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Loss of molecules in magneto-electrostatic traps due to nonadiabatic transitions
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We analyze the dynamics of a paramagnetic, dipolar molecule in a generic “magneto-electrostatic” trap
where both magnetic and electric fields may be present. The potential energy that governs the dynamics of the
molecules is found using a reduced molecular model that incorporates the main features of the system. We
discuss the shape of the trapping potentials for different field geometries, as well as the possibility of nona-
diabatic transitions to untrapped states, i.e., the analog of Majorana transitions in a quadrupole magnetic atomic
trap. Maximizing the lifetime of molecules in a trap is of great concern in current experiments, and we assess
the effect of nonadiabatic transitions on obtainable trap lifetimes.
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I. INTRODUCTION

A primary tool for the study of ultracold matter is the
magnetic trap, which can confine paramagnetic atoms on
time scales of minutes. Using the techniques of laser cooling,
atoms can be loaded into magnetic traps—such as the quad-
rupole trap created with anti-Helmholtz coils—at cold
enough temperatures so that only modest magnetic field gra-
dients are required to confine the atoms. Once loaded, the
lifetime in a quadrupole trap is typically limited by colli-
sions, thermal background radiation, or Majorana transitions
[1], wherein atomic spins passing near the zero in the field
are not able to adiabatically follow the field direction. To
such an atom, the quantization axis is lost and it may emerge
from the trap zero “spin-flipped” to an untrapped state [2].

The Majorana spin-flip loss mechanism can be severe
enough to quench trap lifetime before forced evaporative
cooling can bring the atomic system to quantum degeneracy.
Such cooling is thought to be a necessary requirement to
reach the strongly correlated regimes that hold much promise
for investigating ultracold collisions, chemistry, connections
to condensed matter, and quantum-information processing
with particles beyond presently studied atoms, e.g., polar
molecules [3]. In addition, various schemes have been pro-
posed to control molecular collisions and interactions using
electric [4-7] or magnetic [8—11] fields, or combinations of
both [12,13]. To this end, it would be convenient to trap a
molecule using, say, magnetic fields, to allow free control
over the electric field that is altering the scattering. The po-
tential influence of this electric field on the magnetic trap
must therefore be understood, to separate this effect from
collision effects.

To prevent such loss in atomic systems, evaporative cool-
ing is instead performed in a secondary magnetic trap of the,
e.g., loffe-Pritchard [2,14] configuration which does not pos-
sess a vanishing field magnitude near the trap minimum, and
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thereby preserves a quantization axis for all particles con-
fined in the trap. Additional techniques to minimize Majo-
rana loss include moving trap minima in time so that the
atoms experience a nonzero field on average [15], and con-
fining in storage rings wherein the centrifugal barrier shifts
the trap center away from field minima [16]. Further, mol-
ecules trapped in optical or microwave dipole traps would be
immune to Majorana losses.

Large samples of molecules in their absolute rovibronic
ground state have yet to be produced at temperatures below
10 mK [3]. Sample confinement therefore requires very large
magnetic fields, even for the case of a quadrupole trap [17].
Electrostatic [18,19] and magnetostatic [20,21] traps have
successfully been demonstrated for molecules, and inhomo-
geneous static electric and magnetic fields have been com-
bined to increase trap depth [17]. Lifetimes have so far been
limited by collisions or blackbody radiation, but once evapo-
rative or other cooling schemes [3,22] are employed, Majo-
rana transitions will be a dominant cause of loss in all the
currently employed traps for ground-state molecules. Since
the large fields necessary to create, e.g., loffe-Pritchard traps,
are generally unobtainable, we must carefully investigate the
lifetime limits imposed by Majorana transitions in the cur-
rently realizable quadrupole traps and explore possible
schemes to avoid such loss mechanisms for real molecular
systems.

For cold molecules that possess both magnetic and elec-
tric dipole moments, traps formed from both inhomogeneous
magnetic and electric fields may be utilized to confine mol-
ecules in ways that mitigate the unwanted Majorana transi-
tions. In this paper we explore the basic physics of traps for
molecules in which both magnetic and electric fields are
present, which we show can mitigate Majorana loss even for
simple field configurations consisting of superimposed quad-
rupole and homogeneous fields. Using a reduced, but analyti-
cally solvable, model of a molecule in both electric and mag-
netic fields, we explore various trap geometries that can be
generated from common coil and electrode configurations.
We identify the zone in the trapping potential where nona-
diabatic, Majorana-like transitions can occur and we intro-
duce approximate expressions to assess such loss. More
broadly, we note that these results are of interest to the de-
sign of Stark decelerators [23], where slowed molecules ex-
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perience rapidly changing field configurations. Our main fo-
cus will be on diatomic molecules governed by Hund’s
coupling case (a), since in this case the electric and magnetic
dipole moments are nontrivially related. In particular, we use
the OH molecule as a representative molecular system, but
we briefly address case (b) molecules as well.

II. MOLECULAR STRUCTURE IN THE PRESENCE OF
CROSSED FIELDS

Before discussing the Majorana spin-flip problem for rep-
resentative traps and molecules, we first examine perturba-
tions to the molecular structure in crossed electric and mag-
netic fields. We consider a diatomic, heteronuclear molecule
that has a permanent electric dipole moment u, lying along
its molecular axis. The molecule is moreover assumed to be
paramagnetic, with magnetic dipole moment u,,. In the pres-
ence of spatially varying magnetic (B8) and electric (&)
fields, the molecule is governed by the Hamiltonian

H=Hy-p, - B(r) - p, - E(r), (1)

where H( describes the internal workings of the molecule,
including lambda doubling, fine structure, and hyperfine
structure, if applicable. The eigenenergies of H will vary in
space according to the spatial variation of the fields, and
these varying energies define the trap potentials.

Eigenvalues of H can be constructed to any desired de-
gree of accuracy, generating realistic trap potentials for any
desired molecule. Such potentials were generated for OH in
Ref. [17] according to this procedure. Presently, however, we
are interested in the general features of the traps, and so will
opt for a simplified molecular structure, albeit one which
encapsulates all the relevant physics. We will explicitly con-
sider Hund’s case (a) molecules with II electronic symme-
try (as in OH) as well as Hund’s case (b) molecules with 23
symmetry. These electronic structures are the most com-
monly encountered examples of open-shell diatomics, and
throughout we will neglect hyperfine structure.

A. Hund’s case (a) 21T molecule

Case (a) molecules are characterized by a strong spin-
orbit interaction that couples the electronic spin to the elec-
tronic orbital angular momentum, and thus also to the mo-
lecular axis. The relevant quantum numbers for a case (a)
molecule are |(AX)JM), where A and 3, are the projections
of the orbital and spin angular momenta of the electrons on
the molecular axis, respectively; J is the total angular mo-
mentum of the molecule, resulting from the addition of the
orbital and spin angular momentum of the electrons, and the
rotation of the nuclei; M is the projection of J on the labo-
ratory axis; and () its projection on the molecular axis. We
will suppress A and ¥ quantum numbers which take as-
sumed values hereafter.

In the absence of an external electric field, the molecule is
also an eigenstate of parity, characterized by another quan-
tum number, €= * 1, which is conventionally denoted by e
and f, respectively,
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(e/H)IMO) = (1\2)(|IMQ) + IM - Q).

where Q=|Q)| is defined to be positive and the parity of the
state is given by e(—1)"=5. The energy gap between these two
states due to A-doubling [24] is denoted by A (which equals
27X 1.7 GHz for OH). OH molecules in their ground state
are easily polarizable due to their relatively small
A-doubling and large electric dipole moment (u,=1.67 D).
In an electric field, the superposition of opposite parity states
gives rise to an effective polarization.

For simplicity, we will assume that J=1/2 and thus Q
=1/2 (we will suppress them also in the notation), and will
consider only the four states |f,M=+1/2), |f,M=-1/2),
e,M=+1/2), and |e, M=-1/2). We will further assert that
the fields applied are small enough that J remains approxi-
mately conserved. Unfortunately, there exists an almost com-
plete cancellation of orbital and spin magnetic dipole mo-
ment for a “IT,,, molecule, leading to a nearly vanishing
Zeeman interaction. This deficiency in our model could be
easily eliminated by considering a “Il,, state, but at the ex-
pense of introducing additional M levels. To maintain ana-
lytical simplicity, we will formally use a 2H1 ,» molecule, but
ascribe to it a molecular g factor of 4/5 which is the value
corresponding to OH’s ground state. This ad hoc parameter
adjustment will not change the qualitative conclusions of the
model, as we have checked by comparison with the results
for a more complicated 21_[3,2 model.

Using this molecular basis and without losing generality,
we begin by assuming there is a magnetic field along the Z
axis at all points in space and an electric field in the XZ plane
which makes an angle « with respect to the magnetic field.
The matrix elements of H are easily calculated (see Appen-
dix A),

-A2+U, 0 -U,cosa —U,sina
" 0 -A2-U, -U,sina U,cosa
| -U,cosa -U,sina A2+U, 0 ’
-U,sina U,cos « 0 AR-U,
)
where
U€=g8/'L€|S 2
UngmluB|B > (3)

are characteristic electric and magnetic energies and up is
the Bohr magneton. Geometric factors and any dependence
on the particular quantum numbers of the state have been
gathered into a global g factor which can be interpreted as
the effective coupling with the field. Explicit expressions are
given in Appendix A. This matrix can be diagonalized ana-
lytically at every point in space, yielding the following en-
ergy eigenvalues:
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FIG. 1. Stark (top panel) and Zeeman (bottom panel) energies as
a function of the respective field magnitude for the four-state model
defined in the text, with parameters corresponding to a 2l'[1 ,» OH
molecule (except for a ~1uz magnetic moment). The states’ ener-
gies are =A/2 in the absence of fields. In the case of Stark effect,
both the weak- and strong-field-seeking energies are doubly degen-
erate. The Zeeman effect breaks the degeneracy except when U,
=A/2. The matrix in Eq. (2) is diagonal and each line in the figure
corresponds to one |(e/f),M= = 1/2) basis vector.

Uinsa
= = (A2)*+ U2 + U2, + 2U,[(A/2)? + (U, cos a)*]"2,
(4)

where we have assumed the existence of four different non-
degenerate eigenvalues, and labeled them in increasing order
of energy (i.e., “U,” labels the lowest energy eigenvalue).
The associated eigenvectors will be denoted as |1), |2), |3),
and |4). In the limit where one field vanishes, this expression
reduces to the familiar Stark and Zeeman effects (see Fig. 1).

If the electric and magnetic fields are everywhere parallel,
then the total energy is simply the sum of the independent
Stark and Zeeman energies. In general, however, we must
account for the angle a between these fields. The eigenener-
gies are plotted versus « in Fig. 2 for the four states. We

E (mK
200 ) 4)
100 [3)
2 @
-100 |2)
—200 1)

FIG. 2. (Color online) Dependence of the eigenenergies of the
four-state model on the angle a between the electric and magnetic
field directions for fixed values of their magnitudes (see right-hand
drawing).
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assume U, and U,, values that correspond to our model OH
molecule in fields of [€|=5X10* V/cm and |B|=5X%10° G.
This figure illustrates that the states experience avoided
crossings in the presence of nonzero A-doubling for «
=m/2. As we will see in further examples, such competition
between electric and magnetic effects enrich the trap poten-
tials. A semiclassical treatment of this situation is given in
Appendix B.

As an aside, we note interesting features of the energies in
crossed fields which may be useful in contexts beyond trap-
ping. Applying a constant magnetic field of magnitude such
that U,,=A/2 (see Fig. 1) causes two opposite parity states to
be degenerate [25], as can be seen by taking the zero-
electric-field limit U,— 0 in Eq. (4). Because of this degen-
eracy, the Stark effect is immediately linear in a nonzero
electric field, regardless of the angle between fields. The
slope of this linear dependence, however, may depend on «.
This may be useful for increasing the efficiency of Stark
decelerators [26].

Conversely, a Zeeman effect that is quadratic in |B| can
be obtained by applying a constant perpendicular electric
field which induces an avoided crossing between two states.
Rearranging terms in Eq. (4) and substituting a=/2 into
the eigenvalues, one can obtain Us,=* \U.+(U,, ¥ A/2)
The constant electric field has induced a quadratic Zeeman
effect in the vicinity of U,=A/2. This effect could be used
to guide molecules moving in two dimensions: In a region
where a linearly varying magnetic field exists, a constant
perpendicular electric field, for instance, induces minima at
points where the magnetic field has the value |B]
=A/2upg,, (~1.5 kG for our model OH).

B. Hund’s case (b) molecules

Molecules like CaH, the first molecular system trapped by
the buffer gas cooling method [20], or YbF, whose trapping
could be useful to measure the electric dipole moment of the
electron [27], belong to the category of molecules known as
Hund’s case (b) [24]. We consider here a pure case (b) mol-
ecule of symmetry 23, in which case the electronic spin,
hence the magnetic dipole moment, is completely decoupled
from the molecular axis. Thus, the electric and magnetic di-
poles can independently follow the external electric and
magnetic fields and the net energy is the sum of the two
energies. The behavior of such a molecule in a magneto-
electrostatic trap does not require special attention and will
not exhibit the richness of behavior enjoyed by case (a) mol-
ecules.

For real molecules, the dipoles are only approximately
independent. The spin and rotational degrees of freedom are
coupled by a Hamiltonian of the form yN-S, where the elec-
tronic orbital angular momentum and the rotational angular
momentum of the nuclei couple to form N, with projection A
on the internuclear axis (0 in this case). N couples to the
electronic spin S to give total angular momentum J. In order
to estimate its effect we can introduce the spin-rotation in-
teraction as a perturbation. We have again built a simple
analytical model including only two rotational states N
=0,1. In this case, the electric field is the one which lies
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along the Z axis, and we can restrict ourselves to the My
=0 subset. We assume that y, U,, and U,, are all much
smaller than the rotational spacing B. With this perturbation,
the energy of the ground weak-field-seeking state varies as
* yUU,, sin’(@)/ B* with the angle a.

III. CONDITIONS FOR NONADIABATIC TRANSITIONS
TO UNTRAPPED STATES

We turn now to the nonadiabatic changes of internal state
that lead to trap loss as a molecule moves through a trap
minimum. Assuming an adiabatic separation in the spirit of
the Born-Oppenheimer approximation, we can distinguish
the “slow” center-of-mass coordinates of the molecule, r,
from the “fast” internal coordinates (denoted collectively as
q). The center-of-mass coordinates can be treated classically,
since typical translational energies are much larger than the
trap energy level spacing. Thus, the molecules are described
by position and momentum coordinates [r(¢),p(z)]. Adiabatic
energy states are then defined parametrically at each r,

H(r)|dy(q:r)) = Ei(r)| di(q:r),

where E;=E,(r) are the local energies and |¢(g))
=|¢(q:r)) are the corresponding eigenstates.

More generally, the internal state of the molecule is a
superposition of these adiabatic states,

[W(q,0)) = > ap()e V| g (q:r(1))),
k

with w(t)=[dt'E,(t')/h. By substituting the expansion of
|W(q,1)) into the time-dependent Schrodinger equation and
solving for the coefficients, we find a system of coupled
differential equations for the coefficients a,

da; d =il w(H)-w;
Elz‘za"<¢f E‘¢k>e ool (5)

k

From normalization constraints, the diagonal matrix element
(¢ 5l b)=0.

We are concerned with transitions from “trapped” states
|,), which possess potential minima in the center of the trap,
to “untrapped” states |¢,), with maxima that push the mol-
ecules far away from the trap center. The probability p,_,, of
undergoing a nonadiabatic transition during a process can be
found to be at most the order of [28]

d’ 2
¢z E ¢u

< : 6
e N (©
and accordingly, adiabaticity requires
d |Et - Eu|
— <—. 7
‘<¢, dt‘¢,,>‘ . @)

To avoid calculating time derivatives of the states—
usually a difficult task—we can recast the matrix elements
using the Hellmann-Feynman theorem [29,30],
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(g

(dH) s
dr )|
h(E t E u) .
Furthermore, the time derivative can be reexpressed in a
. I . . dr
more intuitive way using the velocity v="; of the molecule
and %:V,-v. The adiabaticity criterion then becomes

4a
dt

(Et - Eu)2

(8)
Evaluating VH, is relatively simple once the distribution of
fields is specified. Distinguishing between the different ra-
dial, polar, and azimuthal spherical components of the veloc-
ity will be useful, and we can use the expansion v=v,7
+v €0+v¢$, with F, 6, and q?) the unit vectors in radial, polar,
and azimuthal directions, respectively.

As initial examples, we first examine the limiting cases of
traps with either U,=0 or U,=0 to gain intuition before

analyzing traps formed from crossed electric and magnetic
fields.

A. Magnetostatic traps

In the case of the magnetic quadrupole trap, Eq. (8) re-
duces to the results well known from previous treatments [2].
We demonstrate this assuming a magnetic field distribution
B(r)=VB(x,y,-2z), where VB is the magnetic field gradient
on the XY plane. We first consider the situation in which the
particle’s trajectory is restricted to the XY plane. Nonadia-
batic transitions can connect the weak-field-seeking state
|p)=|f,M=+1/2) to the strong-field-seeking state with the
same parity |¢,)=|f,M=-1/2). (The first quantum number
is the parity, and M denotes the projection on the local field
axis throughout the remainder of this paper.) The transition

rate is given by
(of2]o)

and the energy gap is |E,—E,|=2U,,. As the magnetic field in
this plane is given by |B(r)|=VBr, Eq. (7) establishes the
adiabaticity criterion

_vs 0
5 ©)

4a
dt

Uy - 2V Bruggm,

, 10
2r h (10)

for an azimuthal velocity v, at a distance r from the center.

One can define a “zone of death” within which the mol-
ecule will be lost with high probability due to nonadiabatic
transitions. We can roughly determine its size using the ra-
dius at which Eq. (10) becomes an equality,

r¢%(hv¢/4gm,uBVB)”2. (11)

The subscript ¢ is a reminder that these transitions occur due
to the molecules’ motion in the ¢ direction, orthogonal to the
local magnetic field. Spin flips to untrapped states (Majorana
transitions) are thus expected within a zone close to the cen-
ter of the quadrupole distribution defined by r=<r,. In this
zone, the change in the orientation of the field (and thus in
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the adiabatic basis) is rapid when the molecule is on a tra-
jectory close to the field zero, and the energy gap between
trapped and untrapped states becomes small. Both circum-
stances being essential in Eq. (7), a quick change in the in-
ternal state may happen. Motion in the radial direction does
not cause any transitions because the orientation of the field
does not change along this direction [39]. Thus, the size of
the zone depends on the azimuthal component of the veloc-
ity. The estimate given by Eq. (11) can also be obtained
intuitively, by requiring the Larmor precession frequency
(proportional to the energy gap) be more than the angular
velocity (proportional to the rate of change of field orienta-
tion), which ensures that the dipole is able to adapt to the
local field [15,31].

For molecules moving in the XZ or YZ planes, the radius
of the nonadiabatic zone shows the anisotropy induced by
the different gradient along the Z axis. In general, the depen-
dence on the polar position is given by

fv, 12
rod6) = (ng,uB V B(1 + 3 cos? 0)3/2) (12
Moving across the X and Z axes, this reduces to
ry =~ (fivy28,5 V B)"? (13)
and
rgz(hvg/mgm,uBVB)l/z. (14)

The former differs from Eq. (11) due to the component of the
velocity v, considered. The rate of change of the orientation
of the field that the molecule experiences naturally depends
on the direction of movement: The change is slower when
moving in the azimuthal direction [on the XY plane, Eq. (11)]
than in the polar direction [on the XZ plane, Eq. (14)]. In
summary, a different radius for the zone of death can be
assigned to every direction, to every nonadiabatic transition
from trapped to nontrapped state, and to every component of
the velocity. For the sake of making order-of-magnitude es-
timates of trap loss, however, one may simply use Eq. (11)
for every position and direction [15]. Finally, it is worth not-
ing that Brink ef al. [32] have recently calculated loss rates
for atoms with hyperfine structure trapped in typical mag-
netic configurations.

B. Electrostatic traps

For a quadrupole electric field distribution, &(r)
=VE&(x,y,—-2z), with V& the field gradient on the XY plane,
nonadiabatic transitions require more elaboration. There ex-
ist only two different eigenvalues and given the degeneracy
we must define a particular adiabatic basis. We will use the
M projection on the local field to label the vectors within
each doubly degenerate subspace, adding a subindex 1 or 2
to distinguish M=+1/2 from M=-1/2, respectively. Spe-
cifically, the molecules are trapped in the electric weak-field-
seeking states |¢,;) and |¢,,) which can make nonadiabatic
transitions to the untrapped states |¢,;) and |¢,,), which are
also degenerate. The latter are lower in energy by A from the
trapped states at zero field (see Fig. 1).
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Using the formalism presented above, we identify two
types of transitions, spin conserving and spin changing,
which turn out to depend on different components of veloc-

ity,
d d (A2)g, 0,V E
‘<¢tl dt‘¢ul> _‘<¢12 dt ¢u2>‘ - 2[(A/2)2+U§]
A2 12
2V(A2 U
< %’ (15)

‘ < ¢tl ¢u2>

Note that they coincide when evaluated at the center of the
trap, where the symmetry blurs the difference between radial
and azimuthal velocities. Solving for the radius of the zone
of nonadiabatic transitions yields for the M-changing transi-
tions,

= ‘<¢’12

2\(A2)% + U?
< T

ety V E
¢ul> ‘ = 2
2

4 4
dt dt (A2)?+ U2

(16)

_ [fgomov 4 V E14 - (A/2)*]2

G VE (17)

Ty

This process is completely analogous to the change of M in
the magnetic field case, modified to accommodate the
A-doubling. Indeed, if A=0, then Eq. (17) is identical to that
for the magnetic case, with magnetic quantities replaced by
electric ones. Motion in the azimuthal direction must be slow
enough for the molecule to be able to change its dipole ori-
entation with the local electric field. Otherwise, it will un-
dergo a nonadiabatic transition.

Transitions which change only the parity composition but
preserve M depend on the radial velocity v,. This criterion
leads to a slightly different radius for nonadiabatic transitions
than that for the M-changing transitions,

 [(figepev, V EAIB)P” — (A/2)]'2

G VE (18)

r

This represents a new kind of transition, foreign to the usual
Majorana loss mechanism involving spins in a magnetic
field. For motion in the radial direction, v, must be slow
enough for the molecule to change its polarization adiabati-
cally with the local electric field. In other words, the mixing
of parity states f and e that compose the energy eigenstate
must evolve because a molecule undergoing radial motion
experiences a change in the magnitude of the electric field
generating the quadrupole trap.

Notice that the A-doubling plays a vital role in the ability
of the molecule to undergo a nonadiabatic transition. Without
A doubling, the eigenstates would be states of good () for all
field strengths, ensuring the preservation of these states as
the molecule moves radially. Moreover, nonzero A-doubling
smoothes the potentials near the avoided crossing, making
nonadiabatic transitions less likely. Indeed, for Vg
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<A?’/# V& or, equivalently, a value of A larger than
VU 4higemt, V E, nonadiabatic transitions become very unlikely.
A similar expression holds for v,.

To highlight the difference between nonadiabatic transi-
tions in magnetic versus electric quadrupole fields, we con-
sider the OH radical as discussed in Ref. [17]. Using typical
field strengths and molecular velocities of 10 m/s, and sub-
stituting relevant OH (*I1,) energies in our J=1/2 model,
the radius of the zone of nonadiabaticity would be ~1 um
for a magnetic quadrupole trap. However, such a zone does
not exist at all for the electric quadrupole trap. Although not
necessarily the case for all molecules, zones of death for OH
in an electrostatic trap seem to be essentially negligible at the
slow velocities obtainable at the terminus of a Stark decel-
erator. The A-doubling effect thereby eliminates this loss
channel.

The same is not quite true for NH in its metastable 'A
state, in an electrostatic trap. In this case, the A-doublet is
significantly smaller than in OH, leading to a larger zone of
nonadiabatic transitions. We estimate that this zone is on the
order of 1 um in diameter for an electric field gradient of
3 X 10* V/cm?, which is typical for the types of experiments
described in Ref. [33]. To evaluate the loss rate from the trap
due to these transitions, we follow the argument in Ref. [15].
Namely, for a given temperature (hence density), we estimate
the flux of molecules through a surface whose radius is that
of the zone of death. Doing so, we find for NH that the
lifetime is ~10* s at a temperature of 100 mK. This value,
consistent with the findings of Ref. [33], is much larger than
the estimated lifetime corresponding to blackbody radiation
[34]. However, at 1 mK, where the central density is much
higher, the lifetime decreases to ~1 s. The losses due to
nonadiabatic transitions will then become comparable to
other losses upon cooling to temperatures of interest.

IV. TRAPS WITH CROSSED £ AND B FIELDS

Upon combining £ and B fields, both the physics of
nonadiabatic transitions and its interpretation become more
complicated. Because the fields are nonparallel in general,
few quantum numbers are conserved, and transitions may
occur from the upper trapped state to any of the three others
in our model. We examine two easily-realized experimental
configurations. Many more are possible, but we start here
with the simplest, nontrivial examples. Namely, we will con-
sider the influence of a uniform electric field on a magnetic
quadrupole trap as well as the influence of a uniform mag-
netic field on an electric quadrupole trap. Nonadiabatic tran-
sition rates for these situations are found in various limits
and loss rates estimated.

A. Magnetic quadrupole field plus constant electric field

We first explore the consequences of crossed fields for a
magnetic quadrupole trap with a constant electric field, as
was the situation in the recent JILA experiment described in
Ref. [17].

1. Trap potential

In the case of an azimuthally symmetric quadrupole mag-
netic trap, the field distribution near the trap’s center is given
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FIG. 3. (a) Adiabatic trap potentials for a magneto-electrostatic
trap in which a constant electric field is superimposed onto a mag-
netic quadrupole field. Slices through the center of the trap (z=0)
are shown. They correspond to the states |1), |2, |3), and |4) which
are defined in the text. These eigenenergies have been calculated
using the four-state model (see text) for a molecule with A
~80 mK, u,=1D, and u,,~ 1ug (like OH), within a field distri-
bution with parameters given by VB=10*G/cm, |Ej=1.2
X 10* V/cm. Panel (b) shows contours of the highest surface [4)
around the trap center. The arrow points parallel to the electric field.

by B(r)=VB(x,y,—2z). For a simple spin-1/2 particle (i.e.,
ignoring A-doubling), this results in two surfaces, one for
weak-field-seeking states and one for strong-field-seeking
states, which touch only in the center where |B|=0. It is
around this region that Majorana transitions are expected, as
discussed in Sec. II A. In the case of a molecule with a
A-doublet, however, there are two such sets of surfaces, off-
set by A from one another. They can be visualized by rotat-
ing the four energy curves on the lower panel of Fig. 1 about
its vertical axis. As can be also concluded from the figure,
the high-field-seeking surface of f parity and the low-field-
seeking surface of e parity become degenerate for a particu-
lar value of the magnetic field magnitude.

Introducing a constant electric field £,=(|&|,0,0) to the
trap shifts the energies away from the simple, purely magne-
tostatic picture. Figure 3(a) shows the four adiabatic surfaces
for our model OH molecule for VB=10* G/cm and |&
=1.2X 10* V/cm, with eigenenergies given by Eq. (4). They
are denoted by [1), |2), |3), and |4), using the name of the
corresponding eigenvectors. These surfaces are depicted as
slices through the center of the trap where z=0. The upper
two surfaces and the lower two remain degenerate at (x,y)
=(0,0), with energies given by the Stark eigenvalues

+Eg= +\(A2)%+ U3, (19)

where U,o=g,u.|Ey| (a subindex “0” is added to emphasize
that the electric field is constant in space). The electric field
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breaks the cylindrical symmetry of the pure magnetic quad-
rupole trap. Thus, the highest energy surface, |4), possesses
roughly elliptical contours of energy [Fig. 3(b)]. Note that
the trap is not harmonic, but linear in the center.

The second-highest energy surface, |3), which is also able
to trap molecules, has a double-well structure due to two
conical crossings with the next surface, |2), and which occur
at the coordinates x=* E¢/(g,upV B). At these particular
points, electric and magnetic fields are collinear and the sur-
faces can cross. The crossing is avoided for any other angu-
lar configuration, which leads to the conical structure. Thus,
while an interesting trap geometry may be generated, nona-
diabatic transitions may be possible at these type of points.
However, we only discuss loss in the central region of the
magnetic quadrupole trap.

2. Losses

As a result of adding the constant electric field to the
magnetic quadrupole field, nonadiabatic transitions may oc-
cur between [4) and |3) as in the purely magnetic case, but
now transitions from |4) — |2) and |4)—|1) are possible due
to the electric field.

We begin with |[4)—|1). Using E;=—E,, the condition for
adiabaticity when moving on the XY plane (with the electric
field along the X axis) is

U
gmip V BU 0| vy cos d)(l + = )
? 0[ ¢ \/(A/Z)2 + Uf,0 cos’ ¢
1%
+v,sin 4 < 4#. (20)

This criterion is always satisfied in the limit U,,— 0, which
reduces to the pure magnetic quadrupole field case where
there is no such transition. To gain insight from this expres-
sion, we can assume that the effects from the magnetic field
are small near the center of the trap (U,,~0). This results in
the simple expression

fig g V BU (v 4 cos dp+ v, sin ¢) < 4E§. (21)

The combination (v 4 cos ¢+v, sin ¢) can be easily identified
as the component (v,) of the velocity that is perpendicular to
the electric field, which is along X. Thus, Eq. (21) can be
reexpressed as

ﬁngU/B \Y BUyUeO <

—_— <], (22)
4\(AR2)? + U2,

which may be numerically evaluated in a particular trap to
check if this transition leads to losses. In fact, the maximum
of the left-hand side of the previous expression as a function
of U, is given by (fig,,upV Bv,)/(3¥?A%), which turns out
to be neglectable for realistic traps containing OH.
Analytical expressions analogous to Eq. (20) can be ob-
tained for the other two transitions, but their exact form is
complicated and we do not present them here. Instead, since
these transitions are expected to occur near the center of the
trap, we can assume that the magnetic field interaction there
is weaker than the electric field interaction. We thus consider
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the magnetic field as a perturbation. The degeneracy of the
eigenvalues makes it convenient to use Brillouin-Wigner per-
turbation theory [35,36] and a zero-order basis which diago-
nalizes the Zeeman perturbation on each parity subset sepa-
rately. For example, Eq. (21) coincides with the expression
obtained using perturbation theory when keeping only lead-
ing terms for each member of Eq. (8). For the perturbative
series to converge, the condition U,,<Eg must be fulfilled.

Using the perturbation approach to estimate the transition
rate for |4) — |2), which is azimuthal, we find it is less likely
to occur than the transitions |[4)— |1) because the transition
rate is of higher order while the energy gap remains nearly
the same. Therefore, condition (22) should set a bound on
these losses as well.

The remaining transition, |[4)— |3), is the only one pos-
sible in the absence of an electric field [see Eq. (11)]. Per-
turbation theory shows that the previously circular zone of
nonadiablatic transitions now becomes elliptical. The latter is
given in polar coordinates by

12
) . (23)

fiv 4A/2 [(A2)%+ U2]
48,,m8 V B[(A2)* + U2, cos® ]2

Note that this reduces to Eq. (11) in the absence of an electric
field. Substitution of ¢=0,7/2 in the previous expression
allows for the calculation of the semiaxes of the ellipse (i.e.,
along the X and Y axes). The circular zone of nonadiabatic
transitions shrinks along the external electric field and ex-
tends in the perpendicular direction.

Assuming that the Z axis (also being perpendicular to the
X axis) radius of death is analogous to rf; (except for a scal-
ing factor due to the doubled gradient), we can estimate the
scaling of the total losses as a function of the electric field
magnitude. From the previous expressions, we see that losses
occur within a completely asymmetric ellipsoidal zone. The
flux of molecules through this ellipsoid per time unit consti-
tutes an estimate of the loss rate. For low values of the elec-
tric field magnitude U,,<<(A/2), the eccentricity of the el-
lipse in the XY plane is given by e€=(3/2)"[U,,/(A/2)]. If
we approximate the ellipsoid and the molecular cloud with
spheres [15], then losses due to the transition |4) — |3) would
be of the same order of magnitude as in the pure magnetic
quadrupole trap, with corrections on the order of
[Uno/ (A12) .

In conclusion, for electric field magnitudes satisfying both
U,,<(A/2) and Eq. (22), the addition of a constant electric
field to the trap does not increase the rate of losses due to
nonadiabatic transitions beyond that expected from a mag-
netic quadrupole trap.

V¢(¢)=<

B. Electric quadrupole field plus constant magnetic field

The final crossed-field configuration we will examine is
that of an electric quadrupole field combined with a constant
magnetic field. We examine the losses in this situation in the
same manner described above.

1. Trap potential

We again consider an electric quadrupole field configura-
tion with field distribution E(r)=VE(x,y,—2z), where the
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FIG. 4. (a) Adiabatic trap potentials for a magneto-electrostatic
trap in which a constant magnetic field is superimposed onto an
electric quadrupole field. Slices through the center of the trap
(z=0) are shown. They correspond to the states |1), [2), |3), and |4}
which are defined in the text. These eigenenergies have been calcu-
lated using the four states model (see text) for a molecule with A
~80 mK, u,=1D, and u,,~ 1y (like OH), within a field distri-
bution with parameters given by VE=5X 10° V/cm?, |By|=10> G.
Panel (b) shows contours of the highest surface |4) around the trap
center. The arrow points parallel to the magnetic field.

gradient V& is constant. In the absence of a magnetic field,
there are only two (doubly degenerate) distinct surfaces, one
weak-field-seeking and one strong-field-seeking, and the
A-doublet prevents a connection between the surfaces in the
center of the trap. They can be visualized by rotating the two
energy curves in Fig. 1(a). The primary effect of adding a
small constant magnetic field, BO:(|BO ,0,0), is to break
the degeneracy. Higher magnetic fields can modify the con-
nections between different potential energy surfaces. For ex-
ample, tuning the magnetic field can bring regions of sur-
faces closer to degeneracy, which can induce linear Stark
dependence along the directions perpendicular to B, as dis-
cussed in Sec. II A, or induce conical intersections similar to
those in Fig. 3.

The surfaces in Fig. 4 correspond to our model OH mol-
ecule and are generated for fields of VE=5X10? V/cm?,
|By|=10° G. This magnetic field is small enough that no
crossings occur between the middle two surfaces, and the
two trapping surfaces are harmonic. The upper surface is
characterized by the following spring constants: k,
=(g.m,VE?/(A12), ky=(g.u,VE?/(A/2+U,yg), and k,
=(2g,u,VE?/(AI2+U,y), where U, 0=g,u5By| (the sub-
index “0” is added to indicate a constant magnetic field).

2. Losses

Exact expressions can be found for the probabilities of
nonadiabatic transitions out of the trapping state, |4). The
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adiabaticity criterion for transitions |[4)—|1) is

(A/2)* + U? )
\r’/(A/Z)2 + U? cos® ¢

(A/2)? )} B
\J/(A/2)2 + Ug cos’ ¢ h
(24)

geMgVElv¢ cos ¢<Um0+

+ v, sin qb( U,o+

For a general ¢, which is the angle that the electric field
makes with the constant magnetic field (assumed to lie along
the X axis), this relation converges to the analogous expres-
sions for the pure electric trap [see Egs. (15) and (16)] when
U, goes to zero (we do not present the details of the nec-
essary transformations here, complicated by a location-
dependent change of basis).

In the case of the azimuthal term in Eq. (24) being alone,
the ratio of the energy gap to the transition rate, thus the
adiabaticity, would increase at every point with the addition
of a magnetic field, but the contribution of the radial term
seems to depend on the distance. The analysis for points very
close to the center of the trap (where U,<A/2) shows that
the ratio between the left- and right-hand sides of Eq. (24)
scales as (1+2U,,y/A)~2. As a result, the nonadiabatic tran-
sition is actually hindered by increasing the magnetic field.

Expressions analogous to Eq. (24) can be obtained for the
other two transitions (|4)— |3) and |4)— |2)), but the lengthy
analysis will not be presented here. We therefore apply
Brillouin-Wigner perturbation theory again to consider the
electric quadrupole field as a perturbation to the homoge-
neous magnetic field near the trap center. This perturbation
theory shows that the transition |4) — |2) depends on both the
radial and azimuthal velocities. Close to the trap center, both
the transition rate and the gap between the potential energy
surfaces do not change noticeably due to the addition of the
constant magnetic field. Dependence with the latter appears
only in second-order terms in the perturbation, U,, far from
the center. Thus losses due to this transition are not expected
to be very different than the ones in the pure electric quad-
rupole trap. However, numerical estimates using the exact
expressions show that the presence of the magnetic field may
inhibit the corresponding spin flips.

Finally, we consider the transition [4) — |3). The magnetic
field breaks the degeneracy in the upper subspace and non-
zero transition probabilities due to both radial and azimuthal
motion connect both states. Given the confining character of
state |3) they do not lead to trap losses. Regardless, while the
transition probabilities (which connected already the degen-
erate states in the pure electric quadrupole for the analogous
choice of basis) remain essentially constant, the gap in-
creases linearly with the addition of the magnetic field. Thus,
these flips are again hindered by the presence of the addi-
tional field.

In conclusion, the addition of a constant magnetic field to
an electric quadrupole decreases trap losses beyond those
found in a pure electric quadrupole trap. In the previous
analysis we have assumed tiered surfaces like that shown in
Fig. 4, where U,,n<A/2 (magnetic field less than ~1.5 kG
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for our model OH molecule). Degeneracies and crossings
between surfaces |2) and |3) that occur at higher magnetic
fields might deserve special attention.

V. REMARKS ON STARK DECELERATION OF OH

The Stark deceleration technique, an experimental scheme
to obtain samples of cold polar molecules [23], relies also on
the absence of significant nonadiabatic transitions when
switching from one electric field stage to the next. Molecules
transferred to the wrong states would not experience the
proper transverse focusing and slowing and the molecular
packet would disintegrate. We can apply the formalism
above with only minor modifications to analyze the Stark
deceleration process, and in particular, its application to OH
in the 2I1;), state [37].

As the molecule moves along the decelerator, it experi-
ences brisk changes in the local field. As a result, the field
orientation @ and strength |£] may change, giving rise to
nonvanishing derivatives da/dt and dU,/dt. Equations (15)
and (16) can be modified to include them in our model,

4
d’zl ¢ul ¢t2 dt d’uz

_ (A2)g.u. dE|
2[(AR2)*+ UA] dt’

4a
dt

(25)

‘ d ‘ d ‘_Ld_a
d)tl dt ¢u2 - ¢12 dt ¢u1 _2\/m dl‘.

(26)

The changes in the local field are maximum when the
voltage is switched between pairs of electrodes. We estimate
these based on the Stark decelerator and electrostatic trap of
the Lewandowski group at JILA [38]. During a switching
time of ~1 us, the modulus of the local field at the midpoint
of a pair of electrodes decreases by a factor of 30 while
rotating by /2. Assuming that the molecule is essentially
motionless during this process, this yields maximum values
of da/dt=10°rad/s and d|&|/dt=10" V cm™'s7!. Intro-
ducing in Eq. (6) the derivatives given by Egs. (25) and (26),
we find nonadiabatic probabilities of the order of 1078 for
OH. For NH in the 'A metastable state, another Stark decel-
erated molecule of interest [33,38], the contribution due to
the change of modulus [calculated using Eq. (26)] is several
orders of magnitude smaller. Thus, nonadiabatic transitions
are negligible in the decelerator, a conclusion in agreement
with the findings of [33].

VI. CONCLUSIONS

The presence of both permanent magnetic and electric
dipoles in case (a) molecules opens the way to rich trap
dynamics, intrinsically different from that more commonly
found in atomic systems. The experimental exploration of
their behavior and the potential control of their dynamics,
which could be exploited through the use of arbitrary super-
positions of electric and magnetic fields, is a question of
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great importance to current experiments. In particular, we
have shown how the simultaneous presence of both fields
can lead to new spatial distributions within the trap.

The simultaneous presence of both fields can also impact
the nonadiabatic trap losses either by opening up new chan-
nels for loss, or by suppressing existing ones. In particular,
adding a bias magnetic field to an electrostatic trap can ac-
tually reduce these losses, largely by increasing the energy
gap between the trapped an untrapped states. Using this prin-
ciple, it may be expected that nonadiabatic losses may be
reduced to acceptable levels even as the gas is evaporatively
cooled to ultracold temperatures. Future work should explore
this in the context of particular experimental geometries.

The comparative analysis of nonadiabatic transitions in
pure magnetic and electric distributions has also allowed the
identification of a new type of nonadiabatic transition in
changing electric fields, foreign to the usual Majorana loss
mechanism. Namely, nonadiabatic transition occur due to the
change of magnitude of the electric field and not due to its
orientation, and this effect is intrinsically linked to the pres-
ence of the avoided crossing induced by the A-doubling.

We also remark that Hund’s case (b) molecules are unaf-
fected by the new nonadiabatic loss mechanisms that appear
in Hund’s case (a) molecules, and therefore may be more
attractive for certain applications.
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APPENDIX A: STARK AND ZEEMAN INTERACTIONS IN
CROSSED FIELDS

When external € and B fields do not form a shared quan-
tization axis, the scalar products which define Zeeman and
Stark interaction terms must be evaluated for general
E(E,.E,.E,) electric and B(B,,B,,B,) magnetic vectors. We
outline how matrix elements of the Hamiltonian in Eq. (1)
may be calculated in these cases. Both electric and magnetic
dipole moments are naturally expressed in the molecular
frame, whose Z axis coincides with the molecular axis. The
electric dipole moment lies along the molecular axis while
the magnetic one is easily calculated using electronic opera-
tors that are referenced to the molecular frame. Fields, on the
other hand, are best expressed in the laboratory frame. The
evaluation of the scalar products which define Stark and Zee-
man interaction thus requires the expression of dipoles and
fields in the same reference system, which we can choose as
the laboratory reference system. Changing the spherical
components of the dipole moments from the molecular to the
laboratory frame involves the use of Wigner matrix elements
(Mq=2kD;Z/Lk)~

Generically, therefore, if & represents either the electric
or magnetic field, and u the corresponding moment, then the
interaction terms are expressed as
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(A1)

H=-p F= E( 1)‘1(EDkuk)

As the electric dipole moment lies along the internuclear
axis, its spherical coordinates in the molecular frame take the
simple form p¢,=(0,0,u,). In Hund’s case (a), and ignoring
off-diagonal coupling to different electronic states, the mag-
netic moment also lies along the molecular axis, and takes
the form p,,~(0,0,—mp(Ly+gSy)/h). Thus, the interaction
term (A1) reduces to

Hi==2 (- D g o, (A2)
q

Matrix elements for the interaction operators can be evalu-
ated using the following expression, in the basis without par-

ity:
J 1 J’)
-M g M’

J 1 J M-

<JMQ|D;Z§|J’M’Q’> =\2J+ 1V2J' + 1(

which, after some algebra, allows one to obtain the following
elements in the parity defined basis:

1-e€ (- 1)J+J’+2§,
> V2J + 1

(IMQ€D! 0/.LE|J’M'Q'E’>= (

—f J 1 J
X\12JI+1< )

-M g M’
J 1 J
X _lM—Q
(—Q 0 Q’>( e

(Ad)

and
(UMD 5 (Lo + g.So)/hlT M Q' €)

1+ (=1 J+1'+2Q J 1 J
= ( ce (1) V2J+ 1W2J
2 -M g M’

(J 1 J
(AS5)

00 o )(— DM-2p(A + g SV,
where the relation Q=A+3 allows one to choose the correct
signs of A and 3 components in the previous expression. The
difference in the parity factor in both expressions is related to
the magnetic dipole moment not being a constant (as is u,),
but an operator. The evaluation of the latter—Lj+g,Sop—in
the parity basis extracts different signs when acting on the
different signed ) components.
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APPENDIX B: SEMICLASSICAL ANALOG FOR HUND’S
CASE (a) MOLECULES

The competition between the electric and magnetic effects
that determines the potential energy surfaces can be illus-
trated by a simple analogy that provides useful intuition. The
electric dipole moment lies parallel to the molecular axis.
For a case (a) molecule, the magnetic dipole is also con-
strained to lie along this axis, on average, due to strong spin-
orbit coupling. Each field will thus try to orient the molecule
along itself.

It is reasonable to imagine that the system will essentially
align to the stronger field. That being the case, when rotating
the smaller field by varying « and holding the magnitudes of
both fields fixed, the molecular axis will remain anchored to
the stronger field while the interaction with the smaller field
would vary as the projection of the dipole on the smaller
field, cos a. In fact, dependences of the form U,,* U, cos «
and U, * U,, cos a can be extracted from Eq. (4) in the limit
of very small A.

A semiclassical model can also be found for the case in
which both fields exert a similar force on the molecule. As
illustrated on the right-hand drawing of Fig. 2, if the molecu-
lar axis makes an angle y; with respect to £, then it makes
an angle a— 7y, with respect to BB, and the resulting energy as
a function of orientation is

Uy =U, cos(y) * U, cos(a— ). (B1)

Minimizing (maximizing) this energy with respect to y; pro-
vides the energies given in Eq. (4) in the absence of
A-doubling. The £ accounts for the relative orientation of
the electric and magnetic dipoles.

To include the effect of A-doubling, we must account for
the change in dipole moment as the field varies, thus we
introduce a second parameter 7,, whose role is to mediate
the balance of energy between the A-doublet energy, and the
field energy. To make a classical model, we pretend that the
molecular dipole moment is composed of two dipole mo-
ments that straddle the molecular axis and make an angle 7,
with respect to one another. When v,=0, the dipoles are
aligned and the molecule realizes its full dipole moment. By
contrast, when the dipoles make an angle y,=, they point
in opposite directions and the dipole moment vanishes. To
complete this picture, we complement the Hamiltonian by a
y,-dependent term that turns on when v, goes from 0O to r,
representing the relative importance of the A-doublet which
serves as a kind of nonlinear “spring” which strives to keep
the dipoles anti-aligned. The model for the energy then be-
comes

U, cos(yy/2)cos(y,) £ U, cos(a—7y;)
— A/2 sin(y,/2). (B2)

Uy, %) =

The extrema of this function over variations in y;, y,, con-
stitute a good approximation to the quantum energies, except
that they cannot reproduce the avoided crossing.
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