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TOPICAL REVIEW
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Abstract. The quantum dynamical evolution of atomic and molecular aggregates, from their
compact to their fragmented states, is parametrized by a single collective radial parameter.
Treating all the remaining particle coordinates dndimensions democratically, as a set of
angles orthogonal to this collective radius or by equivalent variables, bypasses all independent-
particle approximations. The invariance of the total kinetic energy under arhitrdipiensional
transformations which preserve the radial parameter gives rise to novel quantum numbers and
ladder operators interconnecting its eigenstates at each value of the radial parameter.

We develop the systematics and technology of this approach, introducing the relevant
mathematics tutorially, by analogy to the familiar theory of angular momentum in three dimensions.
The angular basis functions so obtained are treated in a manifestly coordinate-free manner, thus
serving as a flexible generalized basis for carrying out detailed studies of wavefunction evolution
in multi-particle systems.

1. Introduction

The challenge for atomic and molecular theory to deal with progressively larger aggregates of
electrons and nuclei suggests treating them in terms of global parameters, in contrast to the
usual independent-particle approach [1-4]. Globally one may represent each configuration of
N particles by a single vectd identified by 3N — 1) internal coordinates with the origin at its
centre of massR’s modulusR thus represents the aggregate’s overall size, while its direction
R specifies its geometry, i.e. the layout of the constituents’ relative locations and orientations.
Quantum dynamics then controls wavefunctionsfofhat emphasizd®’s evolution from a
compact to a fragmented structureragrows.

In the centre-of-mass frame, the reduced two-body Coulomb problem separates in
spherical coordinates. Extending the system by adding more particl&s)¢tieenergy retains
its three-dimensional spherical symmetry as a subset of its symmetry in higher dimensions.
This remark suggests concentrating the search for appropriate coordinates on the kinetic
energy. Hyperspherical coordinates prove suitable for our task, by combining the symmetries
of particles’ kinetic energies into a unified internal kinetic energy of the whole aggregate. This
procedure ensures an accurate description in the compact limit where the aggregate’s kinetic
energy predominates.

In a first step, hyperspherical coordinates sepaR$emodulusR from its directionR,
the latter being represented by parameters analogous to the polar coordinates of physical
space. The polar-coordinate symmetries, embodied in the familiar formalism of angular
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momentum theory, thus extend automatically ®s (3N — 3)-dimensional treatment.

Our proposed perspective of hyperspherical coordinates as extending the three-dimensional
spherical symmetry to higher dimensions affords advantages far beyond the technical aspect of
providing a convenient coordinate system. Separating the single hyper-rattiois a large
number of hyper-angles, and focusing on the symmetries under transformations of these hyper-
angles, allows one to handle most of the many degrees of freedom in a multi-particle system
analytically. For example, explicit calculation of angular integrals may be avoided in much
the same way as in ordinary three-dimensional angular momentum theory by replacing such
overlaps with coupling coefficients derived directly from the symmetry untieitiensional)
rotations. A second example employs tbeordinate-independentepresentation ofi-
dimensional transformations [5—8] to construct complete sets of hyperspherical harmonics,
higher-dimensional analogues of spherical harmonigghout solving partial differential
equations in any specific coordinate system. This application proceeds much as in three
dimensions, where all harmonics may be built recursively from a single function once the
appropriate ‘laddering’ operators are identified. The resulting flexibility in choosing centre-
of-mass coordinate frames is crucial in the case of a multi-particle system with its evolving
structure, because no single reference frame proves appropriate througteodiréeolution.

The hyper-radiusk serves as the ‘evolution parameter of wavefunctioh&R; R),
whoseR-dependent features evolve with increasiigpward their alternative fragmentation
terminals. In more detail, the hyper-radiug@ of an N-body aggregate of masses
my, my, ..., my, located at coordinates, r,, ..., ry from the centre of mass, is given by

N2\ Y2 N
R= —L M= M. 1.1
(Zl ) > @
In the special case of charged, point-like constituents (electrons and nuclei) relevant to atomic
and molecular applications, the Sédmger equation governing the aggregate’s evolution takes
the hydrogen-like form, in atomic units (au) [1],

1 (&  Ap\ Z(R) - . ) R
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The factorskR®N—=4/2  proportional to the square root of a hypersphere’s area with ralius
correspond to the familiar facterof wavefunctions in physical space. Note h@W — 4)/2
reduces to unity for the H atom, wheMe = 2. Separation of these factors affords non-zero
values of¥ at R = 0 and removes first derivatives from (1.2).

The general theory of hyperspherical coordinates (originally conceived for three-body
scattering problems) dates to the 1950s [9-12]. Since then, hyperspherical methods have been
fruitfully applied to a wide variety of many-body phenomena ranging from quantum chemistry
to particle physics, as illustrated, for example, by several contributions in [13].

Delves [14, 15] pioneered the method’s application to shell-model calculations of nuclei.
To this day, the hyperspherical approach remains a standard tool in nuclear physics, notably in
the study of halo nuclei [16], three-nucleon systems [17], as well as large nuclei [18] and even
subnuclear (quark) structure [19]. (For reviews on hyperspherical methods in the context of
nuclear physics, see e.g. [20-22].)

In the seemingly very different context of reactive scattering in quantum chemistry, the
participating atoms’ coordinates have typically been castin hyperspherical form, their motions
being governed by effective potentials [23—25]. Besides molecular reactions [26-32], the
hyperspherical approach also applies to molecular structure [33] and quantum phase effects in
chemical reactions [34, 35].
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These applications required more general and mathematical investigations on the structure
and properties of hyperspherical functions [36—39], with a special focus on additional quantum-
physical features such as antisymmetrization in fermion systems [40—42] and internal structures
of an N-particle system in three-dimensional space [43].

Applications of hyperspherical methods to doubly excited states of two-electron systems
in atomic physics [1, 2] resulted in a complete classification scheme for these states [44—
47], based on systematic investigations of the wavefunctions’ structure [48-51]. Connections
with molecular structure [52, 53] arising from these classifications have more recently afforded
extending the hyperspherical approach to systems with several heavy particles besides electrons
(i.e. to molecules) [54]. In three-body Coulomb problems, hyperspherical methods have
become computationally competitive through the ‘hyperspherical close-coupling method’
[55], and more recently in the form of ‘diabatic-by-sector’ numerical methods [56]. Another
extension employing over-complete basis sets afforded determining accurately resonances of
very high-lying doubly excited states close to the threshold for double ionization [57, 58]. Thus,
the hyperspherical approach covers essentially the entire energy range from the ground state,
through the ‘Wannier region’ around threshold for full disintegration, to energies high above
this regime (see, e.g., [59]). Besides the two-electron atom and generic three-body Coulomb
systems, studies have focused on doubly excited many-electron atoms [60, 61], with several
forays into atoms with three [62—66] or even meseitedelectrons [67-69]. Moreover, the
treatment of highly excited atoms in external fields [70, 71] has extended the list of successful
applications of the hyperspherical method in yet another direction. Currently, physically
adapted Sturmian basis sets promise further advances in broader contexts [72]. Reviews on
various aspects of the hyperspherical approach in atomic physics may be found, for example,
in [73-75]. See also [76] for a discussion of the reliability of the hyperspherical adiabatic
method.

Our equation (1.2) implies going a step further, extending hyperspherical coordinates to
all constituents, electrons and nuclei, governed by their Coulomb interactions. Equation (1.2)
thus represents an exact Satinger equation, and all calculations proceeding from (1.2) will
be completehab initio [3, 4, 77-79].

We intend in this review to encompass all types of applications of hyperspherical
coordinates. Thus the definition (1.1) need only extend over the dynamically relevant variables
for a given problem, ignoring, for instance, the coordinates of electrons belonging to closed
shells. In this context note already the interplay between ‘motions’ on widely different
(time) scales: at each fixed hyper-radiRs a ‘geometrical’ structure emerges resulting
from the faster motion in the hyper-angular coordinates; the emerging structure then evolves
on a different scale a® increases. This theme—central to the hyperspherical method—
serves as a guideline throughout the present paper. As a qualitative illustration, consider
the following hyperspherical description of a water molecul®Ha system consisting of
ten electrons, two protons and an oxygen nucleus. In a preliminary step tom@mid&io
construction of this molecule, a hyperspherical procedure would fill first the closed inner
shells of the constituent atomic cores, in this case only the K shelftaf Recognizing the
vast difference between electronic and nuclear motion, the electronic motion is ‘parametrized’
by the cores’ arrangement. For each core arrangement, the electronic motion is analysed to
find the most favourable electron distribution. This analysis proceeds in a hyperspherical
representation of the valence electrons as a single entity consisting at the outset of a
group of six electrons joined by two single electrons, as suggested by the core charges.
Analogous procedures for the construction and transformation of such ‘Jacobi trees’ will
be outlined in section 2. The particular arrangement of the cores should manifest itself
in the hyper-radiusk. associated with the set of valence electrons alone, once the latter
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are attached to the cores. The angular coordinates specifying the geometrical arrangement
of the valence electrons depend parametrically on their own hyper-r&djuahich is in

turn parametrized by the ‘size’ and ‘shape’ of the nuclei (or cores). The latter is itself
described by a set of hyperspherical coordingtRg, oy, Oy}, to be introduced in section 2,
thereby completing the hierarchy of geometrical structures governed by the interplay of
hyper-radial and angular motions, and of electronic and atomic motions. The dynamical
evolution of the ‘shape’ characterizing the cores’ arrangement should minimize the energy of
the whole molecule for the correct molecular geometry, while the hyper-angles characterizing
the distribution of valence electrons should indicate that four of them are essentially attached
to the G* core, with the remaining two pairs forming the bonds holding the molecule
together. Without attempting to carry out the computational details of this description, the
present paper introduces techniques required for its implementation. Namely, we intend to
focus on the universal (i.e. coordinate-independent) aspects of hyperspherical coordinates and
harmonics, to be implemented upon identifying the suitable Jacobi coordinates of a specific
system.

Returning to equation (1.2), we note that feature¥adire discrete, owing to the finite
extent of hyperspherical surfaces, being accordingly represented by appropriate quantum
numbers and nodal structures rather than by coordinates, much as they are in three dimensions;
their interpretation will, however, require not only adequate mastery of high-dimensional
geometry, a subject of this paper, but also of the dynamical interplay between light electrons
and heavy nuclei. Equation (1.2) should serve to calculate energy eigenfuncticesyfor
atom, molecule or analogous aggregate. Its solution for ‘collision complexes’ formed by
colliding molecules will provide the relevant scattering matrix directly, as indicated in section 5,
bypassing the calculation and study of energy surfaces.

The structure of (1.2) parallels that of the atomic H equation, being actually its extension to
multi-particle systems. Its first term represents the kinetic energy of the hyper-radial motions,
its second term that of the hyper-angular motions, and its last term the potential energy, which—
being the sum of Coulomb interactions among all of the aggregate’s particle pairs—scales as
R~1. The evolution of&’s angular part as a function @, foreign to hydrogen, stems from
the non-zero value of the commutatay f, Z(R)].

Equation (1.2) preserves instead hydrogen’s invariance under coordinate rotations by
securing invariance of the kinetic energy operatgy/ 2M under rotations aR? aboutthe centre
of mass, by mass weighting the coordinates as described in the following. Sets of mutually
independent eigenfunctions af;’s, analogues of spherical harmonics called ‘hyperspherical
harmonics’, serve to expand (1.2) into a system of coupled ordinary differential equations in
the variabler, analogous to those of atomic physics. The ‘effective atomic number’ operator
Z(R) turns then into a matrix with rows and columns labelled by hyperspherical quantum
numbers.

Simple examples of such harmonicsdrdimensions have been formulated [80, 81], the
corresponding eigenvalues af; having long been known. These examples, to be discussed
in section 3, provide solutions for the second-order eigenvalue problefsah specific
coordinate systems fardimensions. Developing an appropriate systematics of multi-variable
hyperspherical harmonics suited to each system (and thus coordinate-independent) constitutes,
however, a major objective, to be approached in section 4 on the basis of symmetries alone.

The importance of such a description cannot be overemphasized. The distribukn of
multi-dimensional directiot should represent specific features of each system flexibly, near
and far from its centre of mass as well as at intermediate ranges. At short ranges, where the
system is compact, this distribution should minimize the centrifugal effect represented by the
eigenvalue of\ 4 in (1.2). Atlarge ranges, where the system fragmeRisdistribution should
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represent alternative, mutually orthogonal, fragmentation channels. Both of these contrasting
representations can be achieved in terms of flexible ‘Jacobi (or centre-of-mass) coordinate’
sets, interrelated by algebraic transformations, the subject of section 2.2.

The present paper develops implications of the quantum discovery that pairs of variables
conjugate in Hamiltonian dynamics are actually related by Fourier transformations, whereby
dynamics reduces to kinematics, more generallyg@éometry(whence stems this paper’s
title). Expanding equation (1.2) in hyperspherical harmonics reflects but one aspect of these
implications; Jacobi coordinates provide a second aspect.

The angular Laplacian’s eigenvaluedrdimensions reads(x + d — 2), with integera.

Thus, the system of coupled equations resulting from expansion of (1.2) into hyperspherical
harmonics parametrized (in part) by the hyper-angular momehtsformally infinite, owing

to the infinite range of, and seems accordingly impractical. Key circumstances, however,
reduce its size generally to a modest level.

(a) For low-lying channels, the centrifugal term of (1.2), whose numerator rise$,as
guenches the amplitude df's components with large values afto negligible levels
at small hyper-radiu®.

(b) Correspondingly, its Coulomb term (prevailing at laR)das eigenvalues similarly spread
over many orders of magnitude, its lowest one approximating the lowest dissociation
threshold for molecules or ionization threshold for single atoms and its highest one
approaching the threshold for full disintegration of the system.

(c) The range of values of practical relevance thus depends critically on the energy range
relevant to each step of evolution. So do accordingly the dimensions of the corresponding
set of hyperspherical harmonics and of the rele&k) matrix.

Early calculations [77-79] have accordingly shown the rangew@flues relevant at each
value of R to be modest, thus affording ready numerical integration of (1.2). Each infinitesimal
‘d R’ step of this integration generates an infinitesimal rotation ofith®; R) wavefunction by
[Z(R)/R]dR in the R-space. The broad range of applications envisaged in the present paper
rests on the power of its underlying recursive procedures and on the characteristic aptitude of
computer technologies to apply such procedures step by step.

The vectorR, representing the structure of a multi-particle aggregate and constructed
by recursiveprocedures, has been resolved above into its magnifia@ad directionR,
corresponding to the aggregate’s size and shape, respectively. The aggregate’s shape, in
turn, needsarticulating into appropriate parameters—multipole moments, for instance—
representing structural features of each system, a task presenting a challenge to be approached
in section 5 in terms of equation (1.2)’s eigenchannel solutibpg,(R). An elementary
example of such developmentsis afforded by noting that an aggregate’s fragmentation elongates
its shape, thus minimizing its moment of inertia about a symmetry axis. Analogous features
should be identified systematically and utilized in specific applications.

The following sections should introduce the reader to analytical tools serving to treat
atoms and molecules of increasing size: (a) coordinate systems whose dimensionality extends
recursively and flexibly, adaptable to particle sets with different masses arising in molecular
structure and collisions (section 2); (b) prototype examples of hyperspherical harmonics
suitable for multi-electron atomic systems with a single heavy centre (section 3); (c) systematics
of harmonics labelled by eigenvalues of commuting operatoi ge{sadapted to the evolving
structures of atoms and molecules at increagn{section 4). Section 5 will outline an
analytical procedure to integrate (1.2), displaying the evolution of relevant wavefunctions
and thereby casting the results of previous algebraic developments [7, 8] into a more explicit
geometrical framework.
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The wide range of symmetry applications, resulting from invariance under coordinate
rotations and thus relevant for our application to quantum mechanics, is currently covered
appropriately by [82]. Terminology drawn from [7, 8] will appear in.”, but familiarity with
these references is not assumed.

2. Linear coordinate transformations in higher dimensions

Physical-space expansions into spherical harmonics hinge on their geometrical and kinematical
behaviour under coordinate rotations, labelled as the ‘angular-momentum theory’. Their
extensionto larger coordinate sets affords flexibility for displaying geometrical and kinematical
features of multi-particle systems, at the price of extending and elaborating each system’s
treatment.

Whereas, in a three-dimensional prototype, rotations aboutthes, i.e. in theyz-plane,
are not independent of rotations about thaxis because of involving theaxis itself, in a
multi-dimensional setting rotations about different axes are indepeimdefiaras they operate
in separateplanes. Each elementary coordinate rotation is then properly identified, in multi-
dimensional settings, as occurring within (or parallel to) the plane through a gaierof
coordinate axesrather than as preserving a single invariant axis. Independent rotations thus
occur innon-crossing planegather than within a single one, for example, in the and
zt-planes in four dimensions. lhdimensions the number of independent rotations is readily
seen to equal the largest integer not exceedit®yi.e.d /2 for even values of and(d — 1)/2
foroddd. This number, called theankof each transformation group [7, 8], is usually indicated

ast = [d/2].
Independent Hermitian infinitesimal-rotation operators, corresponding to
N 0 ]
L=—ilx——y— ) =—-i— (2.1)
dy ax I

in three dimensions, are indicated genericallyyyhere and in the following. Their analytic
(differential or algebraic) expression, often analogous to (2.1), depends on a group’s structure
and on coordinate choices to be described later. The elementary example of the helium atom,
consisting of three particles and described in terms of six coordif@ies:, z1, x2, y2, z2}

with the origin at its centre of mass, involves three independent rotations represented, for
example, by

—i{x1— — y1— —ilxo— — yo— —ilz1— — 20— ). .
18y1 1 0x1 28y2 2 0x2 13Z2 28Z1

The first two of these expressions are plainly analogues of the single-pdttickhe
interpretation of the last one—intermixing two particles’ coordinates—remains obscure at
this point. Note also that finite rotations are familiarly represented by exponential functions of
infinitesimal operators, as in the example of rotation by an apgleout az-axis, represented
by

gvl. (2.3)

Maximal sets of commuting operatof#;}, such as the three operators in (2.2), perform
in multi-dimensional settings the function performed ibyor three-dimensional rotations;
their eigenvalues are also integers of either sign, often calledyhts’. After separating
the centre-of-mass motion of av-particle aggregate, its8 — 3 internal coordinates are
partitioned typically in three-dimensional subsetssiofgle-particlecoordinates. Subsets of
independent infinitesimal rotation operators are then conjugate to apglesan—(y;/x;)
ranging from 0 to 2, and thus effectively boundless. These three-dimensional coordinate
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subsets may also include angtgs= tan((x? + y?)¥2 /z;), 6;'s range being restricted by
centrifugal potentials near each of its poles. Angular coordinates representiigtan;) of
single-particle distances from a centre of mass are similarly confined by boundary conditions.
For the purpose of illustration, replace the Cartesian coordinates of helium with six (frequently
used) hyperspherical coordinates, namely,

2,2, 2., .2, 2., 212
R=(Z+yf+5+x5+y5+25)Y

1/2

L (xFHyEra\Y
a=tan| S22
Xprypt

9; = tant <

g =tan? <&>
Xi

These definitions map the indistinguishability of electrons ontmeel symmetrunder the
reflectionn — 7/2—«. The operators (2.2) now take the form, analogous to the last expression
in (2.1),

(xiz +yi2)1/2> i=12 (2.4)

Zi

.9 .0 . 0
I 01 I 2 '3 tanm1(cosf, sina/ cosd; cosa)
Note that sets of commuting operatdid;} are subject to coordinate transformations

among equivalent sets. They are, in fact, suited to represent invariants of relevant particle
subsystems. Each of these sets/idimensions is complemented by a much larger set of
(generally) non-commuting operators, analogues,ct il, in three dimensions that raise
or lower them quantum number of spherical harmonigs (6, ¢), respectively. Thereby one
reaches thetotal @f(d — 1) /2 (increasing quadratically wif) unrestricted linear infinitesimal
transformations id dimensions. Most of these operators characteristically involve coordinates
of different particles, thus correlating their motions, e.g. combinations of equation (2.1)'s
analogues

(2.5)

N . 0 0 o . 0 ad .
Ji = —I(Xia—yj - yja_xi> Jij = _'<x"§j _xja_x,-) L] (2.6)
would raise and/or lower eigenvalues of operator pdifs H;}. (The upper indices of thé
symbol denote the physical-space components, while its lower labels signify particles’ indices,
together specifying the relevant variable pair in #hdimensional space.)

This and analogous considerations enlarge the scope of our study considerably, yielding
a total ofd(d — 1)/2 = (3N — 3)(3N — 4)/2 infinitesimal operators folN particles in
d = 3(N — 1) dimensions. The resulting wealth of operators will be introduced here and
developed later. As eacH,; involves two coordinates, odd values @fimply that one
coordinate, often labelled by 0, fails to be included in any ofthe's, even though contributing
to the set (2.6).

To establish contact with the relevant mathematical theory of Lie groups and Lie algebras
[7,8,82], we observe that the set of linear infinitesimal rotation operata#sdimensions
considered in this section forms the ‘special orthogonal group’ of transformations, designated
asSO0(d); the term ‘special’ referring to exclusion of dilations. Quantum mechanics extends
this group to include the analogous complex transformations forming the unitary §o@h
of transformations that preserve the complex Hermitian fQripx;x; instead of its real
quadratic analogue. The full unitary grodf(d) results from adding multiplication with a
complex phase eXjw) to its ‘special’ versionSU (d). The real part of the Hermitian form is
preserved by orthogonal transformations, its imaginary part by ‘symplectic’ transformations
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that preserve bilinear fornmidunder permutations of their elements, such as the spin invariant
U1/2U” g5 — U ol —1/2.

2.1. Symmetry under rotation reversal; ladder operators

Reversal of a rotation’s direction is represented, e.g. in (2.1), by switching the sign of the
coordinatey or of the imaginary unit, thereby reversing the sign of the operatarsd of their
eigenvalues:. Symmetry under this reversal has been highlighted in [7, 8] by replacing pairs
of coordinate labelsx;, y;) with pairs(x;, x_;), thus replacing; in (2.6). The index thus
runsover(l, 2. .., ¢), being complemented by ag for spaces of odd dimensiah Spherical
coordinates then includéazimuthsy;, with odd parity under rotation reversal, aagholar
angles;, changed by this reversal into— 6;.

Here we preserve the familiar notation with coordinate pairsy;), pointing out that the
rotation reversal is often complemented with the reflection through the coordinatexplane
which automatically reverses the signyef The resulting combination reverses the handedness
(‘chirality”) of each particle’s space coordinatés y, 7).

Note first that, whereas the physical space operatark ) change by unity the eigenvalues
m of I, each of theV-particle operators (2.6) shifts the eigenvalfwms, m;} of an operator
pair {H;, H;}. Whereas combination@, £ il,) act as ‘ladder’ operators raising or lowering
the eigenvalues: of I, by unity, combinations dfour among thes&/-particle analogues (2.6)
raise or lower eigenvalupairs simultaneously. The resulting rather elaborate classification
of operators became a central feature of the algebraic treatment [7, 8]; we shall follow a more
direct approach.

Recall how the ladder operators of physical spdgek: il,, emerge as non-Hermitian
combinations of the Hermitian pa(,, /). Similarly, non-Hermitian ‘raising’ and ‘lowering’
conjugate operators, designated here genericallyas:), respectively, may be viewed as
combinations of two pairs of Hermitian operatots, + a and ia' — a), symmetric and
antisymmetric, respectively. Recall also that the physical-space Hermitian opéfathisare
antisymmetric and symmetric, respectively, under reflection throughzfmane, according
to standard ‘Condon—Shortley’ conventions. A heuristic approach to constructing ladder
operators might thus start by identifying combinations of operators (2.6) that are symmetric
and antisymmetric, without resorting to Lie-algebra procedures.

Now consider the example of infinitesimal operators pertaining to the four-coordinate set
{x:, yi, xj, y;}. Besides the commuting pdiff;, H;}, denoted here dgx;, y;), (x;, y;)}, the
set of operators includes the ones from (2.6), labelledy;) and (x;, x;), respectively, as
well as the additional twdx;, y;), (y;, y;), totalling six operators, four of which intermix
and j coordinates. This last subset gives rise to two pairs of symmetric and antisymmetric
Hermitian operators, and thence to two pairs of desired non-Hermitian operators, one of them
‘raising—raising’, designated &s+), together with its conjugate-—), and ‘raising—lowering’
operatorg+—) and(—+). Commutators among these operators generate other operators of
the set, much as commutators amongtltemponents do, as detailed in appendix A. This
particular example, with ladder operators appearing simply as combinations of two components
acting onm; andm; in a way familiar fromS0(3), is not generic forSO(d). Instead its
structure is due to the well known feature of orthogonal groupssia#l) factors into a pair
of SO(3) subgroups. A related example familiar in physics is afforded by the factoring of
the (proper) Lorentz groufO (3, 1) into SU (2) x SU (2), with ‘spinors’ of opposite chirality
[82] (chapter 11). Reference [7] derives these results algebraically.

Returning once again to the physical-space operatatsil,, recall how they transform
elements of a spherical harmonics §gt,} into one another. They serve further to identify
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a set’s range, for example, by causing its ‘highest-weight’ elerfig(#t, ¢) to vanish when

acted upon by, +il,. The ladder operators outlined above will perform an analogous role
for the much larger and multi-faceted sets of hyperspherical harmonics. To this end one may
combine the operators (2.6) first into pairs symmetric and antisymmetric inthgjrindices,

1 : 1
xyx Xy xy\ _ xy yx
T~ = 72(‘11'./ +J5) = 72(11'_; Fi7) (2.79)
sinceJ;; = —J;7'. These Hermitian operators are then paired into non-Hermitian operators,
= TR (2.70)

The heuristically introduced operators of type €3).fail to act correctly as ladder operators.
Nevertheless, examples of ladder operators with a similar structure arising as superpositions
of four operators (2.6) will appear in (4.4t(4.1%k), playing a key role in section 4.
(Combinations (2.6) that instead include the unpaired variejté odd-dimensional systems

do not lend themselves to the symmetrization 4p.Being thus more nearly analogous to the
three-dimensional,, 1,).)

The numbers of infinitesimal operators (2.6) and of the resulting ladder operators increase
quadratically with the numbers of particles and of the corresponding coordinates. It will turn
out in following sections, however, that a numidef linearly independeritaising—lowering’
operatorpairs, equal to the number of commuting operatéks suffices to generate complete
orthogonal sets of hyperspherical harmonics. Each of those sets corresponds to a choice of
relevant coordinates and of th&;} set.

The coordinates and their infinitesimal rotations, developed thus far in this section, would
intermix in their dynamical applications with the inertial effects of the mass differences
among various particles. These complications can, however, be removed by appropriate mass
weighting of the coordinates as anticipated in section 1 and implemented next.

2.2. Jacobi coordinates

Mass weighting of coordinates has served in section 1 to define the hyperRamtingeniently,
contrasting it with the angular coordinates representedzbyAnalogous devices serve to
weight appropriately the components Bfpertaining to particles with different massks,

making them homogeneous, and thus removing the Laplatigia explicit dependence on
single-particle masses. To this end, generic sets of ‘Jacobi coordinates’ have been introduced
long ago [12], replacing the single-partialeby vectorst; with the mass weighted dimension
mas$/2 length.

Alternative sets of Jacobi coordinates occur, reflecting alternative groupings of particles,
properly weighted by the mass of each group through linear transformatiordimihsionless
coefficients. These sets are in turn interconnected by dimensionless linear transformations,
each of whose steps amountsrddation in one plane Handling of Jacobi coordinates thus
becomes laborious even though each step be elementary.

Jacobi coordinates prove essential by identifying each fragmentation channel through a
particularJacobi treeseparating at its base into two branches corresponding to the relevant
fragments. One thus displays the evolution of each particle-aggregate toward a specific
fragmentation channel by the structure of relevant tree-shaped Jacobi coordinates. The label
‘Jacobi tree’ reflects the evolution of a multi-particle system fragmenting (i.e. ‘branching out’)
from a trunk into separate systems. (Developing a multi-particle wavefunction toward one
among its alternative fragmentations presents instead an upside down view of that tree.)

We show below a few simple prototype Jacobi trees, whose upper endings correspond
to single-particle labels. Permutation of two particles is represented by rotadidpout its
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trunk. Changingb) into (c), often referred to agansplantingof branch 2, corresponds to

the prototype transformation of hyperspherical harmonics. Generic transformations resolve
into sequences of permutations and transplantations. (kjess often called ‘canonical’.
Multi-particle systems are represented by correspondingly articulated trees.

12345

1 2 3 4
(d) ()

The Jacobi trees just introduced serve to characterize multi-particle systems by their
hierarchy of compositioni.e. by indicating the order in which particles are joined to form
subcomplexes of the entire aggregate. The labels thus refer to particle indices. A similar
concept re-appears in a further context: analogous trees illustvateinate systemand
their transformations, their branches labelling appropriate angleR'sndecomposition
[20,68,69]. Rotation of tregéa) by an angle 0< ¢ < 27 represents a simple rotation
about an axis. Variation of a coordinateQ § < m maps onto the angle between two
branches.

Alternative sets of Jacobi coordinatBsthus correspond to different tree structures. This
circumstance adds further elaboration to our procedure, yet serves to display the evolution
of whole aggregates. These aspects have not been apparent in the initial applications of the
present approach, dealing with very few particles, even though necessarily underlying the
treatment of any multi-particle system. Each transformation of hyperspherical harmonics
resolves accordingly into a transformation from one to another set of Jacobi coordinates and a
transformation of the corresponding harmonics.

Note the ‘hierarchical’ aspect of Jacobi-tree construction, which adds particles
sequentiallycontrasting with the ‘democratic’ view of the multi-particle coordinates leading to
thequadraticincrease of the number of (2.6) operators as a function of the particle nuvnber

Once again: each step dealing with Jacobi coordinates is elementary, but the number and
combinations of different steps are large, a characteristic generally encountered in computer
operations requiring adequate strategy and planning. Such operations may properly articulate
into successive phases. We anticipate, for example, in dealing with molecules, to build first
each atom’s inner shells independently, by Cavagnero’s procedure [67—69], combining later
the resulting atomic ions with the residual atomic electrons.

Similarly, the following sections present first alternative combinations of three particles,
lying in a plane with their centre of mass, into alternatpadrs of mutually independent
collective coordinateg, followed by transformations among these pairs. Combinations of
larger particle sets into furthey’s will be dealt with next, utilizing analogous procedures
recursively. Even more extensive procedures will hinge on experience in treating large multi-
particle aggregates.
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2.2.1. Athree-particle prototype.The positions;, i = 1, 2, 3, of athree-particle setidentify

a plane where their centre of mass also lies. These positions are represented by these co-planar
vectors, but theiinternalkinematics involves only two independent Jacobi coordinate vectors,

&, with 3(NV — 1) = 6 degrees of freedom.
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The standard procedure for constructing Jacobi coordinate vectors considers first the
positions of two among these patrticles, 1 and 2 here, with magsesd M, and positions
r1 andry, respectively. These input data combine into a first Jacobi vector weighted by the
square root of the pair's ‘reduced masgg;, = M1 M, /(M1 + M5), namely,

€12 =V Mi2(r1 —12) (2.8)
whose centre of mass lies in the plane at

Miri+ Moro
= 2.9
T12 Mot M, (2.9)
The next step combines the first pair, with mags+ M, and centre-of-mass positief,,
with the third particle lying at3. This step is performed in accordance with (2.8) yielding the

second Jacobi vector,

€123 = v Mi23(r12 —73) (2.10)
with the reduced mass
(Mq+ My)M3
Mips = ~t 7278 211
1237 M+ My + Ms (211)

(The comma-separated subscripts indicate the particle subcomplexes to be joined.)

An additional feature relates the Jacobi vector (2.10) to its alternatives corresponding,
for example, to the permutation of indices 1 and 3, (2,3) — (3,2, 1), yielding the
two-dimensional vector rotation

{€32, €321} = {€12C0SB — €153 SINB, §1,8INB + &1 3 COSP} (2.12)
by the angle

5 tarr \/ Ma(Ma + Mz + My) 213

MiM3

Analogouskinematic rotationgorrespond to cyclic permutations of indices.

2.2.2. Extension to multi-particle aggregatesThe formulation of equation (2.10), with
elements from (2.8), has clearly recursive character. It implies that any pair of Jacobi vectors,
{€,. &,}, representing two subaggregates of particles centregdatdr, with massed/, and

M,, respectively, combines effectively into a single vector

M,M,

£py = m(rp — 7). (2.14)

Similarly, restructuring of any ‘Jacobi tree’ diagram, which represents a specific sequence
of particle combinations forming an aggregate, resolves into sequences of vectar;paji
rotations within a plane, analogous to that represented by (2.12). Such restructurings have
been discussed amply in [20] under the name of ‘timber transformations’, the word ‘timber’
being suggested by association with ‘Jacobi tree’. The simple underlying principle, stated in
that reference, lies in the feasibility to resolve any rotation in multi-dimensional spaces into a
sequence of plane rotations, a feature familiar for the three-dimensional rotations of physical
space. Appendix B exemplifies this procedure.

Transformations between different Jacobi trees prove highly relevant to our subject of
atomic and molecular few-particle systems for the following reason. The Coulomb coefficient
Z(R) results familiarly from contributions proportional to the reciprocal distances between
the N(N — 1)/2 particle pairs. Flexible sets of Jacobi coordinates afford treating each
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of these distances as a single coordinate, to be combined with others, thus avoiding the
familiar need to expand each term B{R) into a multipole series. Thereby determining
Coulomb interaction matrix elements reduces to calculating integrals gxeather than over

1/|’I",‘ — ’I‘j|.

3. Sample hyperspherical harmonics

The familiar spherical harmonicg,, (0, ¢), serve astensorial base setgf®r1)-dimensional
transformations induced by rotations of the physical-space coordinates. In multi-dimensional
contexts analogous base sets of hyperspherical harmonics serve the same purpose. The name
‘harmonics’ identifies them as eigenfunctions of the angular Laplacian opekgan the

(d — 1)-dimensional space d& with eigenvalues-A(A +d — 2).

To understand the tersh— 2 in this eigenvalue formula, note first that it reduces to unity
for d = 3 yielding the familiar eigenvalug! + 1) of the squared orbital angular momentum.
The unit in this expression corresponds to $iiegleangular coordinaté that accompanies
the anglep in polar coordinates. Its contribution to the eigenvalue, narhatprresponds to
the ‘zero-point energy’,/il’, of a unit-mass particle oscillating along thecoordinate in the
centrifugal field generated by its rotation alopgvith quantum numbet. The occurrence of
d — 1 dimensions for the vectd raises the number of its coordinates, besigesom unity
tod — 2, thus accounting for the eigenvalue tedm- 2.

As the pair of angle$0, ¢) identifies a direction of physical space, an equal humber of
indices(/, m) identifies a harmonic belonging ta @ + 1)-dimensional set, with the magnetic
quantum numbem labelled as a ‘weight’ and in the role of ‘highest weight’. Extending
this parametrization t@-dimensional spaces requires us to describe sets of hyperspherical
harmonichM(R), wherea replaces the ‘highest weight, the vectoru represents a set of
d — 2 complementary labels arfd a corresponding set af— 1 angles.

This extension provides the main tool for the quantum mechanics of multi-particle systems,
as indicated in section 1 anticipating the relevance of the hyperspherical harmonics and of their
treatment in [77, 80]. Recall that the position veci®iof an N-patrticle set (in its centre-of-
mass frame) hag = 3(N — 1) dimensions. The wavefunctions(R) of such a system,
envisaged in section 1, are conveniently expanded in hyperspherical harmonics in analogy to
expansions in spherical harmonics [77]. Their Sclimger equation reduces similarly to a
system of coupled ordinary differential equations in the ‘hyper-radtus’

The symbol for hyperspherical harmonids,y(f%), replaces the index of spherical
harmonics by the index corresponding to the eigenvaluer (i + d — 2) of the (d — 1)-
dimensional angular Laplaciai. This index also denotes the degree of the homogeneous
‘harmonic’ polynomial productsR*Yw(f%). The second index replaces the index: of
spherical harmonics with a corresponding sef ef 2 parameters (the dimension Bfless 1)
that identify a specific harmonic of degree

Expanding wavefunctions of a multi-dimensiodaltilizes ‘complete orthogonal sets’ of
hyperspherical harmonics. Completeness is achieved by extending the ranagdasfuately.

Only a finite set of harmonics, however, proves relevant at any finite value, dfigher

values being effectively excluded by a generalized centrifugal potential at Riyredinoted in
section 1. (This potential, involving theparameter, includes contributions from derivatives of
variables corresponding to thecoordinate in (2.4) and representing the quantum mechanical
resistance of particles to compression by boundary conditions.)R Agreases more and

more hyperspherical harmonics start contributing to the relevant wavefunctions, requiring
adequate frame transformations to reflect the appropriate fragmentation channels, as outlined
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in section 5. Orthogonality requires identifying, for eackialue, an adequate set of vectors

w corresponding to the simple set of integer vallies< [ of the spherical harmonics and to
the relevant set af2 components. Here, higher dimensionality implies more elaborate sets of
p vectors.

Generating these setsdrdimensions, labelled by! — 2)-dimensional vectorg, relies in
essence on separating the Laplacian’s variables. In the three-dimensional prétptype),
them label arises as an eigenvalue of theperator representing the number of nodes of the
corresponding eigenfunction i €”¢, whereas the remainirig— |m| nodes pertain to the
6 variable. For hyperspherical harmonics, sets of sectiofi 2smmuting operator#l; may
provide corresponding quantum numbersand eigenfunctions. The residual- ), |m;]|
nodes would then pertain to thle— ¢ — 1 residual variables, analoguestof

Whereas alternative orthogonal sets of spherical harmonics pertain to alternative
orientations of thez coordinate axis in three-dimensional space, analogous sets of
hyperspherical harmonics pertain to alternative selectiodi€ommuting operatorgH, }, not
necessarily based on a coordinate set as they were in section 2. Whereas spherical harmonics
Y, (0, ¢) depend on the ‘longitudep with |m,| ‘meridian’ nodes and on the ‘co-latitudé’
with [ — |m| ‘parallel’ nodes, subdividing their plots into separate ‘lobes’, hyperspherical
harmonics depend—for particular coordinates—on ‘longituggseach withjm; | nodes, and
on the nodal distribution in the remaining coordinates. Additional componeptpeftain to
alternative partitions of that delimit the range of the parametérg| as well as of additional
coordinates. Note how the number @fcomponents increasdigearly with the numberv
of particles, contrasting again with the operators (2.6), whose nhumber incopeatratically
with N.

Consider now how the features of hyperspherical harmonics bear on equation (1.2)'s
expansion: the value of 3 in its centrifugal term dependmly on the parametex of each
harmonic, whereas the coefficientR) of its Coulomb term resolves for av-particle setinto
N(N —1)/2 terms~R/|r; — r;|, cast as matrices in tHau} basis. The flexibility afforded
by selecting the operatorsH; and the remaining — ¢ — 1 coordinates should serve here to
avoid, or at least minimize, resorting to multipole expansion of each term.

We anticipate that coordinate rotations/idimensions transform generally any harmonic
YM(}A{) into a superposition of the harmonics of its whole orthogonal set with coeﬁimg
analogous to those that serve to transform spherical harmonics and form a ‘representation’ of
the rotation group. This feature rests onthe multi-dimensional rotations’ aptitude to resolve into
sequences of two-dimensional rotations, thereby affording us to expre@@lpyoefficient in

terms of more familiar three-dimensional Wigner's Euler-angle functi¢fis The occurrence

of alternative set$Y;,} with the same. value reflects the multiplicity of the infinitesimal
operator basis. Systematic classifications of alternative{ ¥gt$, appropriate to the number

and structure of their coordinates, shall rest on the subgroup chains of the relevant group, as
outlined below. With this background we describe now two sample harmonics’ sets.

3.1. A generic structure
Laplacian equations for hyperspherical harmonicg @imensions,
[Ag+A(h+d —2)]Y3(R) =0 (3.1)

lend themselves to solution by separation of variables, sing@amounts to a sum of terms
F(R)(3/0x:) gi(R)(3/dx;) with metric coefficients’ (R) andg; (R). Their prototype example
is afforded by the Sckidinger equation for the He atom, witi = 3 (one nucleus and
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two electrons)d = 3(N — 1) = 6, and with three polar coordinates (2.4), yielding [9]

1 d . 0 1 1 o0 . 0 1 92
p=—5———SifacoSa—+———|———sinf— +———
sif o cof a du da  coFa | Sind; 36, 361 sirf 6y 9g?

1 a . d 1 9
t— [ - —S|n92—+T—2]
sin” « | Sind; 96 062 sin” 6, 3¢5
1 (02 12 13 ,

- sinZa(Wﬂl_ cofa M) sin 2 (3.2
whose form on the last line arises from renormalizing the harmafjcby the volume element
Sin 2.

A familiar approach [1-4] to solving (3.1) with the angular Laplacian (3.2) assumes first
Y;,. to depend ofig1, ¢,) through a factor exfm ;1 +imo¢2), whereby eackd/d¢;)? element
of (3.2) amounts te-m?. Thereafter each of the square brackets in (3.2) reduces th + 1),
providedy,, depends on eachthrough the associated Legendre functioﬁsﬂnPf" (cosh,),
with the relevant ‘highest weight; thus limiting the range offin;|. The residual operator on
the right of (3.2) then has eigenvaluea (1 + 4), with X partitioned a$; + I, + 2n, and with the
‘Jacobi polynomial’ eigenvectop,?**%*¥2 (cos 2v), according to (22.6.4) of [83]. (The
factor 2 multiplyingn andw in these expressions stems from the exponents and coefficients in
the functions ofx in (3.2)). The eigenvector of (3.1) reads thus

Yiu(R) = codia sin2a P12*Y20412) (cos 24) ¥, (61, 91) Yigm, (B2, 92) (3.3)

with the expected five-component = {n, I1, m1, I, m»}, and with the spherical harmonic
factorsYy,,, (6;, ¢:).

The set of harmonics (3.3), with a given valuexpttonsists of a number of elements
the dimensionality of the relevant space. This number depends on the number of alternative
partitions ofx into (11, [, n) consistent with the relatioh = [; +1, + 2n, and on the alternative
2l; + 1 values of eachn;. The prototype example of = 2 leads to the partitions:2, 0, 0),
(0,2,0),(0,0,1),(1,1,0) and, inturn, td +5+ 1+ 9= 20 harmonics. Different partitions of
A yield hyperspherical harmonics with alternative nodal patterns, reflecting alternative sharing
of rotational kinetic energy in different modes. The algebraic determinatianisliscussed
in [7, 8,82] and outlined in section 4. The general expression [8pfoeeduces in the present
case =6)to(A +3) (A +2)2(A + 1)/12.

Notice how the eigenvalue parametéss I, 2n) play the role of ‘weights’ in (3.3), each
of them amounting to the ‘highest weight’ for a subgroup of the rotation gl = 6),
thus contributing to the ‘highest weight = [; + I, + 2n of the SO(6) harmonics (3.3).
The symmetry under the sign reflection — —m) (cf section 2.1) manifests itself in these
harmonics not only through the symmetry of each fadigy,, but also through the parity of
the polynomialP,, which is even or odd for even or odd values of the ‘pseudo-weight’
combined with interchange of its upper indices. Note also hewbstitutes for the weiglhis,
an eigenvalue of the third operator (2.5), which fails to commute with the opeidteren
though commuting witl{d /d¢1) and(d/9¢y).

The harmonics (3.3) provide, of course, a basis for expanding correlated electron
wavefunctions in helium, in the form(R; R) of section 1, with the directior? =
{a, 61, @1, 62, @2} [77,78]. The expansion coefficierds, ;, .., 1,.m,(R) then represent desired
features of the relevant eigenfuncti®iR; R). This representation does, however, emphasize
single-electron aspects of the state through its param@ters ) rather than through the global
features anticipated in section 1.

Note, on the other hand, that the procedure presented above to construct the harmonics
(3.3) appliegecursivelyto (N > 3)-particle systems, as should the previous comments, with
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the following qualifications: extending (3.3) t8 > 3 particles involvesV — 1 spherical
harmonics,,,, (6;, ¢;), initially independent of one another, ad— 2 Jacobi polynomials in

cos 2v; with the full set of 3V — 4 variables. The index pairs of these polynomials, replacing
the single particl€/; + %) of (3.3), reflect, however, thtetalangular momentd, or .J, of paired
particle subsets as determined by relevaatarchical additions of single-particle momenta
[68]. Note also how the structure of the harmonics (3.3), and of their higher-dimensional
analogues, exploits the commutability of the base operdfdrsand of their corresponding
subgroup structure, with a notable exception: the angle defined in (2.4) does not coincide
with the arctan of the third operatéf; of (2.5).

3.2. An alternative structure

The particular subgroup structure of (3.3) stresses the single-particle features of each system,
contrary to section 1's emphasis. We turn now accordingly to Avery’s [80] alternative
construction of harmonics that emphasizes different elements, dealingiwith3N — 6
unspecified coordinates besides a spherical harmiopi@, ¢), without reference to single-
particle positions. This approach thus utilizes a single eigenvetttroé a single operator

H;, contrasting with the full set occurring in (3.3) and its extension§ te 3.

As a preliminary to complementing a single spherical harmdfyjc with additional
variables, Avery [80] views the Legendre polynomPalcosd), invariant under rotations about
thez-axis, as the particular Gegenbauer polynorgigicosd) with o = % (as defined in [83],
table 22.6) extending itfrom 3tb= 3(N — 1) dimensions by setting its parameteaitd /2—1,
and replacing with A (d = 6 in our example). It also replaces ¢owith the scalar product
of unit vectorsR - R, where R’ corresponds to the reference axis The hyperspherical
harmonic

ci#YR-R) (3.4)

is thus invariant undet-dimensional rotations d& about a fixed axigt’ (i.e. rotations labelled
by a single parametes), as well as under rigid rotations of the pAirR'. Note that Gegenbauer
(as Legendre) polynomials consist of only even or only odd powers for even or odd values of
A orl, respectively.

As the spherical harmonicg;,, are generated fronP;(cosf) by operatord, =+ il,,
harmonich,W(f%) are generated from (3.4) by infinitesimal operator analogués #fil,,
each of them combining a derivative, which lowers by unity the degree of their operand, with
a compensating factor linear in a coordinate, thus replacing a nodal line of the operand with a
different coordinate’s nodal line. (Typically, the operatot il,, as applied td’,, with non-
negativen, is equivalent to'é sind (d/d cosd): its partial derivative reduces,,’s polynomial
dependence on césby one degree, thus removing one parallel-line node, its first factor adds
instead a meridian-line node implied by the vanishing of its real or imaginary parts. To trace
out this effect more explicitly, recast the operator in the form

R N AV A (+|)8+ TR
x , = — —_— =7 I— — X— = —(X —_— —_— —_—
’ Yoz Yy ) T\Fax T a2 Yoz T\ ax ey

The first term on the right-hand side of this expression, when applied to the fuligti@h ¢)

with a non-negativen value, raises it& index by one unit through the combined action of

its two factors: the first factos; + iy = r sind € combines with the same factor withif,,,

thus raising by one unit the number of its meridian-line nodes as well as the exponent of its
sin” 6 factor. Its second facta®/dz), equivalent here to~1(3/d cosd), reduces by one unit

the degree of},,’s polynomial dependence on agsthus suppressing one of its parallel-line
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nodes. The second term on the right of the operator’s expression cancels instead the function
Y. (0, @) by setting it to zero.)

A direct analogue of the successive actioh.dfi/, operators orP;(cost) would apply to
the Gegenbauer polynomial (3.4) a sequence of corresponding operators acting on components
of R. A novel aspect emerges, however, at this point, siRckas several components
orthogonal ta?’ acted upon by alternative operators in alternative sequences. Such alternative
sequences will occur in section 4, whereas [80] avoids them by treatirfg efimponents
uniformly, besides their physical-space subBet {siné cosg, sind sing, cosd}.

Tothis end, [80] follows the frequent practice of complementing an initial two-dimensional
component (cog or sing) by multiplying it with the factor sim and adding a furtheR
component cog, wherebyR retains its unit magnitude. Iterating this extensiba 3 times
yields the canonical set d& components

C0SsHq
sin6; cosHy

. . (3.5)
siné; sinb, - - - cosH,;_»

sing; sind, - - - sind,;_, sing

singy sind, - - - sinf,;_, COSy.

For the purposes of orientation consider that, ifatomponents had comparable magnitudes,
each value of cog would be of order 1d, and hence eadf) would be close tor/2. After
elimination of R cos, the factorR siné; of all successive components would represent their
total magnitude. The successive factorsssithen contribute to reduce the effective residual
components of? progressively.

The set of integer components of the vector lapelnon-negative and of decreasing
magnitude, is similarly indicated by

o= {1, M2, ooy s a—1) (3.6)

with u,_1 = |m|, m being the multiplier in the harmonic’s phasg. The difference between
successive components (3.6); — n;+1 > 0, represents the number of nodes in itk
harmonic’s dependence on @ysincluding theji.,_1| nodes implied by the phase factdre
The set of harmonics compatible with these specifications, for the same prototypewaliges
andd = 6 as for the harmonics (3.3), has likewise 20 elements.

The resulting hyperspherical harmonic, equation (3.69) of [80], consists thus mainly of
products o — 2 Gegenbauer polynomials,

d—-2
Yiu = No [ [(sing))C0 ™0 (cosd;) €m9. (3.7)

Mj—Hj+1
j=1

The combined degree of this harmonic, equalling its total number of nodes, amounts to
Y 9"3(u; — mje1) = A, including thepy_y = |m| nodes attributable to the” factor.

Thew index of each Gegenbauer polynomial consists of two teamns&nd u j+1, the first of
which,«; = (d— j—1)/2, corresponds to the actual dimensionality of all the (3.7) factors with
indices larger thari. The second terny, .1, represents the additional effective dimensionality
attributable to the factoxsing;)*/** (whose combination Witb’z;i’;’;jl amounts to an analogue

of the associate Legendre functifyf (cosd)). The remaining factor of (3.7)y,,, represents

the normalization factor contributing to the orthonormalization of each set of harmonics (3.7)

with equalx and alternative: indices.
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Each factor(sing;)*1, which decays rapidly ag; approaches a pole (at O ar),
corresponds to the factgising)”! of associate Legendre functions, which reflects the
centrifugal potential generated by its factét%e Indeed, the exponent;.; equals the total
number of nodes in (3.7) factors with indices larger thamwhich contribute a centrifugal
potential to the equation governir(gfji’ﬁ;jl; each differencq.; — ;41 corresponds to a
separation parametgkl; + 1) in the construction of the harmonics (3.3).

In conclusion, the present construction of hyperspherical harmonics has followed two
approaches: (a) solving the (angular) Laplace equation by separation of variables, leading to
the harmonics (3.3) and extensible to higher dimensions; (b) constructing the harmonics (3.7)
by a sequence of Gegenbauer polynomial factors (also separating variables), complemented by
factors(sing;)*+1, analogues of thésind)™ of spherical harmonics and similarly generated
by applying infinitesimal operators shid/d cosd) to the invariant Gegenbauer harmonic
(3.4).

These approaches differ in their coordinates as well as in their dynamical implications:
no physical specification of thR components ; has occurred in approach (b). Approach (a)
has relied on the single-particle coordinates and on their interrelations introduced in (3.2),
namely{0 < ¢ < 7/2,0< 6; < 7,0 < ¢; < 2r}. (The limited range ofr coordinates
reflects their definition through ratios of non-negative variables.) Approach (b) has utilized,
in (3.5), ratios ofR components restricted to real values of either sign, in additiorstogie
complex phase, without explicit reference to single-particle coordinates (considered elsewhere
in [80]). The occurrence of two (or more) complex-coordinate phases in approach (a) utilizes
the commuting operator s¢k;}, a dynamical element foreign to approach (b). Intermediate
approaches, utilizing that set partially, appear readily accessible.

4. Classification and construction of hyperspherical harmonics

Section 3 introduced hyperspherical harmonics for two different sets of coordinates, relying
on single-particle features to a different extent. Both sets of hyperspherical harmonics are
characterized as ‘harmonic polynomials’, i.e. as eigenfunctions of the angular Laplacian,
obtained directly by separation of variables. Their construction thus ties each of these
harmonics to a particular choice of coordinates.

In contrast, sections 1 and 2 repeatedly stressed the need for flexibility in the choice of
coordinates to describe the evolution of an atomic or molecular complex from its compact
to its fragmented states. Having familiarized the reader with properties of hyperspherical
harmonics in the preceding section, we now introduce harmonics which are essentially frame
independent, thus bypassing extensive frame transformations necessary for harmonics tied
to a particular set of coordinates. We describe here a procedure to generate complete sets
of harmonicsindependenibf the choice of coordinates. Consequently, the same set of
harmonics serves throughout the entire evolution process, frame transformations reducing
to the task of expressing the harmonics in whichever coordinate system appears appropriate
at any given stage of the evolution, without a change to the basic structure of the functions
themselves.

The key feature enabling a definition of harmonics without separation of variables in
the Laplacian’s eigenfunction equation rests on identifying the Laplacian’s symmetry under
rotations ind dimensions. Section 2 described these transformations in terfirstedrder
infinitesimal rotation operators. We will now construct functions basedHj-operators
and on the corresponding ladder operators only. Because these functions will possess the
underlying symmetry of the Laplacian, they are *harmon&&rtiori.
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The present task amounts to extendingclassificationof spherical harmonics by their
label pair (I, m) to multi-dimensional systems, in accordance with procedures to construct
such harmonics. To this end recall that:

(a) Thel label ofY,,, identifies both an eigenvalue of tsecond-ordeangular Laplacia#?
and the range & |m| < [ of its second label.

(b) The labeln itself is an eigenvalue of thigrst-orderoperatotr, .

(c) Alternative equivalent sets of harmonics correspond to alternative orientations:f the
axis.

(d) Complete sets of spherical harmonigs (6, ¢) emerge by operating on the invariant
harmonicP;(cosp) with the conjugate pair of ladder operatéyst il,, or alternatively
operating with the lowering, — i, alone on the ‘highest-weight” harmorig (0, ¢).

Corresponding remarks on hyperspherical harmonics outline here this section’s development:

(a) We have seen how the multi-dimensional lakeperforms’s role in identifying
eigenvalues of the relevant multi-dimensional angular Laplacian. Alternative partitions
of A’s value will similarly delimit the ranges ofi's analogues.

(b) Analogues ofm are the integer (or half-integer) eigenvalues of the ¢ first-order
commuting operatorgH;} introduced in section 2. These sets are viewed as components
of a vectorm in the space subtended by the opera{éfs. They were noted, however,
in section 3.1 not to be fully compatible with the corresponding parametdt; s¢hat
delimits each{|m;|}'s range, equation (3.3)'s label replacing the eigenvalues of a
different equation. Harmonic eigenvectors of {i#&}’s will, nevertheless, be identified
by convenient sets afi components, i.e. by lattice points in thelimensional H; } space.

(c) Alternative equivalent sets of hyperspherical harmonics correspond to alternative
orientations of a vectox in the relevan{ H;} space and to alternative analyses of a system'’s
dynamics. Transformations of coordinates and/or of{fig set yield equivalent sets of
hyperspherical harmonics.

(d) Hermitian-conjugate ladder operators, analogues of the physical spade®,, will
emerge as superpositiorfs, of Hermitian pairs—as anticipated in section 2—with
vector labelsa, each label with unit-magnitude components in {li&} space, being
thus represented by diagonal vectors in that space. Linearly indepehdienénsional
subsetwf these operators, denoted b¥, } = {Eim}, s = 1,...,¢, suffice for the
presenttask [7, 8], as well as for encompassing all the far more numerous ladder operators
by their own appropriate superpositions.

A sample set of harmonics emerging in this framework will be displayed at the end of
section 4.3.

Quantum numbers:;, eigenvalues off; operator subsets, serve to classify ‘(quasi)-
invariants’ of multi-particle systems. Such is thie component of the invariant angular
momentumJ of isolated systems. Twa; components pertain to a molecule rotating about a
symmetry axis of lower inertia in its ‘body frame’. Threg’s characterize atomic Rydberg
states, one of them pertaining to their inner core, one to the Rydberg electron and one to their
vector sum. A plethora of sueh;’s might pertain to a turbulent fluid.

In the absence of quasi-invariants, other than the td'sl the single labeln of (3.7)
may suffice, but a numbék ¢) of additionalm;’s, judiciously chosen with reference to the
system’s structure, helpsin classifying harmonﬂgs(]%), and the corresponding multi-particle
wavefunctions.

Geometrical elements of classification also emerge from the nodal patterns of harmonics,
as noted in section 3. The Laplacian’s separability into coordinatetressed at the outset
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of section 3.1, affords real solutions of the several resulting one-dimensional equatigns in
(with appropriate boundary or periodic conditions) to be characterized hgdes, yielding
altogether) ", n; nodes, a total basically equal to the eigenvalue Real hyperspherical
harmonics with equal differ then by their’s partitions into the relevant;.

For the specific purpose of constructing sets of hyperspherical harmonics, detg of
operators, analogues of the physical-space ‘ladder operéatats?,, complement sets af;
conveniently, much as thg + i/, complement.. To this end, the total angular momentum’s
J. = H; may be complemented by appropriat® and thence by corresponding ladder
operators{E, } = {Eim }.In principle, quantum numbera, (of either sign) of the
desired harmonics then represent the numbéi.gf having acted on the invariant harmonic
C*(R - R'), equation (3.4). In practice, the derivation of hyperspherical harmonics for a
giveni proceeds more appropriately by acting on the analogue of the sphgriéaly) with
sequences of lowering operatdis,, , since the ‘highest-weight’ hyperspherical harmonic is
uniquely defined.

Them; values raised or lowered b¥., operators in this procedure are delimited by
the relevant ‘highest-weight’ eigenvalaeof J, = H,, viewed as a vectok directed along a
particular axis and expanded as

A=A, (4.1)

The partition coefficients,; are integers (or half-integers) insofar as batland then, are
vectors of the{H;} space with coefficients of integer (or half-integer) magnitude. The
values serve thus as ‘highest weights’, analogues of (3;3fer them, quantum numbers.
Them, themselves are viewed as components of a ‘magnetic vector’

m = mens = Zm,fl,- (4.2)

the vectorsn, and h; (the latter pointing in the direction perpendicular to the plane of
rotation identified byH; in section 2) being themselves interrelated by integer (or half-integer)
coefficients.

An analogue of the spherical harmonics equation defining the range of

(L £ily) Y140, 9) = (I, £il,)""™ P/ (cosh) = 0 (4.3)

is formulated for a hyperspherical harmorig,, (R), whose degree is highest (i.e. can be
raised no further by the ladder operafgy ), in the form

E, Y. (R) =0. (4.4)

WhenE,, is cast as a first-order differential operator, equation (4.4) determines that particular
‘highest-weight’ harmonic.

Operating on each of these ‘highest-weight’ harmonics with successions of ‘lowering’
E_, operators generates complete sets of hyperspherical harmonics, as detailed in the
following sections.

4.1. Operations on the:; parameters

Them; quantum numbers, eigenvalues of the operatfirsbelong in theh; ‘space’, being
raised or lowered in value b¥, or E., operatorsexternalto that space, just as the

eigenvalues of, are shifted by, + i/, operators with axes orthogonal fo As the ladder
operators, + i/, of physical space are viewed as ‘eigenvectors; tfirough the commutator
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equationsi, I, £il,] = £(, £il,), sets of ladder operatofs, are defined as solutions of
the commutator-equations’ set,

[H;, E.] = & E, aj==+1or0 for i=12,...,¢ (4.5)

implying thatH; E,u; = (m; + «;) E,u; for the eigenvecton; of H; with eigenvaluen;.
Basic elements for solving (4.5) emerge from the introduction and properties of
infinitesimal rotation operators (2.2) and (2.6) in section 2.

a) Commutatorg H;, J3;' | vanishunless one of the variablés ;, y;) is common to both
Jjk J

operators. If one is, the commutator equals a relalé,gfl' times aunit-magnitude
coefficient, much as the three-dimensional commutatér with /, or/, does.

(b) Accordingly eachE,, reduces to a linear combination offew J;‘ky with |a;| = 1 or
0; o; = +1 thus corresponds to raising or lowering. The commutator of a pair of
Hermitian-conjugate ladder operatois)], E_.]isitself Hermitian, specifically a multiple
of the unit operator.

(c) The directions otx (or n,) vectors in theh; space run in that space at equal distances
between pairs ok;’s.

(d) Ford even, the resulting operatoEs, (or E, ) shift the values ofwo m; parameters by
unity simultaneously, thugreserving the paritpf the ", m;. The same holds for most
of the ladder operators for odd-dimensional systems, too, with the following exception:
odd-dimensional systems include a single oper&fp(one among a subset bbperators
E,) acting on a singlez;, whose contribution violates the parity conservation.

Appendix A outlines a procedure to identify raising and lowering operators.

These elements, developed originally in [5, 6], afford a basis for constructing complete sets
of hyperspherical harmonics lisansforminga singleprototype harmonic wittomplete sets
of E, (or E,, ) operators. Preferred prototypes hawrale non-zeroalue ofm; parameters,
typically {m1 = X, mjx1 = 0}. An initial E, operator will lowerm’s value by one unit,
raising that of onem ;.| from 0 to 1. Alternative successions of analogous operators thus
generate complete sets bfdegree harmonics, all of whose vect¢ra} prove compatible
with the initialm = {A, 0,0, ..., 0}, i.e. with} ", |m;| < 1 and (in the even-dimensional case)
(-1Zim = (=1)*. An initial prototype harmonic convenient for this purpose reads, in the
notation of (3.3),

. +iy\*
cod a sin' 6, @ = <)“T'Y1> (4.6)
with ‘highest-weight’ exponents corresponding td; = m; = A, lb = my = 0,n = 0in

(3.3).
The allowed range of each among the sevetalomponents:; is limited by the condition
|m;| < A;, eachy; being an element of the partition

A=Yk W20 —n<mi<y (4.7)

which reflects, in turn, specific sequences of the relevapapplications. Two (or more)

of the m ‘weight vectors’ thus generated may coincide, being labelled ‘multiple weights’,
reached by alternative operator sequences equivalent in this respect. The total number of
alternativern vectors generated by the present procedure, denotedivgection 3, includes
combined contributions of multiple weights. Thesevalues, representing the dimension of

the accessiblém} set and of its corresponding set of hyperspherical harmonics, are discussed
for d-dimensional rotations in [82] (section 10.2) and for various other groups in [7, 8].
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The harmonics’ symmetry under rotation reversals, discussed in section 2.1, implies for
even-dimensional spaces (where the parity conservation mentioned in item (d) above holds
strictly) the relationship of hyperspherical harmonics

Yi-m(R) = (=D'Y} (R). (4.8)

4.2. Operations on the:; parameters

Equation (4.2) shows parallel expansions of a ‘weight veeatoimnto the eigenvaluedn;} and
{m,} of the commuting operatof#7;} and of the ladder-operator labétg }. These alternative
base sets span the saiidimensional space with different orientations and different metric
scales set, respectively, by thg eigenvalues:; with unit spacing and by the, vectors with

(in general)two unit-magnitude components and resulting squared-magnitydes, = 2.
Section 4.1 has stressed how ladder operators gifs of m; parameters simultaneously,
contrasting withE..,, ’s shift of asinglem, parameter. The simpler action on the thus
simplifies the construction of hyperspherical harmonics’ sets.

This simplification is partly compensated by a restriction imposefhgn sets by their
equivalence tdm;}, implied by (4.2) and represented by requiring

7 S L— (4.9)
N+ Ny
whose non-negative integers and g, specify, respectively, how many timeés direct
successiorthe operators_,, and E,, can be applied ten. (For details on this equation,
see section 10.1 of [7], or sections 13.5 and 15.2 of [8].)

Two critical elements underlie (4.9): (a) equation (4.2) establishes a linear relationship
between the parameter séts;} and{m,}; (b) the last relation in (4.7) restricts the range of
eachm; sharply. Equation (4.9) restricts then the ladder operatBis’ action on (4.6) or
on any hyperspherical harmonic, shifting the relevaptvalue by one unit, through a sharp
selection rule the resulting value ofi, mustsatisfy (4.9).

Within this framework one constructs complete sets of hyperspherical harmonics in
dimensions by:

(a) selecting a coordinate system according to section 2;

(b) constructing an appropriate settofommuting operatorgH; };

(c) constructing corresponding setséofadder operator$E,, } and{E_, = E;f]} in first-
order differential form;

(d) determining a ‘highest-weight’ hyperspherical harmonic, characterized by a ector
with components,; in the {H;} basis and\, in the equivalentn,} basis, by solving
the relevant equation (4.4). (The prototype ‘highest-weight’ harmonic (4.6) pertains to
A=1{2,0,0,...}inthe{H;} basis.);

(e) applying to this ‘highest-weight’ harmonic (sequences of) the lowering oper&tors
with 1 < s < ¢, for a total of 2, times each, to yield the succession of harmonics
Yy,m, (f{), terminating atn, = —A,, remaining, howevemyithin the constraint®f (4.9)
which often prevents lowering one, value ahead of othen,’s.

4.3. Sample derivation of harmonics’ sets

We apply here the procedure just outlined to the three-particle system of section 3.1, forming
an S0 (6) geometry, utilizing the same notation and thus taking care of the prescription items
(a) to (c), except for selecting a set#f vectors. This set, with components indicatedapy

in (4.5), is conventionally [8] chosen as

m~ {17 _1, 0} N2~ {07 17 _1} ns ~ {07 17 1} (410)



R22 Topical review

thus implicitly relating eacln; number to then; in (4.2). Note how the first of these vectors

is not orthogonal to the following orthogonal pair, and the set of three is linearly independent.
We set the value dfin (4.6) at 2 for simplicity, thus fixing thg, valuesin (4.1) af2, 1, 1}.

The relevant Cartesian ladder operators corresponding to the gét}&f equation (2.2) take

the form

[ ad
Eip, =—i|(x1Eiy)—F7——(02F iyz)—.}
R d(x % iy2) d(x1 Fiy1)
=3[V + I T — i) (4.113)
I . . ad
Eip, = —i|(z1Fizg) ————— — (2 £ iy)) ————
£n, _( 1F 2)8(x2:|:|y2) (x2 y2)8(zlﬂzlz2)]
= 3[Jis + I3 (V13 — J33)] (4.11)
[ a
E =—i|(z1tiz))——— — (xziiyZ)—-]
e L d(x2 F1y2) d(z1 Flz2)
=3[ — I £iUn +I3)] (4.1%)
Introducing, for the sake of compactness, the elementary operator notations,
i ad .1 0
K =cost— +i—— (4.122)
00; sing; B(pl
i : Ja . d
LY =& + — +icotg, — i=12 (4.1D)
00; 09;
we recast (4.14)—(4.1%) in polar coordinates, corresponding(td;}'s of (2.5):
i . . d . .
Eip = —Eei'(“’l"”) (sm@l sm@za— — tana sing,K P + cota sm@le)) (4.1%)
o

i . . d . . ad .
Ein, =5 [ei"”(cosel sinf - — + tana sind smega—el + cota cos@le)) - |L§f)}

(4.1%)

i : . a . . d .
Einy =5 [ei'“’z < COSy Sinfl, - — + tana sindy sm@za—el + cota cos@le)) + |Lf’}.

(4.1%)

The prototype harmonic (4.6) with = 2 reads as c8s sin? 6, €2, with A; and
Ay componentg2, 0, 0} and {2, 1, 1}, respectively. Operatorg_, can be applied to this
expression directly, with full attention to the condition (4.9). This condition excludes at the
outset acting on this harmonic with either lowering operdtoy, or E_,,_, which change:;_,
andm;_z from their initial O value without affecting:;—; that retains its highest value 2, thus
violating the limitations on the:;; only E_,,, operates on the harmonic (4.6) correctly. Sets of
harmonics are grouped into ‘layers’ according to the number of lowering operators that have
been applied to the ‘highest-weight’ harmonic in the process. Successive steps of lowering
the m; quantum numbers are similarly restricted, but afford alternative actions of lowering
operators, as displayed in table 1. We actually show the first five layers of harmonics, with
the ), m, > 0, the harmonics with negative values being obtained from these by complex
conjugation according to (4.8).

Table 1 also illustrates the effect of non-vanishing commutators between ladder operators:
different ordering of the same ladder operators may yigfidrentharmonics with thesame
labelm, i.e. adegeneratesigenvalue, such as = {0, 0, 0} in table 1. Furthermore, while
the procedure demonstrated in table 1 will give the correct numbknexrly independent



Table 1. Hyperspherical harmonics for a three-particle systéme=(6) and generalized angular momentara= 2. The functions are constructed by
acting on the ‘highest-weight' harmonicosa siné; explig1])* with different sequences of ladder operators, as indicated in the third column. The
first two columns list then quantum numbers in thg, and H; bases, respectively, while the last column identifies the harmonisspespositions

of functions (3.3) by listing their corresponding labéits /1, m1, [z, m2}. Indentation in the last two columns indicates a continuation line of a single

entry.

my m; Operator sequence Resulting harmonic, not normalized {n, 11, m1, lp, ma}

(2,1, 1 {2,0,0} coS « Sin? 01 €2¢1 {0,2,2,0,0}

(1,1,1 {1,1, 0} E_p, 2i cosa sindy €91 sina sing, €2 {0,1,1,1, 1}

(0,1, 1} {0,2,0} E_p E_n, —2sirf o Sin? 6, €2¢2 {0,0,0,2,2}

(1,0, 1 {1,0,1} E_pE_p, 2 co o sinf; cosdy €1 + 2i cosa sindy €41 sinacosh,  {0,2,1,0,0},{0,1,1,1,0}

(1, 1,0} {1,0,-1) E_pE_,, 2 co€ « sinfy cospy €41 — 2icosa sindy ¥ sine cosd,  {0,2,1,0,0}, {0,1,1,1,0}

{1,0,0} {L-1,0) E_E_,E_y, 2i cosx sindy €41 sina sing, e 1¢2 {0,1,1,1, -1}

{0, 1, 0} 0,1, -1}  E_ E_E_y, 2i cose costy sina sind, €92 + 2 sirf o sind, coss, €2 {0,1,0,1,1},{0,0,0,2 1}

{0, 0, 1} {0,1, 1} E ) E_p,E g 2i cosa cost; sina sind, €92 — 2 sirf « sind, cosd, €42 {0,1,0,1,1},{0,0,0,2,1}

{0,-1,1} {0,0,2} E_myE_mE_p,E_y,  3[cof a(3c0$6; — 1) — si’ a(3cog 6, — 1)] {0,2,0,0,0}{0,0,0,2, 0}
+2 oS 2 + 4i cosa oSty Sina COSH; {1,0,0,0,0},{0,1,0,1,0}

{0, 0, 0} {0,0, 0} EmE_yyE_pE_y,  —3ilcos?a(3co$ 61 — 1) — sin’ (3 cog 6, — )] {0,2,0,0,0}{0,0,0,2, 0}
+4icos 2 {1,0,0,0, 0}

{0, 0, 0} {0,0, 0} E_nyEmE_yE_p,  3[cof a(3cog6; — 1) + 2sirf a(3cof 6; — 1)] {0,2,0,0,0}, {0,0,0, 2,0},
+2 cos 2 {1,0,0, 0,0}

0,1, -1} {0,0,-2} E_pE_pE E_,  3[cofa(3cogoy — 1) —sinfa(3cog b, — 1)] {0,2,0,0,0}, {0,0,0, 2,0},

+2 cos 2« — 4i cosw Cosb; Sina cosb,

{1,0,0,0,0},{0,1,0,1, 0}

MaInal [eaido|

€cd
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harmonics, these may not necessarilyobthogonal(with the usual definition of a Hermitian
scalar product as an integral over the relevant spg€ez) = [ f* g dx). For amore detailed
discussion of the issues of multiple eigenvalues and orthogonalization of harmonics in the
general case, see e.g. [8, 84].

Finally, recastind H;} from (2.2) as

H= —i| G + iy — o (rr — iy 1,2
B R T T A Teopm o) B @10
. . . d '
H; = —|[(Zl + |Z2)—a(Zl Yz (z1— |Z2)—a(z1 — iZz)]

and using (4.14)—(4.11), we note that manipulating harmonics by means of ladder operators
is most easily performed in generic Cartesian coordinates, where the harmonics take the form
of products with generic factorgy; +iy;)/R]"™! [84].

4.4, Harmonics for application to atoms and molecules

Different sets of hyperspherical harmonics serve to represent different aggregates, at different
stages of their development. More specifically, each set reflects the structure of the relevant
‘Jacobi tree’ introduced in section 3.2, whose ‘growth’ mirrors the integration of the relevant
equation (1.2), as a function of its hyper-radils We deal here with particular aspects

of harmonics selection, beginning with the remark that, at Bwalues where centrifugal
potentials prevail, governing the single particles, the set described in section 3.1 may prove
adequate, complemented possibly by the set of section 3.2. The following sections deal with
two particular aspects of our subject.

4.4.1. Symmetrized harmonicsParticle aggregates include generally subsets of identical
particles: electrons, of course, but also atomic nuclei such as the numerous protons
of hydrocarbons. As a preliminary to the eventual requirement of antisymmetrizing
wavefunctions under permutation of fermion positions, or analogous operations on bosons,
it often proves convenient to select at the outset harmonics’ sets that are invariant under
permutation of all identical-particle variables [41,42]. This preliminary operation serves
particularly to reduce the dimension of each harmonics’ set.

Typically each electron pair may rotate about its centre of mass only with orbital momenta
equal to an even (odd) multiple afwhen in a singlet (triplet) spin state. The same holds
familiarly for the nuclear states of para- (ortho-)molecular hydrogen. This restriction reduces
the relevant sets’ dimensions by exponential factors when applied to large sets of identical
particles, complemented by enforcing the corresponding symmetry between different particle
pairs, a more laborious procedure known as the selection of ‘fractional parentage’ ([85] and
[82], chapter 8), but applied more conveniently at the outset of any calculation.

4.4.2. Expansion of whole-state representationExpanding the whole solutiow (R) of
(2.2) into hyperspherical harmonics may also serve to illustrate the resulting representation of
a multi-particle state. The set of hyperspherical harmonics must, however, be complemented
for this purpose by a harmonic function of the hyper-radtua generalization of the familiar
Bessel functions in two dimensions and of their related ‘spherical Bessel’ functions in three
dimensions. The required harmonic functionsrRobelong once again to the Bessel function
family.

The spherical Bessel function equation for three dimensions, equation (10.1.1) of [83],
differs from the standard Bessel function equation for two dimensions (9.1.1), by: (a)
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a coefficient 2= d — 1 inserted before its first-derivative term, and (b) its eigenvalue
n(n+1) = (n+3)? — 1 replacing the standard eigenvalu’e Similarly, the hyperspherical
Bessel function fod dimensions differs by (a) a coefficiesit- 1 = 3N — 4 inserted before its
first-derivative term, and (b) its eigenvalue.+d —2)+(d —1)(d —3) /4 = (A +(d —2)/2)*— %1
replacingv?. The resulting Bessel function will thus be of integer or fractional order
A+ (d — 2)/2, with a corresponding pre-factor arising from tR€" /2 coefficient of our
equation (1.2), as anticipated in [67].

5. Hyperspherical expansion of the wave equation

The preliminary treatment of hyperspherical harmonics in section 3 suffices to formulate
an expanded version of (1.2). On the left-hand side of this equation, the fa‘frs?/?

have been separated out to allow setting a finite initial valu&ok, R) at R = 0. The
factors separated out take into account the centrifugal—actually, wave-mechanical—potential
generated in polar coordinates with small valuedfy compressing particles within short
‘parallel circles’. We may then standardize wavefunctions that statt-atO with unit value

in asingle hyperspherical chann@lo, 1p), expanding a® increases into alternative channels

(A, w), as indicated by

Wioo (R) =Y Fropoiu(R) Yau(R)
o (5.1)
Fiouoin = R840 as R— 0.

EAntering the expansion (5.1) in (1.2), and projecting the result onto the several harmonics
Y,,.(R), reduces (1.2) to the system of coupled radial 8dmger equations

d2
Gz Pronoin(R)+ Y Frgpg e (3 IKE(R)ipr) = 0 (5.2)
Mo

with the wavenumber matrix

AL+d —2)+[(d - 2% —1]/4

O K2R ) = <2ME M Al . )&vw,m

LM Z(R) )
R

HereZ(R) /R represents the Coulomb potential energy of the interacting particles, evaluated
at each hyper-radiug. The dots at the end of (5.3) stand for any additional terms okthe
matrix corresponding to Hamiltonian terms that represent spin—orbit or relativistic corrections
not included explicitly. The ability of (5.2) to include such effects—thus far not exploited—
may bypass the current need to treat such terms perturbatively rather than directly in the basic
equation.

The system of coupled equations (5.2) is formally infinite, owing to the infinite range of
its parametek, and thus seemingly impractical as noted in section 1. However, circumstances
also described in section 1 reduce its size generally to a modest level.

- (5.3)

5.1. Displaying the evolution toward fragmentation

Our approach to displaying this evolution derives from features of the fragmentation of
nuclei that are held together by short-range interactions [86]. Beyond this rangeergy
eigenfunctions resolve intiragmentation eigenchannel&belled here by, each of them
propagating at > rg in force-free space witlunchanged structurei.e. with spherical
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wavefronts,r-independent angular distribution (6, ¢) and uniform phaseg,(r). Here
the parameter setsf, (0, ¢)} and{¢,(r)} embody the effect of all particle interactions at
r <ro.

The opportunity occurred in [86] to utilize an analogous parametrizatigardless of
interaction rangesby embodying the effect @ll interactions at the ranges€Qr < R into
parameter sefsf, (R; R)} and{¢,(R)} to be evaluatetbr successive values of Rhese sets’
dependence oR displays each eigenchannel’s evolutionRagicreases from its 0 value (at
the system’s centre of mass) towardsi.e. disregarding all interactionssat- R at each step
of integration.

The hyperspherical channel functions (5\¥),,,, (R), of each multi-particle system serve
here as a basis to calculate thg, (R; R)} and {¢,(R)} parameters by casting them into
superpositions

D, (R) = Y (0(R)hotto) Wroue (R) = D _(0(R)hotto) Y Fropgin(R)Yiu(R) (5.4)

Aoko hoktg A

with initial values of the coefficients
(p(R)|roptg) — 1 i.e. {(p| = (ropol as R—0. (5.5)

Requiring each phasg, (R) of & ,(R), and its gradienfd$ /dR), to be uniform over each
hyper-surfaceR = constant) identifies each superposition (5#)(R), as areigenchannef
the propagating Schdinger equation (1.2) &ach valueof R. It thus implies that the angular
eigenfunctionf, (R; R), representing the aggregate’s ‘shapeRaevolves ‘in step’ from each
hyper-surface to the next. This requirement translates into a system of linear homogeneous
equations for the coefficients (R)|Aoug).

Following the ‘phase—amplitude’ approach of [86], which replaces second-order wave
equations with pairs of first-order equations, references [77, 78] introduced the eigenphase’s
tang,r—without previous reference to (5.4)—as an eigenvalue of amatrix’

. dF\*
GuIR(BRIV ) =) (d—R> Fiopg.irw (R)
Aot Ap,Aoko
= > (hulp(R) tang, ) (p(R)|X ). (5.6)

P

Reference [79] proceeded then by taking the derivative of (5.6) with resp&;treplacing
its element(d’®F /dR?) with its expression (5.2) in terms of th& matrix (5.3), and finally
transforming the result to thi (R)| basis by means of the coefficieris(R)|Au) and their
reciprocals.

Taking theR matrix as a stepping stone served thus to resolve the isiednd-order
equation (5.2) into the set dirst-order equationorresponding to the diagonal and off-
diagonal elements of (5.6), respectively,

A0 1+ (o (RK(R) (R tarT e (5.72)

dip(RIAE) _ 5~ SiNdpi (PRILRI (R SiNgyi ,

_ = - R)|A 5.7
iR /JZ# SnG, — ) (' (R)|1p) (5.70)

with R expressed in units gfiR/d¢,). This set of equations has been integrated numerically
in [79] for the prototype example of doubly excited He, with conclusions described below.
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5.2. lllustration and discussion

The numerical integration of (5aJ—(5.70) for He has been carried out with a device that
accelerates the convergence of expansion into harménids by replacing these harmonics
with eigenvectors of thé? matrix (5.3) at eactR. These eigenvectors represent ‘adiabatic’
solutions of our problems, carried out earlier in the frame of [1, 2], i.e. disregarding the coupling
between the radial and angular variablesand R.

The sample results shown in figure 1 should be viewed as interconnecting each system’s
sets of compactc) and fragmented f) channels, outlined in [3, 79]. Quantum mechanical
scattering theory represents this connection by ‘Jost’ matrgef87]. Each standing-wave
eigenfunction of (1.2), identified by an initial boundary conditiei at its compact limit, is
represented asymptotically near {tg) limit by Zf sin(ksR)J¢., Or more conveniently in
terms of its outgoing and incoming components

> explikR)J;, > exp(—iksR) . (5.8)
7 7

The matriceslfic are complex conjugate for ‘open’ channefs i.e. when the energy
suffices to achieve th¢ limit; for energetically ‘closed’ channels the wavenumlagris
imaginary, whereby one component converges to zero at discrete eigenvalues of the energy
E and the other diverges @ — oco. The Jost matrices serve then to construct scattering

matrices
1
Spr=y. Jf+¢<1—) (5.9)
c cf

as detailed in [3, 4]. In this frame one views each amplit(ele&?) |Aoug) Of (5.4), evaluated
at a finite rangeR, as a partial construction of the Jost matrix elemgntwith f representing
the limit of (p(R)| asR — oo. Plots of the several bra symbdls(R)| achieve our objective
of displaying the system’s evolution frof = 0 towardoo.

Figures 14) and p) plot eigenphaseg, (R) versusy'R, modulor, at energies straddling
the (292 S resonance of He near 58 eV, for a numbeKmfR)|Aopo) pairs. Each line’s
slope mirrors the rate of increase ¢f(R), i.e. (loosely) the rate of expansion R of
the corresponding eigenfunction. (The first eigenphase’s slope reflects the rapid motion of
an electron ionized with approximately 33 eV kinetic energy; successive curves reflect the
increasingly slower development of two-electron excitations in successively higher modes.)
In the lower and upper ranges of the ordingje corresponding to low values of sif)[(R)],
pairs of curves appear to cross with minimal disturbance, owing to unresolved values of
the coupling coefficient on the right of (%), in spite of the singularity arising from the
vanishing of its denominator at each crossing. Major effects of crossings emerge instead at
middle ranges o, (R), where pairs of curves appear to repel each other experiencing major
deflections.

The localization of such major ‘avoided crossings’ within limited ranges of ordinates
and abscissae, confirmed by analogous more dense plots, verifies our expectation that
eigenfunctions propagate smoothly outside the limited parameter ranges where the coupling
coefficients of (5.B) diverge. The apparent ‘repulsion’ of curves at avoided crossings is a
familiar aspect of the Landau—Zener phenomenon [88—90] occurring at points of ‘degeneracy’
where two alternative values of a parameter coincide, as the piigses, ) do here (modulo
7).

An additional major manifestation of avoided crossings, namely, the hybridization of pairs
({plrowo), (p'IAgreg)), has, however, not been included in the calculations underlying figure 1.
This hybridization might result by fitting parameters of the observed phenomena—slopes,
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2 3
R (a.u.)

2 3
R (a.u.)

Figure 1. (a) Eigenphases, modulor versus the square root of the hyper-radius, calculated
at the total energy? = 57 eV above the ground state, just below tt@s?) 1S’ resonant state in
helium. () Shows the same set of eigenphases, calculated at a total @netgy8 eV above the
ground state.
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slope differences of the curves and their closest approaches—to the corresponding elements
of the Landau—Zener theory. The relevance of the pregghbug) coefficients to the Jost
matrices of interest remains fragmentary pending further developments of Nakamura’s recent
analytical improvements on the Landau—Zener theory [91, 92].

5.3. Qualitative effects of Coulomb interactions

Equation (5.3)'s matrixA’p/| Z(R)|Ap) consists ofV (N — 1)/2 terms for an aggregate of

charged particles. These terms, included sequentially in computer programs, serve to solve

(5.7a) and (5. B) numerically, yet warrant analysis aimed at visualizing their qualitative action.

To this end one may resolve tilematrix’ action on the wavefunctiodr into its several aspects.
Subsets of terms acting between particles with equal (opposite) charges push

corresponding particle subsets apart (together). Within this scope one notes that:

(a) Expressing the distance between each atomic nucleus and another particle in terms of
their common mass weighted hyper-radiRiscales upts charge by its mass’ square root,
thereby boosting its interactions’ strength and thus favoumadecular dissociatioras
compared to ionization by electron ejection.

(b) The force acting on each particle pair depends on the pair's orientation. Combining
the Coulomb forces between various particle pairs thus involves extensive geometrical
transformations of the relevant position coordinates.

Coulomb interactions between subsetddentical particlesmay be grouped conveniently,
particularly so following the symmetrization of relevant position coordinates outlined in
section 4.4 and in appendix D. It would then become possible to combine Coulomb terms
pertaining to such subsets to yield expressions of their electrical multipole moments and of
their corresponding multipole fields. A semi-macroscopic view of each aggregate’s mechanics
should thus emerge, in terms of collective variables.

Within the context of initial combination of molecular nuclei with closed-shell electrons,
one could then envisage treating all molecular valence electrons as forming a gas whose electric
multipole moments are inflated by electronic mutual repulsions, yet contained by the attractive
multipole fields of nuclei and closed-shell cores. The proton-nuclei of hydrocarbon molecules
would be similarly viewed. This attractive containment would perform a twofold action:
holding the molecule together as a unit and simultaneously smoothing out the distribution of
opposite charges throughout its volume.

Appendix A. Construction of ladder operators

The generic infinitesimal operators (2.6) raise and lower the eigenvaluasdm ;, of operator
pairs(H;, H;) by mapping a single harmonic ontsaperpositiorof harmonics with different
m;’s andm;’s. We construct here linear combinations of those operators thatoaleaer
by unity these eigenvalues in a definite way, according to (4.5).

Casting for this purposéH;, H;) in the form of the first two expressions in (2.2), i.e.
as(H; = J;) H; = J;‘jy), restricts the solution&,, of (4.5) to combinations of the four

i’

components

J{x J.V)’ ]{)’ , Ji}]ix . (A 1)

ij ij ij

Identification of the proper linear combinations proceeds through analysis of their commutator
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relations with theH;’s, namely,

[Hi, T = +T5 [Hj, T = +T5 (A.2a)
[Hi, J)'] = =i [H. I = =i (A.2Db)
[H;, J7 =T [H), ;== (A.2c)
[H;, J);] =+ [H), J]=+iJ7. (A.2d)

Combinations of the operators (A.1) symmetric and antisymmetric in their) variables,
analogues of (28)’s symmetry in(i, j) indices, yield

E ol = 5 =T i+ I (A.39)

Epqe = U5+ I FiU) = T3 (A.3b)
satisfying the desired equations

[Hi E 0] = £E o0 [Hj. Ey o] = £E, oo (A.4q)

[H;, E ia};ﬂ] =+FE e [H;,E iaf.;*)] =FE Lol (A.4b)
with

afj'j*) = (+1, +1) (A.5a)

of 7 = (+1,-1) (A.5b)

a =a" =0 for k#i,j. (A.5¢)

Note that the two operator sets(J}*  J;7). 3(J;; £ J)"), 3(H; + H;)} commute exactly
like {I, Iy, .} in three dimensions. The occurrence of (symmetric or antisymmetaic of
rotation operators in the role of bathand!,, respectively, reflects the feature of the pairwise
change ofn; andm ;. The symmetry of these operator pairs under interchange dirte
and second coordinates <> y; andx; <> y; of the relevant; and H; extends the present
construction to ladder operators that changerthguantum numbers off operators of the
third type in (2.2), involving twa-coordinates.

For odd dimensiong, ladder operator pairs pertaining to coordinate péir6) change
only one of them;’s. If againx;, y; make up the operatoH; pertaining tom;, the two
ladder operators acting @y are complex linear combinations of the two infinitesimal rotation
operators which involve either of or y;, together with the single unpaired coordinate (denoted
asxp in section 2, e.g. the coordinate in the familiar case 60 (3)). In this case, the ladder
operators are completely analogous to thosgdin3).

Appendix B. Transformation between Jacobi trees
As an example of transformation between Jacobi trees, consider the two trees

12345 12345
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The mass weighted relative coordinates for tree A result from independent-particle
coordinates by the transformation

A _ | MaM; _

&= m("‘z r1) (B.1a)
a | MaMy
& = m(m —73) (B.1b)

¢ = (My + M2)(Ms+ My) (Mars+ Marg  Mary + Morp (B.10)
3TN My+My+Mz+ Mg\ Ms+ M, M+ M, '
¢ (M1 + My + Mz + My)Ms Miry + Mory + Marz + Myry (B.1d)
= Ty — .
ST\ Mi+ My My My Ms \ M+ My + M3+ M,

i.e. by first connecting particles 1 and 2, then 3 and 4, then the cor{ip®o the complex
{34}, and finally the complex1234 to 5. The fifth Jacobi coordinate represents the centre
of mass which remains the same for all trees consisting of the same patrticles, and is hence
irrelevant to transformations of the four relative coordinates.
The transformation from A to D resolves into three elementary ‘transplantations’:

12345 12345 12345 12345

Tap Tpc Tcp
B — B — B —
A B C D

The transformatiory 3 from A to B affects only the first and the third among the mass
weighted Jacobi coordinates, since ittransplants branch 2 from the cofhpjéa the complex
{234). Itis therefore represented by applying to the 4-vectdr &5, €4, £4) the matrix

cospup O —singsp O
0 1 0 0
0

1

Tan = sing,p 0 COSPup (B-23)
0 0 0
i.e. by a ‘kinematic rotation’ through an angle
Mo(M1+ My + Mz + M,
pap = tam? 2(Ma + Mp+ M3 + M) (B.2b)
Mi(M3+ My)

according to (2.13). Note the general structure in the mass coefficients: transplanting
branchg from the complex{pg} to the complex{gr} corresponds to a rotation by =

tan? VM,(M, + M, + M,)/M,M, (in the first quadrant, i.e. with positive signs for both the
cosine and sine). The transformatidp- transplants branch 3 fro84} to {23}, andT¢p
transplants the complex branf@84} from {1234 to {2345, with the respective transformation
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matrices
cosppc —Singge 0 0
Ty = singgc cospgc 0 O
0 0 10
0 0 0 1
(B.3a)
10 0 0
S 0 1 0 0
=1 0 0 cospcpr —singen
0 0 singcp  cospcp
and rotation angles
ppc = tant \/Ma(Mz * M3+ Ma)
MaMs (B.3b)
1 | (Ma+ Msz+ Mg)(My+ M+ M3+ Ma+ Ms)
¢cp = tan .
\/ M1Ms
The complete transformation for this sequence is represent®dpy- Tcp - Tpe - Tap With
COSpp COSPpc  —SiNgpc  — SiNGAp COSPpC 0
Tup = C_03¢AB Singgc  COSpgc  —SiNg,p SiNPpc _0 (B.4)
sing 4 COSpcp 0 COSpap COSPcp  —SiNgcp
Sing,p Singcp 0 COSpap SiNpcp  COShcp

Inserting the explicit expressions for the angjegerifies that the coordinaté®, 1 <i < 4,
indeed describe the relative coordinates of tree D in terms of independent particles coordinates,
namely

Mo+ M3)My [ Myry, + M.
¢ = (M> 3)My 272 3ar3 s (B.5a)
Mo+ M3+ My Mo + M3
[ MoMs;
D |2 ° (p,— B.5b
&5 M2+M3(T2 73) (B.5b)

D (M3 + M3+ Mg)Ms [ Mory + M3rz + Myry
53 = — Ts5 (B.5C)
Mo+ M3+ My + Ms Mo+ M3+ My
¢P My(Mz + M3z + My + Ms) ( Mory + Marg + Myrs + Msrs (B.50)
— —7r1). .
4 My + My + M3+ Mg+ Ms Mo+ M3+ My + Ms !

Appendix C. Finite transformations of hyperspherical harmonics

Finite transformations of multi-dimensional harmonics (or operators) correspond to the
infinitesimal ones considered in section 4 just as the prototype transformation (2.3) (pertaining
to a physical-space rotation) corresponds to the infinitesimal (2.1). This correspondence
holds generally, since all transformations relevant to this paper resolve into products of two-
dimensional rotations, as stressed repeatedly in the text.

Section 4 has identified hyperspherical harmonics in the frame of a representation based
on a vectom in the¢-dimensional space of maximally commuting operator §8t$. Within
this scope, we might deal here just witkdimensional rotations ak. This space itself is,



Topical review R33

however, subject to rotations of tHéf;} induced by the @V — 1)-dimensional coordinate
rotations considered in section 2 f§rparticle aggregates. Generic infinitesimal operators on
such spaces were indicated in (2.6)1;}'7, whose labeky refers to a pair of coordinate axes,
whereag; refers to a pair of particles.

Viewing physical-space rotations, identified by three Euler angles, as our model, recall
how two of these angles pertain to rotations abaugais (hence parallel to ary-plane) and
the third one to a shift o£’s orientation to a new directio#’, usually understood to lie on
the previouscz-plane. Whereas rotations by an anglaboutz simply multiply eigenvectors
of I, with eigenvaluen by €"¢, rotations by an anglé in the xz-plane transform it into a
superposition of eigenvectors whose eigenvalesesult by transforming the initiak with
the Wigner matri>d,§f?m (). (The indeX stands here for the largest value (‘highest weight’) of

Correspondingly, in a multi-dimensional space, we consider two distinct classes of two-
dimensional rotations: (a) rotations about one of{tHg} operators’ symmetry axes (i.e. in a
plane orthogonal to that axis) which multiply a harmonic eigenvectdt;ovith eigenvalue
Im;| < A; by "% and (b) orientation changes of &h’s own axis, within a specified plane
through that axis, yielding a superposition of harmonics with Wigner coefficléb;;, whose
subscripts differ only by replacing their; component withn;.

The multi-dimensional framework deals with transforming from one coordibasés
including its operator sdtH;}, to a newbasiswith its operator setHJf}, each set of indices
{i=1212,...}and{j =1, 2,...} being ordered. This framework affords articulating generic
transformations through sequences of two-dimensional rotations by Euler dpgleand
{6,}: the initial p,—; equals the angle between tli&'s zero azimuth and the plane of the
pair {H;—1, H;_,}’s axes. The initiab,_, equals similarly the angle between the axes of
H_4 ande/.zl. The nexip,—, shifts the plane of théf;_, HJ’.:l axes ton’.zl’s zero azimuth.
Corresponding angldg,—3, 6,—2, v—4} pertain to the operator pdif;_», ijzz}, aprocedure
to continue recursively.

Insofar as thq H;} operators are anchored to their coordinate systems, their two classes
of rotations drag their coordinate axes along. Altogether, transformations of harmonics
indices by coordinate rotations are thus seen to resolve into three elements: (a) rotation of
the ‘representation vectoR in the ¢-dimensional space of thig;} set; (b) rotation of the
{H;}'s themselves, described above; (c) further rotations of coordinates with respect to the
{H,}.

Example: kinematic rotation of harmonics

Here we transform hyperspherical harmonics of two Jacobi vectors representing a three-patrticle
system. Equations (2.12) and (2.13) have described the transformation of a Jacobi vector pair

from treeA to treeB
MM
A_ | _
51 = My + M, (ri—mr2)
¢ = (My+ M2)M3 (Myry + Mary .
27V My + My + M3\ Mi+ My °

B: - (C.1h)

¢b = M1 (M3 + Ms) o _ Mara* Mars
27N M+ M+ M\ My + M

(C.1a)
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as a kinematic rotation by an angle= tan 1 \/(My + My + M3)M,/(M1M>),

(€8, €8}y = (cospef —sinpey, sinBes + cospes). (C.2)

Since each vectog has three spatial components, we deal here with a six-dimensional
coordinate transformation with components

(€7, €9} = (€D, (€D)y, (€1)zs (€9)rs (€9)y, (€92} = {x1, 1, 21, X2, Y2, 22) (C3)
and similarly for¢?. The x-component of? results from a rotation by the angkin the
x1x2-plane, thec-component o5 by a rotation through-g in the (oriented),x;-plane, and
likewise for theiry- andz-components. The corresponding transformation of three-particle
harmonicgi, p,), as represented, for example, by (3.3), is indicated according to section 3
by

Ap) = Tag(B)hpa) = Y 1Ay) DLy, (B). (C.4)

By

Dealing here with Cartesian coordinate rotations otttiectors, at variance with the preceding
polar coordinate description, our present oper@igrfactors into three separate (commuting)
transformations of harmonics corresponding to rotationg byeach of the three coordinate
planesxixz, y1y2, andzizo

Tap(B) = exp(ipJiy) expipJiy) expiBJis). (C.5)

Convenient expressions of the three infinitesimal operators in this expressiag appear
in earlier parts of this paper. (a) Equation (2.2) identifigs as the operatofs for our
three-particle system, yielding immediately

eXPiBI5) [ Aps) = exXplimaB)|ipny). (C.6)
(b) Equation (A.B) identifies the combinatiod; + J;; as the sum of the operatdf -
and its reciprocak _ als ) both acting on the eigenvalues andm, of the{H, H,} pair, the
symbolal,~ meaning ‘raisingn; and loweringn,’. The combinatior w1 +E_ e of two
reciprocal (Hermitian conjugate) operators is itself Hermitian. The resultmg matrix elements
(| eXPBLE o + E_ -0} |2gs4) amount to Wignerd')) . elements, with parameters

specified by the following observations. Projecting and p/, onto a(l;_) generalizes the
lower indices ird,fj,?m to the present higher-dimensional setting:

m

(+-)
My -
m= B2 1,y (C.7)
(+-) | (+ )
Qp - Qyp

and similarlym’ = (m, — m5)/2. Section 4.2 discussed in item (e) a successiochain

of harmonics labelled here by, + na(fz ). with total length 2;, restricted, however, by

(4.9). The ‘multipole order’ represented by the upper parametd;fjm corresponds here

to half the length of this chain of harmonics. Finally, the generalization of the ‘triangular
condition’ familiar from three dimensions now require@ge 4 ) and|)»u/A) to lie on thesame
chain of harmonic$,, p, +na12 )y, Analogy to the relation, = 2(l+ +1_) suggests treating
exp[l,B(EmY2 >+E_a<;2 ))] like a rotation about the-axis in three dimensions. With the standard
definition of Euler-angle rotations, the corresponding matrix element picks up an additional
phase factor exp{in’ — m)m/2] resulting from rotating they- onto thex-axis and back.
Note also that the sum of reciprocal operators in our matrix element lacks the%atnereby
effectively multiplying the angl@ in thed-symbol's argument by a factor of 2. The procedure,
outlined here for a three-particle example, extends similarly to larger aggregates.
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Appendix D. Outline of procedures for treating large sets of identical particles

Constructing wavefunctions of a few (three or four) electrons, with the required
antisymmetrization, is rather familiar, being extended to atomic shell filling, for example, in
chapter 8 of [82]. Its extension to much larger sets remains problematic. Deceptively simple
considerations, to be presented below, indicate that this extension may actually proceed along
the same lines, essentially because successive steps prove independent of one another. Whether
these considerations constitute more than just a ‘solution in principle’ for this fundamental
problem of quantum many-body theory remains to be seen. The inevitable exponential
proliferation of operations to be carried out hampers their actual implementation for all but the
smallest sets of particles. Significant simplifications occur particularly for a system’s ground
state configuration owing to (in general) higher symmetry in this state. Even for this case,
however, the antisymmetrization of sets with more than three identical particles still presents
a formidable task. The most promising approach to this problem’s systematic saution

its implementations currently being developed by Barnea and Novoselsky [42], employing
the concepts discussed in this topical review, namely, Jacobi coordinates and hyperspherical
harmonics.

Coordinates and their symmetrization

Identity of particles implies that permutation afiy pair of them leaves any function of the

pair unchanged. Atrtificial labelling of such particles, by indices 1, 2,3, ..., appears
nevertheless generally desirable for purposes of ‘book-keeping’. It is then necessary to
‘symmetrize’ any function of particle positiong(ri, r», .. .), to ensure itsnvariance under
permutation of each paiof indices(i, j), by superposing sets of such functions differing by

the whole set of relevant permutations. Spin and position coordinates should be combined,
of course, in this construction that proves increasingly laborious with increasing number of
particles.

Classification by seniority

The ‘seniority’ label (v’) of an atomic state indicates the number of its particle pairs
characterized &S and thus isolated from its remaining particles. This characterization means
invariance under rotation of space coordinates of both spin and position variables. The spin
part of this label applies equally regardless of the total number of particles in the system. The
‘S’ label implies a spherically symmetric matching of the pair’s angular distribution, whose
extension to multi-dimensional systems needs elaboration. Considering that this symmetry is
attained by combining a pair of orbitals even and odd, respectively, under reflection through
a plane—thus stretching in orthogonal directions—we suggest achieving the corresponding
invariance in higher dimensions by combining pairs of hyperspherical harmonics pertaining
to Jacobi trees constructed by selecting orthogonal space directions at each stepwise addition
of one patrticle.

Introduction of ‘triple tensors’

This operation, introduced by Judd in the 1960s and described in [82] (pp 209ff), yields a
systematic classification of the shell-filling process for the electrons of each atomic shell.
It rests on elementary applications of coordinate-rotation transformation pairs and of their
‘reduction’, which appear as equally serviceable regardless of their dimensionality.
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Separation of particle subsets

This operation, familiar in atomic systems and leading there to the ‘fractional parentage’
procedure, has a major role in multi-particle settings where, typically, electron subsets perform
varied functions forming ‘closed shells’ (or subshells) of different atoms as well as chemical
bonds, preserving the relevant symmetry and coherencéke structure and flexibility of

the Jacobi trees corresponding to alternative hyperspherical harmonics appear well suited to
extension to multi-particle settings, with appropriate development of recursion techniques.
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