.5,
sa = 1.0, and w = 1.0. For comparison, the black curve shows
the cross section for the single-channel case (w = 0) with an
absorption coefficient za and phase factor sa.

raises the total quenching cross section, and reduces the
relative cross section for inelastic scattering.

In practice, if both the quenching and inelastic cross
sections were measured, their energy-dependent cross sec-
tions (or temperature-dependent rate coefficients) could
be simultaneously fit by formulas such as these, yielding
consistent values of the absorption coefficients w, za, and
zb, and the incident phase parameter sa.

IV. APPLICATION TO VARIOUS
EXPERIMENTAL SITUATIONS

Cast in terms of the present theory, it is interesting to
draw some tentative conclusions about the experiments
that have been performed so far. Quantitative descrip-
tion will likely require further information, yet the basic
formulas Eq. (55) and Eq. (54) may guide our thinking.
Note that in this section we remove the subscript a of the
absorption coefficients, for clarity.

A. Collisions of endothermic processes

The most basic collision of ultracold molecules is one in
which both molecules are in their absolute ground state
and are not chemically reactive and the temperature is
low enough such that all other channels are asymptot-
ically closed. This was achieved in collisions of NaRb
molecules [9] and RbCs molecules [11]. In this case the
presumed losses are due to complex formation, as such z
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reduces to x. Light is present in these experiments and
may strongly affect the molecular losses [12], therefore
x should in general depend on I, the intensity of the
trapping laser.

Knowing the energy dependence of the loss cross sec-
tion enables one to extract the absorption coefficients
from experimental data. Thus for NaRb collisions, the
fitted parameter gave x(I) = 0.5 [18] while for RbCs
collisions it gave x(I) = 0.26(3) [11], at the specific laser
light intensities of these experiments. While the inten-
sity dependence of x remains unknown, we can make
the following assumption. If the light absorption is sat-
urated with intensity, we assume that any complex that
is formed decays immediately. In this case the value of
x is a measure of the formation of the complex, and rep-
resents a direct measure of the ratio between the mean
bound state-scattering channel coupling and the mean
level spacing of resonances in the complex at the specific
laser light intensities. Interpreting the mean coupling as
a mean width, via ν2 = γ/2π, Eq. (48), would give the
ratio of mean resonance width γ to mean level spacing d,
γ/d = 2x/π. The ratio would be γ/d = 0.32 for NaRb
and γ/d = 0.17 for RbCs. Thus the theory produces
from the data a concrete prediction that can be used to
test a microscopic theory of molecular collisions. This
interpretation relies on the assumption that the measured
x in the presence of the light truly represents the com-
plex formation. This assumption would of course not be
necessary if the measurement were repeated in a box trap.

Even under this assumption, the comparison between
empirical and calculated values of γ/d is complicated by
the presence of external fields in the experiment, as x can
also depend on those fields in addition to the intensity, so
that x = x(E , B, I). For a pure field-free case (no electric
field nor magnetic field), a coupled representation scheme
can be used to estimate d when the total angular momen-
tum quantum number J and its laboratory projection M
are conserved [73]. However, even though the electric field
is zero, the NaRb and RbCs measurements are performed
in a non-zero magnetic field. It seems therefore appropri-
ate to include in the microscopic estimates, collections of
states with different values of J that are mixed by the
field. It remains uncertain, however, how many values of
J are relevant to the estimate of γ/d for a given magnetic
field value. It should also be noted that the application of
an electric field appears to alter the absorption coefficient,
raising it to the universal value x(E > 0) = 1 [10], indicat-
ing that the electric field increases the strength of channel
coupling, the density of resonant states, or perhaps both.

B. Chemically Reactive Collisions

An alternative set of experiments, spanning the past
decade, has measured loss in ultracold KRb molecules,
distinguished from NaRb or RbCs in that the KRb + KRb
→ K2 + Rb2 reaction is exothermic. In the pioneering ex-
periments [4], the products were not observed, therefore

reactive scattering contributed to the unobserved pro-
cesses described by the coefficient y in addition to the x
in the endothermic case. In general, these experiments ex-
hibit loss consistent with an absorption coefficient z(I) = 1
from Eq. (54), corresponding to loss of all molecules that
get close enough to react or form a collision complex [17].
However, Eq. (54) does not lead to the identification of
the separate mechanism for unobserved (chemical reaction
in that case) and indirect (complex formation) processes.
Nevertheless, the existence of both processes has been
verified experimentally, by the identification in REMPI
spectroscopy of both the products K2 and Rb2, and the
intermediaries K2Rb+

2 [6]. From Eq. (54), we note that in
this parametrization z(I) = 1 can occur only if x(I) = 1
or y(I) = 1. It seems likely that indirect loss from com-
plex formation does not occur with unit probability, that
is, x(I) is likely less than unity, since this is certainly
the case for the non-reactive species NaRb and RbCs
(see above). The difference in energies that renders the
KRb reaction exothermic, a mere 10 cm−1, is decided
at long range as the products recede from one another,
and likely has little bearing on the complex itself and the
couplings that determine the value of x(I). We therefore
provisionally conclude that the loss of KRb molecules
with unit probability is mainly due to the unobserved loss
(chemical reactions) compared to indirect loss and that
y(I) ' z(I) ' 1.

An additional possibility occurs for vibrationally ex-
cited states of NaRb [9]. These molecules experience loss
due to complex formation when in their ground state, but
in their first vibrationally excited state they also have
sufficient energy to inelastically de-excite or to chemically
react. In this experiment, neither the inelastic nor the
reactive products are observed. Therefore, inelastic and
reactive processes should be regarded as unobserved ab-
sorption processes. The total loss is therefore described
by the absorption coefficient z(I) of Eq. (54). Here x(I)
would characterize the loss due to complex formation,
which, in the simplest interpretation, can be taken as
the same as for the non-reactive ground state scattering,
x(I) = 0.5. While y(I) characterizes the losses due to
the inelastic and reactive processes. From the data of the
NaRb experiment in v = 1, the total absorption coeffi-
cient z(I) = 0.93 has been extracted [18]. From Eq. (54),
we infer that the unobserved absorption coefficient is
y(I) = 0.8. This value, lying close to unity, emphasizes
that the unobserved absorption coefficient, responsible for
losses due to inelastic collisions and chemical reactions,
takes a high value close to unity, just as in the KRb case.

V. CONCLUSION

As the poet decreed, “Those whom the gods would
destroy, they first make mad”, and so it is for ultracold
molecules. When ultracold molecules collide, a likely out-
come is a transformation that releases energy and sends
the molecules fleeing from the trap, effectively destroying
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the gas. But for ultracold alkali dimers, this destruction
need not be immediate, if the molecules first, madden-
ingly, form a collision complex. Various fates await the
molecules upon collisions: elastic scattering, inelastic scat-
tering, reactive scattering, or resonant complex formation.
In the work we have detailed a simple quantum-defect
model capable of treating all these myriad processes on
an equal footing.

In the absence of full scattering matrices, the model
captures the essence of these various processes, provid-
ing parameterizations of the various cross sections. The
model is flexible enough to account explicitly for those
processes that are ultimately observed, and to account
implicitly for those that are not. The result is a frame-
work capable of being adapted to fit the available data for
a given experiment, relating the observables to a small
set of parameters. These parameters, in turn, represent
a tangible goal for microscopic theories of the four-body
dynamics.

The theory as presented treats only the first step of the
scattering process, molecules colliding and heading off on

one of the paths, elastic, inelastic, reactive, or complex
formation. In particular, the theory does not treat the
possible decay of the complex, to do so will require a
more detailed treatment of the decay rate and product
distribution of the complex, work that is currently in
progress.
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