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TOPICAL REVIEW
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Abstract. The quantum dynamical evolution of atomic and molecular aggregates, from their
compact to their fragmented states, is parametrized by a single collective radial parameter.
Treating all the remaining particle coordinates ind dimensions democratically, as a set of
angles orthogonal to this collective radius or by equivalent variables, bypasses all independent-
particle approximations. The invariance of the total kinetic energy under arbitraryd-dimensional
transformations which preserve the radial parameter gives rise to novel quantum numbers and
ladder operators interconnecting its eigenstates at each value of the radial parameter.

We develop the systematics and technology of this approach, introducing the relevant
mathematics tutorially, by analogy to the familiar theory of angular momentum in three dimensions.
The angular basis functions so obtained are treated in a manifestly coordinate-free manner, thus
serving as a flexible generalized basis for carrying out detailed studies of wavefunction evolution
in multi-particle systems.

1. Introduction

The challenge for atomic and molecular theory to deal with progressively larger aggregates of
electrons and nuclei suggests treating them in terms of global parameters, in contrast to the
usual independent-particle approach [1–4]. Globally one may represent each configuration of
N particles by a single vectorR identified by 3(N−1) internal coordinates with the origin at its
centre of mass.R’s modulusR thus represents the aggregate’s overall size, while its direction
R̂ specifies its geometry, i.e. the layout of the constituents’ relative locations and orientations.
Quantum dynamics then controls wavefunctions ofR that emphasizêR’s evolution from a
compact to a fragmented structure asR grows.

In the centre-of-mass frame, the reduced two-body Coulomb problem separates in
spherical coordinates. Extending the system by adding more particles, thekineticenergy retains
its three-dimensional spherical symmetry as a subset of its symmetry in higher dimensions.
This remark suggests concentrating the search for appropriate coordinates on the kinetic
energy. Hyperspherical coordinates prove suitable for our task, by combining the symmetries
of particles’ kinetic energies into a unified internal kinetic energy of the whole aggregate. This
procedure ensures an accurate description in the compact limit where the aggregate’s kinetic
energy predominates.

In a first step, hyperspherical coordinates separateR’s modulusR from its directionR̂,
the latter being represented by parameters analogous to the polar coordinates of physical
space. The polar-coordinate symmetries, embodied in the familiar formalism of angular
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momentum theory, thus extend automatically toR’s (3N − 3)-dimensional treatment.
Our proposed perspective of hyperspherical coordinates as extending the three-dimensional
spherical symmetry to higher dimensions affords advantages far beyond the technical aspect of
providing a convenient coordinate system. Separating the single hyper-radiusR from a large
number of hyper-angles, and focusing on the symmetries under transformations of these hyper-
angles, allows one to handle most of the many degrees of freedom in a multi-particle system
analytically. For example, explicit calculation of angular integrals may be avoided in much
the same way as in ordinary three-dimensional angular momentum theory by replacing such
overlaps with coupling coefficients derived directly from the symmetry under (d-dimensional)
rotations. A second example employs thecoordinate-independentrepresentation ofd-
dimensional transformations [5–8] to construct complete sets of hyperspherical harmonics,
higher-dimensional analogues of spherical harmonics,without solving partial differential
equations in any specific coordinate system. This application proceeds much as in three
dimensions, where all harmonics may be built recursively from a single function once the
appropriate ‘laddering’ operators are identified. The resulting flexibility in choosing centre-
of-mass coordinate frames is crucial in the case of a multi-particle system with its evolving
structure, because no single reference frame proves appropriate throughout theentireevolution.

The hyper-radiusR serves as the ‘evolution parameter’ of wavefunctions9(R; R̂),
whoseR̂-dependent features evolve with increasingR toward their alternative fragmentation
terminals. In more detail, the hyper-radiusR of an N -body aggregate of masses
m1, m2, . . . , mN , located at coordinatesr1, r2, . . . , rN from the centre of mass, is given by

R =
( N∑
i=1

Mir
2
i

M

)1/2

M =
N∑
i=1

Mi. (1.1)

In the special case of charged, point-like constituents (electrons and nuclei) relevant to atomic
and molecular applications, the Schrödinger equation governing the aggregate’s evolution takes
the hydrogen-like form, in atomic units (au) [1],[
− 1

2M

(
d2

dR2
+
1R̂

R2

)
+
Z(R̂)

R

]
R(3N−4)/29(R; R̂) = E R(3N−4)/29(R; R̂). (1.2)

The factorsR(3N−4)/2, proportional to the square root of a hypersphere’s area with radiusR,
correspond to the familiar factorr of wavefunctions in physical space. Note how(3N − 4)/2
reduces to unity for the H atom, whereN = 2. Separation of these factors affords non-zero
values of9 atR = 0 and removes first derivatives from (1.2).

The general theory of hyperspherical coordinates (originally conceived for three-body
scattering problems) dates to the 1950s [9–12]. Since then, hyperspherical methods have been
fruitfully applied to a wide variety of many-body phenomena ranging from quantum chemistry
to particle physics, as illustrated, for example, by several contributions in [13].

Delves [14, 15] pioneered the method’s application to shell-model calculations of nuclei.
To this day, the hyperspherical approach remains a standard tool in nuclear physics, notably in
the study of halo nuclei [16], three-nucleon systems [17], as well as large nuclei [18] and even
subnuclear (quark) structure [19]. (For reviews on hyperspherical methods in the context of
nuclear physics, see e.g. [20–22].)

In the seemingly very different context of reactive scattering in quantum chemistry, the
participating atoms’ coordinates have typically been cast in hyperspherical form, their motions
being governed by effective potentials [23–25]. Besides molecular reactions [26–32], the
hyperspherical approach also applies to molecular structure [33] and quantum phase effects in
chemical reactions [34, 35].
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These applications required more general and mathematical investigations on the structure
and properties of hyperspherical functions [36–39], with a special focus on additional quantum-
physical features such as antisymmetrization in fermion systems [40–42] and internal structures
of anN -particle system in three-dimensional space [43].

Applications of hyperspherical methods to doubly excited states of two-electron systems
in atomic physics [1, 2] resulted in a complete classification scheme for these states [44–
47], based on systematic investigations of the wavefunctions’ structure [48–51]. Connections
with molecular structure [52, 53] arising from these classifications have more recently afforded
extending the hyperspherical approach to systems with several heavy particles besides electrons
(i.e. to molecules) [54]. In three-body Coulomb problems, hyperspherical methods have
become computationally competitive through the ‘hyperspherical close-coupling method’
[55], and more recently in the form of ‘diabatic-by-sector’ numerical methods [56]. Another
extension employing over-complete basis sets afforded determining accurately resonances of
very high-lying doubly excited states close to the threshold for double ionization [57, 58]. Thus,
the hyperspherical approach covers essentially the entire energy range from the ground state,
through the ‘Wannier region’ around threshold for full disintegration, to energies high above
this regime (see, e.g., [59]). Besides the two-electron atom and generic three-body Coulomb
systems, studies have focused on doubly excited many-electron atoms [60, 61], with several
forays into atoms with three [62–66] or even moreexcitedelectrons [67–69]. Moreover, the
treatment of highly excited atoms in external fields [70, 71] has extended the list of successful
applications of the hyperspherical method in yet another direction. Currently, physically
adapted Sturmian basis sets promise further advances in broader contexts [72]. Reviews on
various aspects of the hyperspherical approach in atomic physics may be found, for example,
in [73–75]. See also [76] for a discussion of the reliability of the hyperspherical adiabatic
method.

Our equation (1.2) implies going a step further, extending hyperspherical coordinates to
all constituents, electrons and nuclei, governed by their Coulomb interactions. Equation (1.2)
thus represents an exact Schrödinger equation, and all calculations proceeding from (1.2) will
be completelyab initio [3, 4, 77–79].

We intend in this review to encompass all types of applications of hyperspherical
coordinates. Thus the definition (1.1) need only extend over the dynamically relevant variables
for a given problem, ignoring, for instance, the coordinates of electrons belonging to closed
shells. In this context note already the interplay between ‘motions’ on widely different
(time) scales: at each fixed hyper-radiusR, a ‘geometrical’ structure emerges resulting
from the faster motion in the hyper-angular coordinates; the emerging structure then evolves
on a different scale asR increases. This theme—central to the hyperspherical method—
serves as a guideline throughout the present paper. As a qualitative illustration, consider
the following hyperspherical description of a water molecule H2O, a system consisting of
ten electrons, two protons and an oxygen nucleus. In a preliminary step towardsab initio
construction of this molecule, a hyperspherical procedure would fill first the closed inner
shells of the constituent atomic cores, in this case only the K shell of O6+. Recognizing the
vast difference between electronic and nuclear motion, the electronic motion is ‘parametrized’
by the cores’ arrangement. For each core arrangement, the electronic motion is analysed to
find the most favourable electron distribution. This analysis proceeds in a hyperspherical
representation of the valence electrons as a single entity consisting at the outset of a
group of six electrons joined by two single electrons, as suggested by the core charges.
Analogous procedures for the construction and transformation of such ‘Jacobi trees’ will
be outlined in section 2. The particular arrangement of the cores should manifest itself
in the hyper-radiusRe associated with the set of valence electrons alone, once the latter
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are attached to the cores. The angular coordinates specifying the geometrical arrangement
of the valence electrons depend parametrically on their own hyper-radiusRe, which is in
turn parametrized by the ‘size’ and ‘shape’ of the nuclei (or cores). The latter is itself
described by a set of hyperspherical coordinates,{RN, αN, θN }, to be introduced in section 2,
thereby completing the hierarchy of geometrical structures governed by the interplay of
hyper-radial and angular motions, and of electronic and atomic motions. The dynamical
evolution of the ‘shape’ characterizing the cores’ arrangement should minimize the energy of
the whole molecule for the correct molecular geometry, while the hyper-angles characterizing
the distribution of valence electrons should indicate that four of them are essentially attached
to the O6+ core, with the remaining two pairs forming the bonds holding the molecule
together. Without attempting to carry out the computational details of this description, the
present paper introduces techniques required for its implementation. Namely, we intend to
focus on the universal (i.e. coordinate-independent) aspects of hyperspherical coordinates and
harmonics, to be implemented upon identifying the suitable Jacobi coordinates of a specific
system.

Returning to equation (1.2), we note that features of9 are discrete, owing to the finite
extent of hyperspherical surfaces, being accordingly represented by appropriate quantum
numbers and nodal structures rather than by coordinates, much as they are in three dimensions;
their interpretation will, however, require not only adequate mastery of high-dimensional
geometry, a subject of this paper, but also of the dynamical interplay between light electrons
and heavy nuclei. Equation (1.2) should serve to calculate energy eigenfunctions forany
atom, molecule or analogous aggregate. Its solution for ‘collision complexes’ formed by
colliding molecules will provide the relevant scattering matrix directly, as indicated in section 5,
bypassing the calculation and study of energy surfaces.

The structure of (1.2) parallels that of the atomic H equation, being actually its extension to
multi-particle systems. Its first term represents the kinetic energy of the hyper-radial motions,
its second term that of the hyper-angular motions, and its last term the potential energy, which—
being the sum of Coulomb interactions among all of the aggregate’s particle pairs—scales as
R−1. The evolution of9 ’s angular part as a function ofR, foreign to hydrogen, stems from
the non-zero value of the commutator [1R̂, Z(R̂)].

Equation (1.2) preserves instead hydrogen’s invariance under coordinate rotations by
securing invariance of the kinetic energy operator1R̂/2Munder rotations of̂Rabout the centre
of mass, by mass weighting the coordinates as described in the following. Sets of mutually
independent eigenfunctions of1R̂’s, analogues of spherical harmonics called ‘hyperspherical
harmonics’, serve to expand (1.2) into a system of coupled ordinary differential equations in
the variableR, analogous to those of atomic physics. The ‘effective atomic number’ operator
Z(R̂) turns then into a matrix with rows and columns labelled by hyperspherical quantum
numbers.

Simple examples of such harmonics ind dimensions have been formulated [80, 81], the
corresponding eigenvalues of1R̂ having long been known. These examples, to be discussed
in section 3, provide solutions for the second-order eigenvalue problem of1R̂ in specific
coordinate systems ford dimensions. Developing an appropriate systematics of multi-variable
hyperspherical harmonics suited to each system (and thus coordinate-independent) constitutes,
however, a major objective, to be approached in section 4 on the basis of symmetries alone.

The importance of such a description cannot be overemphasized. The distribution ofR’s
multi-dimensional direction̂R should represent specific features of each system flexibly, near
and far from its centre of mass as well as at intermediate ranges. At short ranges, where the
system is compact, this distribution should minimize the centrifugal effect represented by the
eigenvalue of1R̂ in (1.2). At large ranges, where the system fragments,R̂’s distribution should
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represent alternative, mutually orthogonal, fragmentation channels. Both of these contrasting
representations can be achieved in terms of flexible ‘Jacobi (or centre-of-mass) coordinate’
sets, interrelated by algebraic transformations, the subject of section 2.2.

The present paper develops implications of the quantum discovery that pairs of variables
conjugate in Hamiltonian dynamics are actually related by Fourier transformations, whereby
dynamics reduces to kinematics, more generally togeometry(whence stems this paper’s
title). Expanding equation (1.2) in hyperspherical harmonics reflects but one aspect of these
implications; Jacobi coordinates provide a second aspect.

The angular Laplacian’s eigenvalue ind dimensions readsλ(λ + d − 2), with integerλ.
Thus, the system of coupled equations resulting from expansion of (1.2) into hyperspherical
harmonics parametrized (in part) by the hyper-angular momentumλ is formally infinite, owing
to the infinite range ofλ, and seems accordingly impractical. Key circumstances, however,
reduce its size generally to a modest level.

(a) For low-lying channels, the centrifugal term of (1.2), whose numerator rises asλ2,
quenches the amplitude of9 ’s components with large values ofλ to negligible levels
at small hyper-radiusR.

(b) Correspondingly, its Coulomb term (prevailing at largeR) has eigenvalues similarly spread
over many orders of magnitude, its lowest one approximating the lowest dissociation
threshold for molecules or ionization threshold for single atoms and its highest one
approaching the threshold for full disintegration of the system.

(c) The range ofλ values of practical relevance thus depends critically on the energy range
relevant to each step of evolution. So do accordingly the dimensions of the corresponding
set of hyperspherical harmonics and of the relevantZ(R̂) matrix.

Early calculations [77–79] have accordingly shown the range ofλ values relevant at each
value ofR to be modest, thus affording ready numerical integration of (1.2). Each infinitesimal
‘dR’ step of this integration generates an infinitesimal rotation of the9(R; R̂)wavefunction by
[Z(R̂)/R]dR in theR̂-space. The broad range of applications envisaged in the present paper
rests on the power of its underlying recursive procedures and on the characteristic aptitude of
computer technologies to apply such procedures step by step.

The vectorR, representing the structure of a multi-particle aggregate and constructed
by recursiveprocedures, has been resolved above into its magnitudeR and directionR̂,
corresponding to the aggregate’s size and shape, respectively. The aggregate’s shape, in
turn, needsarticulating into appropriate parameters—multipole moments, for instance—
representing structural features of each system, a task presenting a challenge to be approached
in section 5 in terms of equation (1.2)’s eigenchannel solutions8ρ(R)(R). An elementary
example of such developments is afforded by noting that an aggregate’s fragmentation elongates
its shape, thus minimizing its moment of inertia about a symmetry axis. Analogous features
should be identified systematically and utilized in specific applications.

The following sections should introduce the reader to analytical tools serving to treat
atoms and molecules of increasing size: (a) coordinate systems whose dimensionality extends
recursively and flexibly, adaptable to particle sets with different masses arising in molecular
structure and collisions (section 2); (b) prototype examples of hyperspherical harmonics
suitable for multi-electron atomic systems with a single heavy centre (section 3); (c) systematics
of harmonics labelled by eigenvalues of commuting operator sets{Hi}, adapted to the evolving
structures of atoms and molecules at increasingR (section 4). Section 5 will outline an
analytical procedure to integrate (1.2), displaying the evolution of relevant wavefunctions
and thereby casting the results of previous algebraic developments [7, 8] into a more explicit
geometrical framework.
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The wide range of symmetry applications, resulting from invariance under coordinate
rotations and thus relevant for our application to quantum mechanics, is currently covered
appropriately by [82]. Terminology drawn from [7, 8] will appear in ‘. . . ’, but familiarity with
these references is not assumed.

2. Linear coordinate transformations in higher dimensions

Physical-space expansions into spherical harmonics hinge on their geometrical and kinematical
behaviour under coordinate rotations, labelled as the ‘angular-momentum theory’. Their
extension to larger coordinate sets affords flexibility for displaying geometrical and kinematical
features of multi-particle systems, at the price of extending and elaborating each system’s
treatment.

Whereas, in a three-dimensional prototype, rotations about thex-axis, i.e. in theyz-plane,
are not independent of rotations about thez-axis because of involving thez-axis itself, in a
multi-dimensional setting rotations about different axes are independentinsofaras they operate
in separateplanes. Each elementary coordinate rotation is then properly identified, in multi-
dimensional settings, as occurring within (or parallel to) the plane through a givenpair of
coordinate axes, rather than as preserving a single invariant axis. Independent rotations thus
occur innon-crossing planes, rather than within a single one, for example, in thexy- and
zt-planes in four dimensions. Ind dimensions the number of independent rotations is readily
seen to equal the largest integer not exceedingd/2, i.e.d/2 for even values ofd and(d−1)/2
for oddd. This number, called therankof each transformation group [7, 8], is usually indicated
as` = [d/2].

Independent Hermitian infinitesimal-rotation operators, corresponding to

lz = −i

(
x
∂

∂y
− y ∂

∂x

)
= −i

∂

∂ϕ
(2.1)

in three dimensions, are indicated generically byHi , here and in the following. Their analytic
(differential or algebraic) expression, often analogous to (2.1), depends on a group’s structure
and on coordinate choices to be described later. The elementary example of the helium atom,
consisting of three particles and described in terms of six coordinates{x1, y1, z1, x2, y2, z2}
with the origin at its centre of mass, involves three independent rotations represented, for
example, by

−i

(
x1

∂

∂y1
− y1

∂

∂x1

)
− i

(
x2

∂

∂y2
− y2

∂

∂x2

)
− i

(
z1
∂

∂z2
− z2

∂

∂z1

)
. (2.2)

The first two of these expressions are plainly analogues of the single-particlelz; the
interpretation of the last one—intermixing two particles’ coordinates—remains obscure at
this point. Note also that finite rotations are familiarly represented by exponential functions of
infinitesimal operators, as in the example of rotation by an angleϕ about az-axis, represented
by

eiϕlz . (2.3)

Maximal sets of commuting operators{Hi}, such as the three operators in (2.2), perform
in multi-dimensional settings the function performed bylz for three-dimensional rotations;
their eigenvalues are also integers of either sign, often called‘weights’. After separating
the centre-of-mass motion of anN -particle aggregate, its 3N − 3 internal coordinates are
partitioned typically in three-dimensional subsets ofsingle-particlecoordinates. Subsets of
independent infinitesimal rotation operators are then conjugate to anglesϕi = tan−1(yi/xi)

ranging from 0 to 2π , and thus effectively boundless. These three-dimensional coordinate
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subsets may also include anglesθi = tan−1((x2
i + y2

i )
1/2 /zi), θi ’s range being restricted by

centrifugal potentials near each of its poles. Angular coordinates representing tan−1(ri/rj ) of
single-particle distances from a centre of mass are similarly confined by boundary conditions.
For the purpose of illustration, replace the Cartesian coordinates of helium with six (frequently
used) hyperspherical coordinates, namely,

R = (x2
1 + y2

1 + z2
1 + x2

2 + y2
2 + z2

2)
1/2

α = tan−1

(
x2

2 + y2
2 + z2

2

x2
1 + y2

1 + z2
1

)1/2

θi = tan−1

(
(x2
i + y2

i )
1/2

zi

)
ϕi = tan−1

(
yi

xi

)
.

i = 1, 2 (2.4)

These definitions map the indistinguishability of electrons onto anovel symmetryunder the
reflectionα→ π/2−α. The operators (2.2) now take the form, analogous to the last expression
in (2.1),

−i
∂

∂ϕ1
−i

∂

∂ϕ2
−i

∂

∂ tan−1(cosθ2 sinα/ cosθ1 cosα)
. (2.5)

Note that sets of commuting operators{Hi} are subject to coordinate transformations
among equivalent sets. They are, in fact, suited to represent invariants of relevant particle
subsystems. Each of these sets ind dimensions is complemented by a much larger set of
(generally) non-commuting operators, analogues oflx ± ily in three dimensions that raise
or lower them quantum number of spherical harmonicsYlm(θ, ϕ), respectively. Thereby one
reaches the total ofd(d−1)/2 (increasing quadratically withd) unrestricted linear infinitesimal
transformations ind dimensions. Most of these operators characteristically involve coordinates
of different particles, thus correlating their motions, e.g. combinations of equation (2.1)’s
analogues

J
xy

ij = −i

(
xi
∂

∂yj
− yj ∂

∂xi

)
J xxij = −i

(
xi
∂

∂xj
− xj ∂

∂xi

)
i 6= j (2.6)

would raise and/or lower eigenvalues of operator pairs{Hi,Hj }. (The upper indices of theJ
symbol denote the physical-space components, while its lower labels signify particles’ indices,
together specifying the relevant variable pair in thed-dimensional space.)

This and analogous considerations enlarge the scope of our study considerably, yielding
a total of d(d − 1)/2 = (3N − 3)(3N − 4)/2 infinitesimal operators forN particles in
d = 3(N − 1) dimensions. The resulting wealth of operators will be introduced here and
developed later. As eachHi involves two coordinates, odd values ofd imply that one
coordinate, often labelled by 0, fails to be included in any of the`Hi ’s, even though contributing
to the set (2.6).

To establish contact with the relevant mathematical theory of Lie groups and Lie algebras
[7, 8, 82], we observe that the set of linear infinitesimal rotation operators ind dimensions
considered in this section forms the ‘special orthogonal group’ of transformations, designated
asSO(d); the term ‘special’ referring to exclusion of dilations. Quantum mechanics extends
this group to include the analogous complex transformations forming the unitary groupSU(d)

of transformations that preserve the complex Hermitian form
∑

k xkx
∗
k instead of its real

quadratic analogue. The full unitary groupU(d) results from adding multiplication with a
complex phase exp(iα) to its ‘special’ versionSU(d). The real part of the Hermitian form is
preserved by orthogonal transformations, its imaginary part by ‘symplectic’ transformations
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that preserve bilinear formsoddunder permutations of their elements, such as the spin invariant
u1/2u

∗
−1/2 − u∗1/2u−1/2.

2.1. Symmetry under rotation reversal; ladder operators

Reversal of a rotation’s direction is represented, e.g. in (2.1), by switching the sign of the
coordinatey or of the imaginary unit, thereby reversing the sign of the operatorslz and of their
eigenvaluesm. Symmetry under this reversal has been highlighted in [7, 8] by replacing pairs
of coordinate labels(xi, yi) with pairs(xi, x−i ), thus replacingyi in (2.6). The indexi thus
runs over(1, 2 . . . , `), being complemented by anx0 for spaces of odd dimensiond. Spherical
coordinates then includèazimuthsϕi , with odd parity under rotation reversal, and` polar
anglesθi , changed by this reversal intoπ − θi .

Here we preserve the familiar notation with coordinate pairs(xi, yi), pointing out that the
rotation reversal is often complemented with the reflection through the coordinate planexz,
which automatically reverses the sign ofyi . The resulting combination reverses the handedness
(‘chirality’) of each particle’s space coordinates(x, y, z).

Note first that, whereas the physical space operators(lx, ly)change by unity the eigenvalues
m of lz, each of theN -particle operators (2.6) shifts the eigenvalues{mi,mj } of an operator
pair {Hi,Hj }. Whereas combinations(lx ± ily) act as ‘ladder’ operators raising or lowering
the eigenvaluesm of lz by unity, combinations offour among theseN -particle analogues (2.6)
raise or lower eigenvaluepairs simultaneously. The resulting rather elaborate classification
of operators became a central feature of the algebraic treatment [7, 8]; we shall follow a more
direct approach.

Recall how the ladder operators of physical space,lx ± ily , emerge as non-Hermitian
combinations of the Hermitian pair(lx, ly). Similarly, non-Hermitian ‘raising’ and ‘lowering’
conjugate operators, designated here generically as(a†, a), respectively, may be viewed as
combinations of two pairs of Hermitian operators,a† + a and i(a† − a), symmetric and
antisymmetric, respectively. Recall also that the physical-space Hermitian operators(lx, ly)are
antisymmetric and symmetric, respectively, under reflection through thexz-plane, according
to standard ‘Condon–Shortley’ conventions. A heuristic approach to constructing ladder
operators might thus start by identifying combinations of operators (2.6) that are symmetric
and antisymmetric, without resorting to Lie-algebra procedures.

Now consider the example of infinitesimal operators pertaining to the four-coordinate set
{xi, yi, xj , yj }. Besides the commuting pair{Hi,Hj }, denoted here as{(xi, yi), (xj , yj )}, the
set of operators includes the ones from (2.6), labelled(xi, yj ) and(xi, xj ), respectively, as
well as the additional two(xj , yi), (yi, yj ), totalling six operators, four of which intermixi
andj coordinates. This last subset gives rise to two pairs of symmetric and antisymmetric
Hermitian operators, and thence to two pairs of desired non-Hermitian operators, one of them
‘raising–raising’, designated as(++), together with its conjugate(−−), and ‘raising–lowering’
operators(+−) and(−+). Commutators among these operators generate other operators of
the set, much as commutators among thel components do, as detailed in appendix A. This
particular example, with ladder operators appearing simply as combinations of two components
acting onmi andmj in a way familiar fromSO(3), is not generic forSO(d). Instead its
structure is due to the well known feature of orthogonal groups thatSO(4) factors into a pair
of SO(3) subgroups. A related example familiar in physics is afforded by the factoring of
the (proper) Lorentz groupSO(3, 1) into SU(2)× SU(2), with ‘spinors’ of opposite chirality
[82] (chapter 11). Reference [7] derives these results algebraically.

Returning once again to the physical-space operatorslx ± ily , recall how they transform
elements of a spherical harmonics set{Ylm} into one another. They serve further to identify
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a set’s range, for example, by causing its ‘highest-weight’ elementYll(θ, ϕ) to vanish when
acted upon bylx + ily . The ladder operators outlined above will perform an analogous role
for the much larger and multi-faceted sets of hyperspherical harmonics. To this end one may
combine the operators (2.6) first into pairs symmetric and antisymmetric in their(i, j) indices,

J
xy±
ij = 1√

2

(
J
xy

ij ± J xyji
) = 1√

2

(
J
xy

ij ∓ J yxij
)

(2.7a)

sinceJ yxji = −J xyij . These Hermitian operators are then paired into non-Hermitian operators,

J
xy

ij± = J xy+
ij ± iJ xy−ij . (2.7b)

The heuristically introduced operators of type (2.7b) fail to act correctly as ladder operators.
Nevertheless, examples of ladder operators with a similar structure arising as superpositions
of four operators (2.6) will appear in (4.11a)–(4.11c), playing a key role in section 4.
(Combinations (2.6) that instead include the unpaired variablex0 of odd-dimensional systems
do not lend themselves to the symmetrization (2.7a), being thus more nearly analogous to the
three-dimensional(lx, ly).)

The numbers of infinitesimal operators (2.6) and of the resulting ladder operators increase
quadratically with the numbers of particles and of the corresponding coordinates. It will turn
out in following sections, however, that a number` of linearly independent‘raising–lowering’
operatorpairs, equal to the number of commuting operatorsHi , suffices to generate complete
orthogonal sets of hyperspherical harmonics. Each of those sets corresponds to a choice of
relevant coordinates and of the{Hi} set.

The coordinates and their infinitesimal rotations, developed thus far in this section, would
intermix in their dynamical applications with the inertial effects of the mass differences
among various particles. These complications can, however, be removed by appropriate mass
weighting of the coordinates as anticipated in section 1 and implemented next.

2.2. Jacobi coordinates

Mass weighting of coordinates has served in section 1 to define the hyper-radiusR conveniently,
contrasting it with the angular coordinates represented byR̂. Analogous devices serve to
weight appropriately the components ofR̂ pertaining to particles with different massesMi ,
making them homogeneous, and thus removing the Laplacian1R̂’s explicit dependence on
single-particle masses. To this end, generic sets of ‘Jacobi coordinates’ have been introduced
long ago [12], replacing the single-particleri by vectorsξi with the mass weighted dimension
mass1/2 length.

Alternative sets of Jacobi coordinates occur, reflecting alternative groupings of particles,
properly weighted by the mass of each group through linear transformations withdimensionless
coefficients. These sets are in turn interconnected by dimensionless linear transformations,
each of whose steps amounts torotation in one plane. Handling of Jacobi coordinates thus
becomes laborious even though each step be elementary.

Jacobi coordinates prove essential by identifying each fragmentation channel through a
particularJacobi treeseparating at its base into two branches corresponding to the relevant
fragments. One thus displays the evolution of each particle-aggregate toward a specific
fragmentation channel by the structure of relevant tree-shaped Jacobi coordinates. The label
‘Jacobi tree’ reflects the evolution of a multi-particle system fragmenting (i.e. ‘branching out’)
from a trunk into separate systems. (Developing a multi-particle wavefunction toward one
among its alternative fragmentations presents instead an upside down view of that tree.)

We show below a few simple prototype Jacobi trees, whose upper endings correspond
to single-particle labels. Permutation of two particles is represented by rotating(a) about its
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trunk. Changing(b) into (c), often referred to astransplantingof branch 2, corresponds to
the prototype transformation of hyperspherical harmonics. Generic transformations resolve
into sequences of permutations and transplantations. Tree(e) is often called ‘canonical’.
Multi-particle systems are represented by correspondingly articulated trees.

A
A
A
AA

1 2

�
�
�
��

(a)

A
A
A
AA

�
��

�
�
�
��

1 2 3

(b)

A
A
A
AA

A
AA
�
�
�
��

1 2 3

(c)

A
A
A
AA

�� AA �
�
�
��

1 2 3 4

(d)

A
A
A
AA

�� �
��
�
�
��

�
�
�
��

1 2 3 4 5

(e)

The Jacobi trees just introduced serve to characterize multi-particle systems by their
hierarchy of composition, i.e. by indicating the order in which particles are joined to form
subcomplexes of the entire aggregate. The labels thus refer to particle indices. A similar
concept re-appears in a further context: analogous trees illustratecoordinate systemsand
their transformations, their branches labelling appropriate angles inR̂’s decomposition
[20, 68, 69]. Rotation of tree(a) by an angle 06 ϕ 6 2π represents a simple rotation
about an axis. Variation of a coordinate 06 θ 6 π maps onto the angle between two
branches.

Alternative sets of Jacobi coordinatesR̂ thus correspond to different tree structures. This
circumstance adds further elaboration to our procedure, yet serves to display the evolution
of whole aggregates. These aspects have not been apparent in the initial applications of the
present approach, dealing with very few particles, even though necessarily underlying the
treatment of any multi-particle system. Each transformation of hyperspherical harmonics
resolves accordingly into a transformation from one to another set of Jacobi coordinates and a
transformation of the corresponding harmonics.

Note the ‘hierarchical’ aspect of Jacobi-tree construction, which adds particles
sequentially, contrasting with the ‘democratic’ view of the multi-particle coordinates leading to
thequadraticincrease of the number of (2.6) operators as a function of the particle numberN .

Once again: each step dealing with Jacobi coordinates is elementary, but the number and
combinations of different steps are large, a characteristic generally encountered in computer
operations requiring adequate strategy and planning. Such operations may properly articulate
into successive phases. We anticipate, for example, in dealing with molecules, to build first
each atom’s inner shells independently, by Cavagnero’s procedure [67–69], combining later
the resulting atomic ions with the residual atomic electrons.

Similarly, the following sections present first alternative combinations of three particles,
lying in a plane with their centre of mass, into alternativepairs of mutually independent
collective coordinatesξ, followed by transformations among these pairs. Combinations of
larger particle sets into furtherξ’s will be dealt with next, utilizing analogous procedures
recursively. Even more extensive procedures will hinge on experience in treating large multi-
particle aggregates.

2.2.1. A three-particle prototype.The positionsri , i = 1, 2, 3, of a three-particle set identify
a plane where their centre of mass also lies. These positions are represented by these co-planar
vectors, but theirinternalkinematics involves only two independent Jacobi coordinate vectors,
ξ, with 3(N − 1) = 6 degrees of freedom.
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The standard procedure for constructing Jacobi coordinate vectors considers first the
positions of two among these particles, 1 and 2 here, with massesM1 andM2 and positions
r1 andr2, respectively. These input data combine into a first Jacobi vector weighted by the
square root of the pair’s ‘reduced mass’M12 = M1M2/(M1 +M2), namely,

ξ12 =
√
M12(r1− r2) (2.8)

whose centre of mass lies in the plane at

r12 = M1r1 +M2r2

M1 +M2
. (2.9)

The next step combines the first pair, with massM1 +M2 and centre-of-mass positionr12,
with the third particle lying atr3. This step is performed in accordance with (2.8) yielding the
second Jacobi vector,

ξ12,3 =
√
M12,3(r12− r3) (2.10)

with the reduced mass

M12,3 = (M1 +M2)M3

M1 +M2 +M3
. (2.11)

(The comma-separated subscripts indicate the particle subcomplexes to be joined.)
An additional feature relates the Jacobi vector (2.10) to its alternatives corresponding,

for example, to the permutation of indices 1 and 3, i.e.(1, 2, 3) → (3, 2, 1), yielding the
two-dimensional vector rotation

{ξ32, ξ32,1} = {ξ12 cosβ − ξ12,3 sinβ, ξ12 sinβ + ξ12,3 cosβ} (2.12)

by the angle

β = tan−1

√
M2(M1 +M2 +M3)

M1M3
. (2.13)

Analogouskinematic rotationscorrespond to cyclic permutations of indices.

2.2.2. Extension to multi-particle aggregates.The formulation of equation (2.10), with
elements from (2.8), has clearly recursive character. It implies that any pair of Jacobi vectors,
{ξp, ξq}, representing two subaggregates of particles centred atrp andrq with massesMp and
Mq , respectively, combines effectively into a single vector

ξpq =
√

MpMq

Mp +Mq

(rp − rq). (2.14)

Similarly, restructuring of any ‘Jacobi tree’ diagram, which represents a specific sequence
of particle combinations forming an aggregate, resolves into sequences of vector-pair{ξp, ξq}
rotations within a plane, analogous to that represented by (2.12). Such restructurings have
been discussed amply in [20] under the name of ‘timber transformations’, the word ‘timber’
being suggested by association with ‘Jacobi tree’. The simple underlying principle, stated in
that reference, lies in the feasibility to resolve any rotation in multi-dimensional spaces into a
sequence of plane rotations, a feature familiar for the three-dimensional rotations of physical
space. Appendix B exemplifies this procedure.

Transformations between different Jacobi trees prove highly relevant to our subject of
atomic and molecular few-particle systems for the following reason. The Coulomb coefficient
Z(R̂) results familiarly from contributions proportional to the reciprocal distances between
the N(N − 1)/2 particle pairs. Flexible sets of Jacobi coordinates afford treating each
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of these distances as a single coordinate, to be combined with others, thus avoiding the
familiar need to expand each term ofZ(R̂) into a multipole series. Thereby determining
Coulomb interaction matrix elements reduces to calculating integrals over 1/r rather than over
1/|ri − rj |.

3. Sample hyperspherical harmonics

The familiar spherical harmonics,Ylm(θ, ϕ), serve as tensorial base sets for(2l+1)-dimensional
transformations induced by rotations of the physical-space coordinates. In multi-dimensional
contexts analogous base sets of hyperspherical harmonics serve the same purpose. The name
‘harmonics’ identifies them as eigenfunctions of the angular Laplacian operator1R̂ in the
(d − 1)-dimensional space of̂R with eigenvalues−λ(λ + d − 2).

To understand the termd − 2 in this eigenvalue formula, note first that it reduces to unity
for d = 3 yielding the familiar eigenvaluel(l + 1) of the squared orbital angular momentum.
The unit in this expression corresponds to thesingleangular coordinateθ that accompanies
the angleϕ in polar coordinates. Its contribution to the eigenvalue, namelyl, corresponds to
the ‘zero-point energy’, ‘hl’, of a unit-mass particle oscillating along theθ coordinate in the
centrifugal field generated by its rotation alongϕ with quantum numberl. The occurrence of
d − 1 dimensions for the vector̂R raises the number of its coordinates, besidesϕ, from unity
to d − 2, thus accounting for the eigenvalue termd − 2.

As the pair of angles(θ, ϕ) identifies a direction of physical space, an equal number of
indices(l, m) identifies a harmonic belonging to a(2l + 1)-dimensional set, with the magnetic
quantum numberm labelled as a ‘weight’ andl in the role of ‘highest weight’. Extending
this parametrization tod-dimensional spaces requires us to describe sets of hyperspherical
harmonicsYλµ(R̂), whereλ replaces the ‘highest weight’l, the vectorµ represents a set of
d − 2 complementary labels and̂R a corresponding set ofd − 1 angles.

This extension provides the main tool for the quantum mechanics of multi-particle systems,
as indicated in section 1 anticipating the relevance of the hyperspherical harmonics and of their
treatment in [77, 80]. Recall that the position vectorR of anN -particle set (in its centre-of-
mass frame) hasd = 3(N − 1) dimensions. The wavefunctions9(R) of such a system,
envisaged in section 1, are conveniently expanded in hyperspherical harmonics in analogy to
expansions in spherical harmonics [77]. Their Schrödinger equation reduces similarly to a
system of coupled ordinary differential equations in the ‘hyper-radius’R.

The symbol for hyperspherical harmonics,Yλµ(R̂), replaces the indexl of spherical
harmonics by the indexλ corresponding to the eigenvalue−λ(λ + d − 2) of the (d − 1)-
dimensional angular Laplacian1R̂. This index also denotes the degree of the homogeneous
‘harmonic’ polynomial productsRλYλµ(R̂). The second indexµ replaces the indexm of
spherical harmonics with a corresponding set ofd − 2 parameters (the dimension ofR̂ less 1)
that identify a specific harmonic of degreeλ.

Expanding wavefunctions of a multi-dimensionalR utilizes ‘complete orthogonal sets’ of
hyperspherical harmonics. Completeness is achieved by extending the range ofλ adequately.
Only a finite set of harmonics, however, proves relevant at any finite value ofR, higher
values being effectively excluded by a generalized centrifugal potential at smallR, as noted in
section 1. (This potential, involving theλ parameter, includes contributions from derivatives of
variables corresponding to theα coordinate in (2.4) and representing the quantum mechanical
resistance of particles to compression by boundary conditions.) AsR increases more and
more hyperspherical harmonics start contributing to the relevant wavefunctions, requiring
adequate frame transformations to reflect the appropriate fragmentation channels, as outlined
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in section 5. Orthogonality requires identifying, for eachλ value, an adequate set of vectors
µ corresponding to the simple set of integer values|m| 6 l of the spherical harmonics and to
the relevant set of̂R components. Here, higher dimensionality implies more elaborate sets of
µ vectors.

Generating these sets ind dimensions, labelled by(d−2)-dimensional vectorsµ, relies in
essence on separating the Laplacian’s variables. In the three-dimensional prototypeYlm(θ, ϕ),
them label arises as an eigenvalue of thelz operator representing the number of nodes of the
corresponding eigenfunction sin|m| θ eimϕ , whereas the remainingl − |m| nodes pertain to the
θ variable. For hyperspherical harmonics, sets of section 2’s` commuting operatorsHi may
provide corresponding quantum numbersmi and eigenfunctions. The residualλ −∑i |mi |
nodes would then pertain to thed − `− 1 residual variables, analogues ofθ .

Whereas alternative orthogonal sets of spherical harmonics pertain to alternative
orientations of theẑ coordinate axis in three-dimensional space, analogous sets of
hyperspherical harmonics pertain to alternative selections of` commuting operators{Hi}, not
necessarily based on a coordinate set as they were in section 2. Whereas spherical harmonics
Ylm(θ, ϕ) depend on the ‘longitude’ϕ with |m| ‘meridian’ nodes and on the ‘co-latitude’θ
with l − |m| ‘parallel’ nodes, subdividing their plots into separate ‘lobes’, hyperspherical
harmonics depend—for particular coordinates—on ‘longitudes’ϕi , each with|mi | nodes, and
on the nodal distribution in the remaining coordinates. Additional components ofµ pertain to
alternative partitions ofλ that delimit the range of the parameters|mi | as well as of additional
coordinates. Note how the number ofµ components increaseslinearly with the numberN
of particles, contrasting again with the operators (2.6), whose number increasesquadratically
with N .

Consider now how the features of hyperspherical harmonics bear on equation (1.2)’s
expansion: the value of1R̂ in its centrifugal term dependsonly on the parameterλ of each
harmonic, whereas the coefficientZ(R̂) of its Coulomb term resolves for anN -particle set into
N(N − 1)/2 terms∼R/|ri − rj |, cast as matrices in the{λµ} basis. The flexibility afforded
by selecting thè operatorsHi and the remainingd − `− 1 coordinates should serve here to
avoid, or at least minimize, resorting to multipole expansion of each term.

We anticipate that coordinate rotations ind dimensions transform generally any harmonic
Yλµ(R̂) into a superposition of the harmonics of its whole orthogonal set with coefficientsDλ

µ′,µ
analogous to those that serve to transform spherical harmonics and form a ‘representation’ of
the rotation group. This feature rests on the multi-dimensional rotations’ aptitude to resolve into
sequences of two-dimensional rotations, thereby affording us to express anyDλ

µ′,µ coefficient in

terms of more familiar three-dimensional Wigner’s Euler-angle functionsd
(l)
m′m. The occurrence

of alternative sets{Yλµ} with the sameλ value reflects the multiplicity of the infinitesimal
operator basis. Systematic classifications of alternative sets{Yλµ}, appropriate to the number
and structure of their coordinates, shall rest on the subgroup chains of the relevant group, as
outlined below. With this background we describe now two sample harmonics’ sets.

3.1. A generic structure

Laplacian equations for hyperspherical harmonics ind dimensions,

[1R̂ + λ(λ + d − 2)]Yλµ(R̂) = 0 (3.1)

lend themselves to solution by separation of variables, since1R̂ amounts to a sum of terms
f (R̂)(∂/∂xi) gi(R̂)(∂/∂xi)with metric coefficientsf (R̂)andgi(R̂). Their prototype example
is afforded by the Schrödinger equation for the He atom, withN = 3 (one nucleus and
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two electrons),d = 3(N − 1) = 6, and with three polar coordinates (2.4), yielding [9]

1R̂ =
1

sin2 α cos2 α

∂

∂α
sin2 α cos2 α

∂

∂α
+

1

cos2 α

[
1

sinθ1

∂

∂θ1
sinθ1

∂

∂θ1
+

1

sin2 θ1

∂2

∂ϕ2
1

]
+

1

sin2 α

[
1

sinθ2

∂

∂θ2
sinθ2

∂

∂θ2
+

1

sin2 θ2

∂2

∂ϕ2
2

]
= 1

sin 2α

(
∂2

∂α2
+ 4− l21

cos2 α
− l22

sin2 α

)
sin 2α (3.2)

whose form on the last line arises from renormalizing the harmonicsYλµ by the volume element
sin 2α.

A familiar approach [1–4] to solving (3.1) with the angular Laplacian (3.2) assumes first
Yλµ to depend on(ϕ1, ϕ2) through a factor exp(im1ϕ1+im2ϕ2), whereby each(∂/∂ϕi)2 element
of (3.2) amounts to−m2

i . Thereafter each of the square brackets in (3.2) reduces to−li(li + 1),
providedYλµ depends on eachθi through the associated Legendre function sinmi θi P

mi
li
(cosθi),

with the relevant ‘highest weight’li thus limiting the range of|mi |. The residual operator on
the right of (3.2) then has eigenvalues−λ(λ+4), with λ partitioned asl1 + l2 +2n, and with the
‘Jacobi polynomial’ eigenvectorP (l2+1/2,l1+1/2)

n (cos 2α), according to (22.6.4) of [83]. (The
factor 2 multiplyingn andα in these expressions stems from the exponents and coefficients in
the functions ofα in (3.2)). The eigenvector of (3.1) reads thus

Yλµ(R̂) = cosl1α sinl2α P (l2+1/2,l1+1/2)
n (cos 2α) Yl1m1(θ1, ϕ1) Yl2m2(θ2, ϕ2) (3.3)

with the expected five-componentµ ≡ {n, l1, m1, l2, m2}, and with the spherical harmonic
factorsYlimi (θi, ϕi).

The set of harmonics (3.3), with a given value ofλ, consists of a number of elementsw,
the dimensionality of the relevant space. This number depends on the number of alternative
partitions ofλ into (l1, l2, n) consistent with the relationλ = l1 + l2 +2n, and on the alternative
2li + 1 values of eachmi . The prototype example ofλ = 2 leads to the partitions:(2, 0, 0),
(0, 2, 0), (0, 0, 1), (1, 1, 0) and, in turn, to5+5+1+9= 20 harmonics. Different partitions of
λ yield hyperspherical harmonics with alternative nodal patterns, reflecting alternative sharing
of rotational kinetic energy in different modes. The algebraic determination ofw is discussed
in [7, 8, 82] and outlined in section 4. The general expression [8] forw reduces in the present
case (d = 6) to (λ + 3)(λ + 2)2(λ + 1)/12.

Notice how the eigenvalue parameters(l1, l2, 2n) play the role of ‘weights’ in (3.3), each
of them amounting to the ‘highest weight’ for a subgroup of the rotation groupSO(d = 6),
thus contributing to the ‘highest weight’λ = l1 + l2 + 2n of the SO(6) harmonics (3.3).
The symmetry under the sign reflection(m → −m) (cf section 2.1) manifests itself in these
harmonics not only through the symmetry of each factorYlimi , but also through the parity of
the polynomialPn, which is even or odd for even or odd values of the ‘pseudo-weight’n,
combined with interchange of its upper indices. Note also hown substitutes for the weightm3,
an eigenvalue of the third operator (2.5), which fails to commute with the operatorsl2i even
though commuting with(∂/∂ϕ1) and(∂/∂ϕ2).

The harmonics (3.3) provide, of course, a basis for expanding correlated electron
wavefunctions in helium, in the form9(R; R̂) of section 1, with the directionR̂ ≡
{α, θ1, ϕ1, θ2, ϕ2} [77, 78]. The expansion coefficients9n,l1,m1,l2,m2(R) then represent desired
features of the relevant eigenfunction9(R; R̂). This representation does, however, emphasize
single-electron aspects of the state through its parameters(li , mi) rather than through the global
features anticipated in section 1.

Note, on the other hand, that the procedure presented above to construct the harmonics
(3.3) appliesrecursivelyto (N > 3)-particle systems, as should the previous comments, with
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the following qualifications: extending (3.3) toN > 3 particles involvesN − 1 spherical
harmonicsYlimi (θi, ϕi), initially independent of one another, andN −2 Jacobi polynomials in
cos 2αj with the full set of 3N − 4 variables. The index pairs of these polynomials, replacing
the single particle(li+ 1

2) of (3.3), reflect, however, thetotalangular momenta,L orJ , of paired
particle subsets as determined by relevanthierarchicaladditions of single-particle momenta
[68]. Note also how the structure of the harmonics (3.3), and of their higher-dimensional
analogues, exploits the commutability of the base operators{Hi} and of their corresponding
subgroup structure, with a notable exception: the angleα as defined in (2.4) does not coincide
with the arctan of the third operatorHi of (2.5).

3.2. An alternative structure

The particular subgroup structure of (3.3) stresses the single-particle features of each system,
contrary to section 1’s emphasis. We turn now accordingly to Avery’s [80] alternative
construction of harmonics that emphasizes different elements, dealing withd = 3N − 6
unspecified coordinates besides a spherical harmonicYlm(θ, ϕ), without reference to single-
particle positions. This approach thus utilizes a single eigenvector eimϕ of a singleoperator
Hi , contrasting with the full set occurring in (3.3) and its extensions toN > 3.

As a preliminary to complementing a single spherical harmonicYlm with additional
variables, Avery [80] views the Legendre polynomialPl(cosθ), invariant under rotations about
thez-axis, as the particular Gegenbauer polynomialCαl (cosθ) with α = 1

2 (as defined in [83],
table 22.6) extending it from 3 tod = 3(N−1)dimensions by setting its parameterα atd/2−1,
and replacingl with λ (d = 6 in our example). It also replaces cosθ with the scalar product
of unit vectorsR̂ · R̂′, whereR̂′ corresponds to the reference axisẑ. The hyperspherical
harmonic

C
d/2−1
λ (R̂ · R̂′) (3.4)

is thus invariant underd-dimensional rotations of̂R about a fixed axiŝR′ (i.e. rotations labelled
by a single parameterϕ), as well as under rigid rotations of the pairR̂·R̂′. Note that Gegenbauer
(as Legendre) polynomials consist of only even or only odd powers for even or odd values of
λ or l, respectively.

As the spherical harmonicsYlm are generated fromPl(cosθ) by operatorslx ± ily ,
harmonicsYλµ(R̂) are generated from (3.4) by infinitesimal operator analogues oflx ± ily ,
each of them combining a derivative, which lowers by unity the degree of their operand, with
a compensating factor linear in a coordinate, thus replacing a nodal line of the operand with a
different coordinate’s nodal line. (Typically, the operatorlx + ily , as applied toYlm with non-
negativem, is equivalent to eiϕ sinθ(∂/∂ cosθ): its partial derivative reducesYlm’s polynomial
dependence on cosθ by one degree, thus removing one parallel-line node, its first factor adds
instead a meridian-line node implied by the vanishing of its real or imaginary parts. To trace
out this effect more explicitly, recast the operator in the form

lx + ily = −i

(
y
∂

∂z
− z ∂

∂y

)
+

(
z
∂

∂x
− x ∂

∂z

)
= −(x + iy)

∂

∂z
+ z

(
∂

∂x
+ i

∂

∂y

)
.

The first term on the right-hand side of this expression, when applied to the functionYlm(θ, ϕ)

with a non-negativem value, raises itsm index by one unit through the combined action of
its two factors: the first factor,x + iy = r sinθ eiϕ combines with the same factor withinYlm,
thus raising by one unit the number of its meridian-line nodes as well as the exponent of its
sinm θ factor. Its second factor(∂/∂z), equivalent here tor−1(∂/∂ cosθ), reduces by one unit
the degree ofYlm’s polynomial dependence on cosθ , thus suppressing one of its parallel-line
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nodes. The second term on the right of the operator’s expression cancels instead the function
Ylm(θ, ϕ) by setting it to zero.)

A direct analogue of the successive action oflx + ily operators onPl(cosθ)would apply to
the Gegenbauer polynomial (3.4) a sequence of corresponding operators acting on components
of R̂. A novel aspect emerges, however, at this point, sinceR̂ has several components
orthogonal toR̂′ acted upon by alternative operators in alternative sequences. Such alternative
sequences will occur in section 4, whereas [80] avoids them by treating allR̂ components
uniformly, besides their physical-space subsetR̂ ≡ {sinθ cosϕ, sinθ sinϕ, cosθ}.

To this end, [80] follows the frequent practice of complementing an initial two-dimensional
component (cosϕ or sinϕ) by multiplying it with the factor sinθ and adding a further̂R
component cosθ , wherebyR̂ retains its unit magnitude. Iterating this extensiond − 3 times
yields the canonical set of̂R components

cosθ1

sinθ1 cosθ2

...

sinθ1 sinθ2 · · · cosθd−2

sinθ1 sinθ2 · · · sinθd−2 sinϕ
sinθ1 sinθ2 · · · sinθd−2 cosϕ.

(3.5)

For the purposes of orientation consider that, if allR̂ components had comparable magnitudes,
each value of cosθi would be of order 1/d, and hence eachθi would be close toπ/2. After
elimination ofR cosθ1, the factorR sinθ1 of all successive components would represent their
total magnitude. The successive factors sinθi then contribute to reduce the effective residual
components ofR̂ progressively.

The set of integer components of the vector labelµ, non-negative and of decreasing
magnitude, is similarly indicated by

µ ≡ {µ1, µ2, . . . , µj , . . . µd−1} (3.6)

with µd−1 ≡ |m|,m being the multiplier in the harmonic’s phasemϕ. The difference between
successive components (3.6),µj − µj+1 > 0, represents the number of nodes in thej th
harmonic’s dependence on cosθj , including the|µd−1| nodes implied by the phase factor eimϕ .
The set of harmonics compatible with these specifications, for the same prototype valuesλ = 2
andd = 6 as for the harmonics (3.3), has likewise 20 elements.

The resulting hyperspherical harmonic, equation (3.69) of [80], consists thus mainly of
products ofd − 2 Gegenbauer polynomials,

Yλµ = Nλµ
d−2∏
j=1

(sinθj )
µj+1C

αj+µj+1
µj−µj+1

(cosθj ) eimϕ. (3.7)

The combined degree of this harmonic, equalling its total number of nodes, amounts to∑d−2
j=1(µj − µj+1) = λ, including theµd−1 ≡ |m| nodes attributable to the eimϕ factor.

Theα index of each Gegenbauer polynomial consists of two terms,αj andµj+1, the first of
which,αj = (d−j−1)/2, corresponds to the actual dimensionality of all the (3.7) factors with
indices larger thanj . The second term,µj+1, represents the additional effective dimensionality
attributable to the factors(sinθj )µj+1 (whose combination withC

αj+µj+1
µj−µj+1

amounts to an analogue
of the associate Legendre functionPml (cosθ)). The remaining factor of (3.7),Nλµ, represents
the normalization factor contributing to the orthonormalization of each set of harmonics (3.7)
with equalλ and alternativeµ indices.
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Each factor(sinθj )µj+1, which decays rapidly asθj approaches a pole (at 0 orπ ),
corresponds to the factor(sinθ)|m| of associate Legendre functions, which reflects the
centrifugal potential generated by its factor eimϕ . Indeed, the exponentµj+1 equals the total
number of nodes in (3.7) factors with indices larger thanj , which contribute a centrifugal
potential to the equation governingC

αj+µj+1
µj−µj+1

; each differenceµj − µj+1 corresponds to a
separation parameterli(li + 1) in the construction of the harmonics (3.3).

In conclusion, the present construction of hyperspherical harmonics has followed two
approaches: (a) solving the (angular) Laplace equation by separation of variables, leading to
the harmonics (3.3) and extensible to higher dimensions; (b) constructing the harmonics (3.7)
by a sequence of Gegenbauer polynomial factors (also separating variables), complemented by
factors(sinθj )µj+1, analogues of the(sinθ)m of spherical harmonics and similarly generated
by applying infinitesimal operators sinθ(∂/∂ cosθ) to the invariant Gegenbauer harmonic
(3.4).

These approaches differ in their coordinates as well as in their dynamical implications:
no physical specification of thêR componentsθj has occurred in approach (b). Approach (a)
has relied on the single-particle coordinates and on their interrelations introduced in (3.2),
namely{0 6 α 6 π/2, 0 6 θi 6 π , 0 6 ϕi 6 2π}. (The limited range ofα coordinates
reflects their definition through ratios of non-negative variables.) Approach (b) has utilized,
in (3.5), ratios ofR̂ components restricted to real values of either sign, in addition to asingle
complex phase, without explicit reference to single-particle coordinates (considered elsewhere
in [80]). The occurrence of two (or more) complex-coordinate phases in approach (a) utilizes
the commuting operator set{Hi}, a dynamical element foreign to approach (b). Intermediate
approaches, utilizing that set partially, appear readily accessible.

4. Classification and construction of hyperspherical harmonics

Section 3 introduced hyperspherical harmonics for two different sets of coordinates, relying
on single-particle features to a different extent. Both sets of hyperspherical harmonics are
characterized as ‘harmonic polynomials’, i.e. as eigenfunctions of the angular Laplacian,
obtained directly by separation of variables. Their construction thus ties each of these
harmonics to a particular choice of coordinates.

In contrast, sections 1 and 2 repeatedly stressed the need for flexibility in the choice of
coordinates to describe the evolution of an atomic or molecular complex from its compact
to its fragmented states. Having familiarized the reader with properties of hyperspherical
harmonics in the preceding section, we now introduce harmonics which are essentially frame
independent, thus bypassing extensive frame transformations necessary for harmonics tied
to a particular set of coordinates. We describe here a procedure to generate complete sets
of harmonicsindependentof the choice of coordinates. Consequently, the same set of
harmonics serves throughout the entire evolution process, frame transformations reducing
to the task of expressing the harmonics in whichever coordinate system appears appropriate
at any given stage of the evolution, without a change to the basic structure of the functions
themselves.

The key feature enabling a definition of harmonics without separation of variables in
the Laplacian’s eigenfunction equation rests on identifying the Laplacian’s symmetry under
rotations ind dimensions. Section 2 described these transformations in terms offirst-order
infinitesimal rotation operators. We will now construct functions based on{Hi}-operators
and on the corresponding ladder operators only. Because these functions will possess the
underlying symmetry of the Laplacian, they are ‘harmonics’a fortiori.
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The present task amounts to extending theclassificationof spherical harmonics by their
label pair(l, m) to multi-dimensional systems, in accordance with procedures to construct
such harmonics. To this end recall that:

(a) Thel label ofYlm identifies both an eigenvalue of thesecond-orderangular Laplacianl2

and the range 06 |m| 6 l of its second label.
(b) The labelm itself is an eigenvalue of thefirst-orderoperatorlz.
(c) Alternative equivalent sets of harmonics correspond to alternative orientations of thez-

axis.
(d) Complete sets of spherical harmonicsYlm(θ, ϕ) emerge by operating on the invariant

harmonicPl(cosθ) with the conjugate pair of ladder operatorslx ± ily , or alternatively
operating with the loweringlx − ily alone on the ‘highest-weight’ harmonicYll(θ, ϕ).

Corresponding remarks on hyperspherical harmonics outline here this section’s development:

(a) We have seen how the multi-dimensional labelλ performs l’s role in identifying
eigenvalues of the relevant multi-dimensional angular Laplacian. Alternative partitions
of λ’s value will similarly delimit the ranges ofm’s analogues.

(b) Analogues ofm are the integer (or half-integer) eigenvaluesmi of the ` first-order
commuting operators{Hi} introduced in section 2. These sets are viewed as components
of a vectorm in the space subtended by the operators{Hi}. They were noted, however,
in section 3.1 not to be fully compatible with the corresponding parameter set{li} that
delimits each{|mi |}’s range, equation (3.3)’s labeln replacing the eigenvaluem3 of a
different equation. Harmonic eigenvectors of the{Hi}’s will, nevertheless, be identified
by convenient sets ofm components, i.e. by lattice points in the`-dimensional{Hi} space.

(c) Alternative equivalent sets of hyperspherical harmonics correspond to alternative
orientations of a vectorλ in the relevant{Hi} space and to alternative analyses of a system’s
dynamics. Transformations of coordinates and/or of the{Hi} set yield equivalent sets of
hyperspherical harmonics.

(d) Hermitian-conjugate ladder operators, analogues of the physical space’slx ± ily , will
emerge as superpositionsEα of Hermitian pairs—as anticipated in section 2—with
vector labelsα, each label with unit-magnitude components in the{Hi} space, being
thus represented by diagonal vectors in that space. Linearly independent`-dimensional
subsetsof these operators, denoted by{Eηs } ≡ {E†

−ηs }, s = 1, . . . , `, suffice for the
present task [7, 8], as well as for encompassing all the far more numerous ladder operators
by their own appropriate superpositions.

A sample set of harmonics emerging in this framework will be displayed at the end of
section 4.3.

Quantum numbersmi , eigenvalues ofHi operator subsets, serve to classify ‘(quasi)-
invariants’ of multi-particle systems. Such is theJz component of the invariant angular
momentumJ of isolated systems. Twomi components pertain to a molecule rotating about a
symmetry axis of lower inertia in its ‘body frame’. Threemi ’s characterize atomic Rydberg
states, one of them pertaining to their inner core, one to the Rydberg electron and one to their
vector sum. A plethora of suchmi ’s might pertain to a turbulent fluid.

In the absence of quasi-invariants, other than the totalJ ’s, the single labelm of (3.7)
may suffice, but a number(6`) of additionalmi ’s, judiciously chosen with reference to the
system’s structure, helps in classifying harmonicsYλµ(R̂), and the corresponding multi-particle
wavefunctions.

Geometrical elements of classification also emerge from the nodal patterns of harmonics,
as noted in section 3. The Laplacian’s separability into coordinatesxi , stressed at the outset



Topical review R19

of section 3.1, affords real solutions of the several resulting one-dimensional equations inxi
(with appropriate boundary or periodic conditions) to be characterized byni nodes, yielding
altogether

∑
i ni nodes, a total basically equal to the eigenvalueλ. Real hyperspherical

harmonics with equalλ differ then by theirλ’s partitions into the relevantni .
For the specific purpose of constructing sets of hyperspherical harmonics, sets ofE±ηs

operators, analogues of the physical-space ‘ladder operators’lx ± ily , complement sets ofHi
conveniently, much as thelx ± ily complementlz. To this end, the total angular momentum’s
Jz ≡ H1 may be complemented by appropriateHi and thence by corresponding ladder
operators{Eηs } ≡ {E†

−ηs }. In principle, quantum numbersms (of either sign) of the
desired harmonics then represent the number ofE±ηs having acted on the invariant harmonic
Cαn (R̂ · R̂′), equation (3.4). In practice, the derivation of hyperspherical harmonics for a
givenλ proceeds more appropriately by acting on the analogue of the sphericalYll(θ, ϕ) with
sequences of lowering operatorsE−ηs , since the ‘highest-weight’ hyperspherical harmonic is
uniquely defined.

Thems values raised or lowered byE±ηs operators in this procedure are delimited by
the relevant ‘highest-weight’ eigenvalueλ of Jz ≡ H1, viewed as a vectorλ directed along a
particular axis and expanded as

λ =
∑
s

λsηs . (4.1)

The partition coefficientsλs are integers (or half-integers) insofar as bothλ and theηs are
vectors of the{Hi} space with coefficients of integer (or half-integer) magnitude. Theλs
values serve thus as ‘highest weights’, analogues of (3.3)’sli , for thems quantum numbers.
Thems themselves are viewed as components of a ‘magnetic vector’

m =
∑
s

msηs ≡
∑
i

miĥi (4.2)

the vectorsηs and ĥi (the latter pointing in the direction perpendicular to the plane of
rotation identified byHi in section 2) being themselves interrelated by integer (or half-integer)
coefficients.

An analogue of the spherical harmonics equation defining the range ofm,

(lx ± ily) Yl,±l(θ, ϕ) ≡ (lx ± ily)
l+1Pl(cosθ) = 0 (4.3)

is formulated for a hyperspherical harmonicYλsηs (R̂), whose degree is highest (i.e. can be
raised no further by the ladder operatorEηs ), in the form

Eηs Yλsηs (R̂) = 0. (4.4)

WhenEηs is cast as a first-order differential operator, equation (4.4) determines that particular
‘highest-weight’ harmonic.

Operating on each of these ‘highest-weight’ harmonics with successions of ‘lowering’
E−ηs operators generates complete sets of hyperspherical harmonics, as detailed in the
following sections.

4.1. Operations on themi parameters

Themi quantum numbers, eigenvalues of the operatorsHi , belong in theĥi ‘space’, being
raised or lowered in value byEα or E±ηs operatorsexternal to that space, just as them
eigenvalues oflz are shifted bylx ± ily operators with axes orthogonal tôz. As the ladder
operatorslx ± ily of physical space are viewed as ‘eigenvectors’ oflz through the commutator



R20 Topical review

equations [lz, lx ± ily ] = ±(lx ± ily), sets of ladder operatorsEα are defined as solutions of
the commutator-equations’ set,

[Hi,Eα] = αiEα αi = ±1 or 0 for i = 1, 2, . . . , ` (4.5)

implying thatHiEαui = (mi + αi)Eαui for the eigenvectorui of Hi with eigenvaluemi .
Basic elements for solving (4.5) emerge from the introduction and properties of

infinitesimal rotation operators (2.2) and (2.6) in section 2.

(a) Commutators
[
Hi, J

xy

jk

]
vanishunless one of the variables(xj , yk) is common to both

operators. If one is, the commutator equals a relatedJ
x ′y ′
j ′k′ times aunit-magnitude

coefficient, much as the three-dimensional commutator oflz with lx or ly does.
(b) Accordingly eachEα reduces to a linear combination of afew J xyjk with |αi | = 1 or

0; αi = ±1 thus corresponds to raising or loweringmi . The commutator of a pair of
Hermitian-conjugate ladder operators [Eα, E−α] is itself Hermitian, specifically a multiple
of the unit operator.

(c) The directions ofα (or ηs) vectors in theĥi space run in that space at equal distances
between pairs of̂hi ’s.

(d) Ford even, the resulting operatorsEα (or Eηs ) shift the values oftwomi parameters by
unity simultaneously, thuspreserving the parityof the

∑
i mi . The same holds for most

of the ladder operators for odd-dimensional systems, too, with the following exception:
odd-dimensional systems include a single operatorEηs (one among a subset of` operators
Eα) acting on a singlemi , whose contribution violates the parity conservation.

Appendix A outlines a procedure to identify raising and lowering operators.
These elements, developed originally in [5, 6], afford a basis for constructing complete sets

of hyperspherical harmonics bytransforminga singleprototype harmonic withcomplete sets
of Eα (orEηs ) operators. Preferred prototypes have asingle non-zerovalue ofmi parameters,
typically {m1 = λ, mj 6=1 = 0}. An initial Eα operator will lowerm1’s value by one unit,
raising that of one|mj 6=1| from 0 to 1. Alternative successions of analogous operators thus
generate complete sets ofλ-degree harmonics, all of whose vectors{m} prove compatible
with the initialm ≡ {λ, 0, 0, . . . ,0}, i.e. with

∑
i |mi | 6 λ and (in the even-dimensional case)

(−1)
∑

i mi = (−1)λ. An initial prototype harmonic convenient for this purpose reads, in the
notation of (3.3),

cosλ α sinλ θ1 eiλϕ1 ≡
(
x1 + iy1

R

)λ
(4.6)

with ‘highest-weight’ exponentsλ corresponding tol1 = m1 = λ, l2 = m2 = 0, n = 0 in
(3.3).

The allowed range of each among the severalm componentsmi is limited by the condition
|mi | 6 λi , eachλi being an element of the partition

λ =
∑
i

λi λi > 0 − λi 6 mi 6 λi (4.7)

which reflects, in turn, specific sequences of the relevantEα applications. Two (or more)
of them ‘weight vectors’ thus generated may coincide, being labelled ‘multiple weights’,
reached by alternative operator sequences equivalent in this respect. The total number of
alternativem vectors generated by the present procedure, denoted byw in section 3, includes
combined contributions of multiple weights. Thesew values, representing the dimension of
the accessible{m} set and of its corresponding set of hyperspherical harmonics, are discussed
for d-dimensional rotations in [82] (section 10.2) and for various other groups in [7, 8].
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The harmonics’ symmetry under rotation reversals, discussed in section 2.1, implies for
even-dimensional spaces (where the parity conservation mentioned in item (d) above holds
strictly) the relationship of hyperspherical harmonics

Yλ,−m(R̂) = (−1)λY ∗λm(R̂). (4.8)

4.2. Operations on thems parameters

Equation (4.2) shows parallel expansions of a ‘weight vector’m into the eigenvalues{mi} and
{ms} of the commuting operators{Hi} and of the ladder-operator labels{ηs}. These alternative
base sets span the same`-dimensional space with different orientations and different metric
scales set, respectively, by theHi eigenvaluesmi with unit spacing and by theηs vectors with
(in general)two unit-magnitude components and resulting squared-magnitudesηs · ηs = 2.
Section 4.1 has stressed how ladder operators shiftpairs of mi parameters simultaneously,
contrasting withE±ηs ’s shift of a singlems parameter. The simpler action on thems thus
simplifies the construction of hyperspherical harmonics’ sets.

This simplification is partly compensated by a restriction imposed on{ms} sets by their
equivalence to{mi}, implied by (4.2) and represented by requiring

2
m · ηs
ηs · ηs

= rs − qs (4.9)

whose non-negative integersrs and qs specify, respectively, how many timesin direct
successionthe operatorsE−ηs andEηs can be applied tom. (For details on this equation,
see section 10.1 of [7], or sections 13.5 and 15.2 of [8].)

Two critical elements underlie (4.9): (a) equation (4.2) establishes a linear relationship
between the parameter sets{mi} and{ms}; (b) the last relation in (4.7) restricts the range of
eachmi sharply. Equation (4.9) restricts then the ladder operators’E±ηs action on (4.6) or
on any hyperspherical harmonic, shifting the relevantms value by one unit, through a sharp
selection rule: the resulting value ofms mustsatisfy (4.9).

Within this framework one constructs complete sets of hyperspherical harmonics ind

dimensions by:

(a) selecting a coordinate system according to section 2;
(b) constructing an appropriate set of` commuting operators{Hi};
(c) constructing corresponding sets of` ladder operators{Eηs } and{E−ηs ≡ E†

ηs
}, in first-

order differential form;
(d) determining a ‘highest-weight’ hyperspherical harmonic, characterized by a vectorλ

with componentsλi in the {Hi} basis andλs in the equivalent{ηs} basis, by solving
the relevant equation (4.4). (The prototype ‘highest-weight’ harmonic (4.6) pertains to
λ = {λ, 0, 0, . . .} in the{Hi} basis.);

(e) applying to this ‘highest-weight’ harmonic (sequences of) the lowering operatorsE−ηs ,
with 1 6 s 6 `, for a total of 2λs times each, to yield the succession of harmonics
Yλsms (R̂), terminating atms = −λs , remaining, however,within the constraintsof (4.9)
which often prevents lowering onems value ahead of otherms ′ ’s.

4.3. Sample derivation of harmonics’ sets

We apply here the procedure just outlined to the three-particle system of section 3.1, forming
anSO(6) geometry, utilizing the same notation and thus taking care of the prescription items
(a) to (c), except for selecting a set ofηs vectors. This set, with components indicated byαi
in (4.5), is conventionally [8] chosen as

η1 ∼ {1,−1, 0} η2 ∼ {0, 1,−1} η3 ∼ {0, 1, 1} (4.10)
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thus implicitly relating eachms number to themi in (4.2). Note how the first of these vectors
is not orthogonal to the following orthogonal pair, and the set of three is linearly independent.

We set the value ofλ in (4.6) at 2 for simplicity, thus fixing theλs values in (4.1) at{2, 1, 1}.
The relevant Cartesian ladder operators corresponding to the set of{Hi}’s equation (2.2) take
the form

E±η1
= −i

[
(x1± iy1)

∂

∂(x2 ± iy2)
− (x2 ∓ iy2)

∂

∂(x1∓ iy1)

]
= 1

2

[
J xx12 + J yy12 ∓ i

(
J
xy

12 − J yx12

)]
(4.11a)

E±η2
= −i

[
(z1∓ iz2)

∂

∂(x2 ∓ iy2)
− (x2 ± iy2)

∂

∂(z1± iz2)

]
= 1

2

[
J zx12 + J zy22 ± i

(
J
zy

12 − J zx22

)]
(4.11b)

E±η3
= −i

[
(z1± iz2)

∂

∂(x2 ∓ iy2)
− (x2 ± iy2)

∂

∂(z1∓ iz2)

]
= 1

2

[
J zx12 − J zy22 ± i

(
J
zy

12 + J zx22

)]
. (4.11c)

Introducing, for the sake of compactness, the elementary operator notations,

K
(i)
± = cosθi

∂

∂θi
± i

1

sinθi

∂

∂ϕi
(4.12a)

L
(i)
± = e±iϕi

(
± ∂

∂θi
+ i cotθi

∂

∂ϕi

)
i = 1, 2 (4.12b)

we recast (4.11a)–(4.11c) in polar coordinates, corresponding to{Hi}’s of (2.5):

E±η1
= − i

2
e±i(ϕ1−ϕ2)

(
sinθ1 sinθ2

∂

∂α
− tanα sinθ2K

(1)
± + cotα sinθ1K

(2)
∓

)
(4.13a)

E±η2
= − i

2

[
e±iϕ2

(
cosθ1 sinθ2

∂

∂α
+ tanα sinθ1 sinθ2

∂

∂θ1
+ cotα cosθ1K

(2)
±

)
− iL(2)±

]
(4.13b)

E±η3
= − i

2

[
e±iϕ2

(
cosθ1 sinθ2

∂

∂α
+ tanα sinθ1 sinθ2

∂

∂θ1
+ cotα cosθ1K

(2)
±

)
+ iL(2)±

]
.

(4.13c)

The prototype harmonic (4.6) withλ = 2 reads as cos2 α sin2 θ1 ei2ϕ1, with λi and
λs components{2, 0, 0} and {2, 1, 1}, respectively. OperatorsE−ηs can be applied to this
expression directly, with full attention to the condition (4.9). This condition excludes at the
outset acting on this harmonic with either lowering operatorE−η2

orE−η3
, which changemi=2

andmi=3 from their initial 0 value without affectingmi=1 that retains its highest value 2, thus
violating the limitations on themi ; onlyE−η1

operates on the harmonic (4.6) correctly. Sets of
harmonics are grouped into ‘layers’ according to the number of lowering operators that have
been applied to the ‘highest-weight’ harmonic in the process. Successive steps of lowering
thems quantum numbers are similarly restricted, but afford alternative actions of lowering
operators, as displayed in table 1. We actually show the first five layers of harmonics, with
the

∑
s ms > 0, the harmonics with negative values being obtained from these by complex

conjugation according to (4.8).
Table 1 also illustrates the effect of non-vanishing commutators between ladder operators:

different ordering of the same ladder operators may yielddifferentharmonics with thesame
labelm, i.e. adegenerateeigenvalue, such asm = {0, 0, 0} in table 1. Furthermore, while
the procedure demonstrated in table 1 will give the correct number oflinearly independent
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Table 1. Hyperspherical harmonics for a three-particle system (d = 6) and generalized angular momentumλ = 2. The functions are constructed by
acting on the ‘highest-weight’ harmonic(cosα sinθ1 exp[iϕ1])λ with different sequences of ladder operators, as indicated in the third column. The
first two columns list them quantum numbers in theηs andHi bases, respectively, while the last column identifies the harmonics assuperpositions
of functions (3.3) by listing their corresponding labels{n, l1, m1, l2, m2}. Indentation in the last two columns indicates a continuation line of a single
entry.

ms mi Operator sequence Resulting harmonic, not normalized {n, l1, m1, l2, m2}
{2, 1, 1} {2, 0, 0} cos2 α sin2 θ1 ei2ϕ1 {0, 2, 2, 0, 0}
{1, 1, 1} {1, 1, 0} E−η1 2i cosα sinθ1 eiϕ1 sinα sinθ2 eiϕ2 {0, 1, 1, 1, 1}
{0, 1, 1} {0, 2, 0} E−η1E−η1 −2 sin2 α sin2 θ2 ei2ϕ2 {0, 0, 0, 2, 2}
{1, 0, 1} {1, 0, 1} E−η2E−η1 2 cos2 α sinθ1 cosθ1 eiϕ1 + 2i cosα sinθ1 eiϕ1 sinα cosθ2 {0, 2, 1, 0, 0}, {0, 1, 1, 1, 0}
{1, 1, 0} {1, 0,−1} E−η3E−η1 2 cos2 α sinθ1 cosθ1 eiϕ1 − 2i cosα sinθ1 eiϕ1 sinα cosθ2 {0, 2, 1, 0, 0}, {0, 1, 1, 1, 0}
{1, 0, 0} {1,−1, 0} E−η3E−η2E−η1 2i cosα sinθ1 eiϕ1 sinα sinθ2 e−iϕ2 {0, 1, 1, 1,−1}
{0, 1, 0} {0, 1,−1} E−η1E−η3E−η1 2i cosα cosθ1 sinα sinθ2 eiϕ2 + 2 sin2 α sinθ2 cosθ2 eiϕ2 {0, 1, 0, 1, 1}, {0, 0, 0, 2, 1}
{0, 0, 1} {0, 1, 1} E−η1E−η2E−η1 2i cosα cosθ1 sinα sinθ2 eiϕ2 − 2 sin2 α sinθ2 cosθ2 eiϕ2 {0, 1, 0, 1, 1}, {0, 0, 0, 2, 1}
{0,−1, 1} {0, 0, 2} E−η2E−η1E−η2E−η1

2
3 [cos2 α(3 cos2 θ1 − 1)− sin2 α(3 cos2 θ2 − 1)] {0, 2, 0, 0, 0}, {0, 0, 0, 2, 0},

+ 2
3 cos 2α + 4i cosα cosθ1 sinα cosθ2 {1, 0, 0, 0, 0}, {0, 1, 0, 1, 0}

{0, 0, 0} {0, 0, 0} E−η1E−η3E−η2E−η1 − 2
3 i[cos2 α(3 cos2 θ1 − 1)− sin2 α(3 cos2 θ2 − 1)] {0, 2, 0, 0, 0}, {0, 0, 0, 2, 0},
+ 4

3 i cos 2α {1, 0, 0, 0, 0}
{0, 0, 0} {0, 0, 0} E−η3E−η1E−η2E−η1

2
3 [cos2 α(3 cos2 θ1 − 1) + 2 sin2 α(3 cos2 θ2 − 1)] {0, 2, 0, 0, 0}, {0, 0, 0, 2, 0},

+ 2
3 cos 2α {1, 0, 0, 0, 0}

{0, 1,−1} {0, 0,−2} E−η3E−η1E−η3E−η1
2
3 [cos2 α(3 cos2 θ1 − 1)− sin2 α(3 cos2 θ2 − 1)] {0, 2, 0, 0, 0}, {0, 0, 0, 2, 0},

+ 2
3 cos 2α − 4i cosα cosθ1 sinα cosθ2 {1, 0, 0, 0, 0}, {0, 1, 0, 1, 0}
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harmonics, these may not necessarily beorthogonal(with the usual definition of a Hermitian
scalar product as an integral over the relevant space:(f, g) = ∫ f ∗ g dx). For a more detailed
discussion of the issues of multiple eigenvalues and orthogonalization of harmonics in the
general case, see e.g. [8, 84].

Finally, recasting{Hi} from (2.2) as

Hi = −i

[
(xi + iyi)

∂

∂(xi + iyi)
− (xi − iyi)

∂

∂(xi − iyi)

]
i = 1, 2

H3 = −i

[
(z1 + iz2)

∂

∂(z1 + iz2)
− (z1− iz2)

∂

∂(z1− iz2)

] (4.14)

and using (4.11a)–(4.11c), we note that manipulating harmonics by means of ladder operators
is most easily performed in generic Cartesian coordinates, where the harmonics take the form
of products with generic factors [(xi ± iyi)/R]|mi | [84].

4.4. Harmonics for application to atoms and molecules

Different sets of hyperspherical harmonics serve to represent different aggregates, at different
stages of their development. More specifically, each set reflects the structure of the relevant
‘Jacobi tree’ introduced in section 3.2, whose ‘growth’ mirrors the integration of the relevant
equation (1.2), as a function of its hyper-radiusR. We deal here with particular aspects
of harmonics selection, beginning with the remark that, at lowR values where centrifugal
potentials prevail, governing the single particles, the set described in section 3.1 may prove
adequate, complemented possibly by the set of section 3.2. The following sections deal with
two particular aspects of our subject.

4.4.1. Symmetrized harmonics.Particle aggregates include generally subsets of identical
particles: electrons, of course, but also atomic nuclei such as the numerous protons
of hydrocarbons. As a preliminary to the eventual requirement of antisymmetrizing
wavefunctions under permutation of fermion positions, or analogous operations on bosons,
it often proves convenient to select at the outset harmonics’ sets that are invariant under
permutation of all identical-particle variables [41, 42]. This preliminary operation serves
particularly to reduce the dimension of each harmonics’ set.

Typically each electron pair may rotate about its centre of mass only with orbital momenta
equal to an even (odd) multiple of ¯h when in a singlet (triplet) spin state. The same holds
familiarly for the nuclear states of para- (ortho-)molecular hydrogen. This restriction reduces
the relevant sets’ dimensions by exponential factors when applied to large sets of identical
particles, complemented by enforcing the corresponding symmetry between different particle
pairs, a more laborious procedure known as the selection of ‘fractional parentage’ ([85] and
[82], chapter 8), but applied more conveniently at the outset of any calculation.

4.4.2. Expansion of whole-state representations.Expanding the whole solution9(R) of
(1.2) into hyperspherical harmonics may also serve to illustrate the resulting representation of
a multi-particle state. The set of hyperspherical harmonics must, however, be complemented
for this purpose by a harmonic function of the hyper-radiusR, a generalization of the familiar
Bessel functions in two dimensions and of their related ‘spherical Bessel’ functions in three
dimensions. The required harmonic functions ofR belong once again to the Bessel function
family.

The spherical Bessel function equation for three dimensions, equation (10.1.1) of [83],
differs from the standard Bessel function equation for two dimensions (9.1.1), by: (a)
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a coefficient 2= d − 1 inserted before its first-derivative term, and (b) its eigenvalue
n(n + 1) = (n + 1

2)
2 − 1

4 replacing the standard eigenvalueν2. Similarly, the hyperspherical
Bessel function ford dimensions differs by (a) a coefficientd−1≡ 3N−4 inserted before its
first-derivative term, and (b) its eigenvalueλ(λ+d−2)+(d−1)(d−3)/4= (λ+(d−2)/2)2− 1

4
replacingν2. The resulting Bessel function will thus be of integer or fractional order
λ + (d − 2)/2, with a corresponding pre-factor arising from theR(3N−4)/2 coefficient of our
equation (1.2), as anticipated in [67].

5. Hyperspherical expansion of the wave equation

The preliminary treatment of hyperspherical harmonics in section 3 suffices to formulate
an expanded version of (1.2). On the left-hand side of this equation, the factorsR(3N−4)/2

have been separated out to allow setting a finite initial value of9(R, R̂) at R = 0. The
factors separated out take into account the centrifugal—actually, wave-mechanical—potential
generated in polar coordinates with small values ofR by compressing particles within short
‘parallel circles’. We may then standardize wavefunctions that start atR = 0 with unit value
in asingle hyperspherical channel(λ0,µ0), expanding asR increases into alternative channels
(λ,µ), as indicated by

9λ0µ0
(R) =

∑
λ,µ

Fλ0µ0,λµ(R) Yλµ(R̂)

Fλ0µ0,λµ→ Rλ0δλ0µ0,λµ as R→ 0.
(5.1)

Entering the expansion (5.1) in (1.2), and projecting the result onto the several harmonics
Yλµ(R̂), reduces (1.2) to the system of coupled radial Schrödinger equations

d2

dR2
Fλ0µ0,λµ(R) +

∑
λ′,µ′

Fλ0µ0,λ
′µ′ 〈λ′µ′|k2(R)|λµ〉 = 0 (5.2)

with the wavenumber matrix

〈λ′µ′|k2(R)|λµ〉 =
(

2ME − λ(λ + d − 2) + [(d − 2)2 − 1]/4

R2

)
δλ′µ′,λµ

+
2M〈λ′µ′|Z(R̂)|λµ〉

R
+ · · · . (5.3)

HereZ(R̂) /R represents the Coulomb potential energy of the interacting particles, evaluated
at each hyper-radiusR. The dots at the end of (5.3) stand for any additional terms of thek2

matrix corresponding to Hamiltonian terms that represent spin–orbit or relativistic corrections
not included explicitly. The ability of (5.2) to include such effects—thus far not exploited—
may bypass the current need to treat such terms perturbatively rather than directly in the basic
equation.

The system of coupled equations (5.2) is formally infinite, owing to the infinite range of
its parameterλ, and thus seemingly impractical as noted in section 1. However, circumstances
also described in section 1 reduce its size generally to a modest level.

5.1. Displaying the evolution toward fragmentation

Our approach to displaying this evolution derives from features of the fragmentation of
nuclei that are held together by short-range interactions [86]. Beyond this range,r0, energy
eigenfunctions resolve intofragmentation eigenchannels, labelled here byρ, each of them
propagating atr > r0 in force-free space withunchanged structure, i.e. with spherical



R26 Topical review

wavefronts,r-independent angular distributionsfρ(θ, ϕ) and uniform phasesφρ(r). Here
the parameter sets{fρ(θ, ϕ)} and {φρ(r)} embody the effect of all particle interactions at
r < r0.

The opportunity occurred in [86] to utilize an analogous parametrizationregardless of
interaction ranges, by embodying the effect ofall interactions at the ranges 06 r 6 R into
parameter sets{fρ(R; R̂)} and{φρ(R)} to be evaluatedfor successive values of R. These sets’
dependence onR displays each eigenchannel’s evolution asR increases from its 0 value (at
the system’s centre of mass) towards∞, i.e. disregarding all interactions atr > R at each step
of integration.

The hyperspherical channel functions (5.1),9λ0µ0
(R), of each multi-particle system serve

here as a basis to calculate the{fρ(R; R̂)} and {φρ(R)} parameters by casting them into
superpositions

8ρ(R) =
∑
λ0µ0

〈ρ(R)|λ0µ0〉9λ0µ0
(R) =

∑
λ0µ0

〈ρ(R)|λ0µ0〉
∑
λµ

Fλ0µ0,λµ(R)Yλµ(R̂) (5.4)

with initial values of the coefficients

〈ρ(R)|λ0µ0〉 → 1 i.e. 〈ρ| → 〈λ0µ0| as R→ 0. (5.5)

Requiring each phaseφρ(R) of8ρ(R), and its gradient(dφ/dR), to be uniform over each
hyper-surface (R = constant) identifies each superposition (5.4),8ρ(R), as aneigenchannelof
the propagating Schrödinger equation (1.2) ateach valueof R. It thus implies that the angular
eigenfunctionfρ(R; R̂), representing the aggregate’s ‘shape’ atR, evolves ‘in step’ from each
hyper-surface to the next. This requirement translates into a system of linear homogeneous
equations for the coefficients〈ρ(R)|λ0µ0〉.

Following the ‘phase–amplitude’ approach of [86], which replaces second-order wave
equations with pairs of first-order equations, references [77, 78] introduced the eigenphase’s
tanφρ(R)—without previous reference to (5.4)—as an eigenvalue of the ‘R-matrix’

〈λµ|R(R)|λ′µ′〉 =
∑
λ0µ0

(
dF

dR

)−1

λµ,λ0µ0

Fλ0µ0,λ
′µ′(R)

=
∑
ρ

〈λµ|ρ(R)〉 tanφρ(R)〈ρ(R)|λ′µ′〉. (5.6)

Reference [79] proceeded then by taking the derivative of (5.6) with respect toR, replacing
its element(d2F/dR2) with its expression (5.2) in terms of thek2 matrix (5.3), and finally
transforming the result to the〈ρ(R)| basis by means of the coefficients〈ρ(R)|λµ〉 and their
reciprocals.

Taking theR matrix as a stepping stone served thus to resolve the initialsecond-order
equation (5.2) into the set offirst-order equationscorresponding to the diagonal and off-
diagonal elements of (5.6), respectively,

d tanφρ(R)
dR

= 1 + 〈ρ(R)|k2(R)|ρ(R)〉 tan2 φρ(R) (5.7a)

d〈ρ(R)|λµ〉
dR

=
∑
ρ ′ 6=ρ

sinφρ(R)〈ρ(R)|k2(R)|ρ ′(R)〉 sinφρ ′(R)
sin(φρ − φρ ′) 〈ρ ′(R)|λµ〉 (5.7b)

with R expressed in units of(dR/dφρ). This set of equations has been integrated numerically
in [79] for the prototype example of doubly excited He, with conclusions described below.
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5.2. Illustration and discussion

The numerical integration of (5.7a)–(5.7b) for He has been carried out with a device that
accelerates the convergence of expansion into harmonics〈λµ|, by replacing these harmonics
with eigenvectors of thek2 matrix (5.3) at eachR. These eigenvectors represent ‘adiabatic’
solutions of our problems, carried out earlier in the frame of [1, 2], i.e. disregarding the coupling
between the radial and angular variables,R andR̂.

The sample results shown in figure 1 should be viewed as interconnecting each system’s
sets of compact(c) and fragmented(f ) channels, outlined in [3, 79]. Quantum mechanical
scattering theory represents this connection by ‘Jost’ matricesJf c [87]. Each standing-wave
eigenfunction of (1.2), identified by an initial boundary condition(c) at its compact limit, is
represented asymptotically near its(f ) limit by

∑
f sin(kf R)Jf c, or more conveniently in

terms of its outgoing and incoming components∑
f

exp(ikf R)J
+
f c

∑
f

exp(−ikf R)J
−
f c. (5.8)

The matricesJ±f c are complex conjugate for ‘open’ channelsf , i.e. when the energy
suffices to achieve thef limit; for energetically ‘closed’ channels the wavenumberkf is
imaginary, whereby one component converges to zero at discrete eigenvalues of the energy
E and the other diverges asR → ∞. The Jost matrices serve then to construct scattering
matrices

Sf ′f =
∑
c

J +
f ′c

(
1

J−

)
cf

(5.9)

as detailed in [3, 4]. In this frame one views each amplitude〈ρ(R)|λ0µ0〉 of (5.4), evaluated
at a finite rangeR, as a partial construction of the Jost matrix elementJf c with f representing
the limit of 〈ρ(R)| asR→∞. Plots of the several bra symbols〈ρ(R)| achieve our objective
of displaying the system’s evolution fromR = 0 toward∞.

Figures 1(a) and (b) plot eigenphasesφρ(R) versus
√
R, moduloπ , at energies straddling

the (2s)2 1S resonance of He near 58 eV, for a number of〈ρ(R)|λ0µ0〉 pairs. Each line’s
slope mirrors the rate of increase ofφρ(R), i.e. (loosely) the rate of expansion inR of
the corresponding eigenfunction. (The first eigenphase’s slope reflects the rapid motion of
an electron ionized with approximately 33 eV kinetic energy; successive curves reflect the
increasingly slower development of two-electron excitations in successively higher modes.)
In the lower and upper ranges of the ordinateφρ , corresponding to low values of sin[φρ(R)],
pairs of curves appear to cross with minimal disturbance, owing to unresolved values of
the coupling coefficient on the right of (5.7b), in spite of the singularity arising from the
vanishing of its denominator at each crossing. Major effects of crossings emerge instead at
middle ranges ofφρ(R), where pairs of curves appear to repel each other experiencing major
deflections.

The localization of such major ‘avoided crossings’ within limited ranges of ordinates
and abscissae, confirmed by analogous more dense plots, verifies our expectation that
eigenfunctions propagate smoothly outside the limited parameter ranges where the coupling
coefficients of (5.7b) diverge. The apparent ‘repulsion’ of curves at avoided crossings is a
familiar aspect of the Landau–Zener phenomenon [88–90] occurring at points of ‘degeneracy’
where two alternative values of a parameter coincide, as the phases(φρ , φρ ′) do here (modulo
π ).

An additional major manifestation of avoided crossings, namely, the hybridization of pairs
(〈ρ|λ0µ0〉, 〈ρ ′|λ′0µ′0〉), has, however, not been included in the calculations underlying figure 1.
This hybridization might result by fitting parameters of the observed phenomena—slopes,
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Figure 1. (a) Eigenphasesφρ moduloπ versus the square root of the hyper-radius, calculated
at the total energyE = 57 eV above the ground state, just below the ‘(2s2) 1S’ resonant state in
helium. (b) Shows the same set of eigenphases, calculated at a total energyE = 58 eV above the
ground state.
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slope differences of the curves and their closest approaches—to the corresponding elements
of the Landau–Zener theory. The relevance of the present〈ρ|λ0µ0〉 coefficients to the Jost
matrices of interest remains fragmentary pending further developments of Nakamura’s recent
analytical improvements on the Landau–Zener theory [91, 92].

5.3. Qualitative effects of Coulomb interactions

Equation (5.3)’s matrix〈λ′µ′|Z(R̂)|λµ〉 consists ofN(N − 1)/2 terms for an aggregate ofN
charged particles. These terms, included sequentially in computer programs, serve to solve
(5.7a) and (5.7b) numerically, yet warrant analysis aimed at visualizing their qualitative action.
To this end one may resolve theZ-matrix’ action on the wavefunction9 into its several aspects.

Subsets of terms acting between particles with equal (opposite) charges push
corresponding particle subsets apart (together). Within this scope one notes that:

(a) Expressing the distance between each atomic nucleus and another particle in terms of
their common mass weighted hyper-radiusR scales upits charge by its mass’ square root,
thereby boosting its interactions’ strength and thus favouringmolecular dissociationas
compared to ionization by electron ejection.

(b) The force acting on each particle pair depends on the pair’s orientation. Combining
the Coulomb forces between various particle pairs thus involves extensive geometrical
transformations of the relevant position coordinates.

Coulomb interactions between subsets ofidentical particlesmay be grouped conveniently,
particularly so following the symmetrization of relevant position coordinates outlined in
section 4.4 and in appendix D. It would then become possible to combine Coulomb terms
pertaining to such subsets to yield expressions of their electrical multipole moments and of
their corresponding multipole fields. A semi-macroscopic view of each aggregate’s mechanics
should thus emerge, in terms of collective variables.

Within the context of initial combination of molecular nuclei with closed-shell electrons,
one could then envisage treating all molecular valence electrons as forming a gas whose electric
multipole moments are inflated by electronic mutual repulsions, yet contained by the attractive
multipole fields of nuclei and closed-shell cores. The proton-nuclei of hydrocarbon molecules
would be similarly viewed. This attractive containment would perform a twofold action:
holding the molecule together as a unit and simultaneously smoothing out the distribution of
opposite charges throughout its volume.

Appendix A. Construction of ladder operators

The generic infinitesimal operators (2.6) raise and lower the eigenvalues,mi andmj , of operator
pairs(Hi,Hj ) by mapping a single harmonic onto asuperpositionof harmonics with different
mi ’s andmj ’s. We construct here linear combinations of those operators that raiseor lower
by unity these eigenvalues in a definite way, according to (4.5).

Casting for this purpose(Hi,Hj ) in the form of the first two expressions in (2.2), i.e.
as (Hi ≡ J

xy

ii , Hj ≡ J
xy

jj ), restricts the solutionsEα of (4.5) to combinations of the four
components

J xxij , J
yy

ij , J
xy

ij , J
yx

ij . (A.1)

Identification of the proper linear combinations proceeds through analysis of their commutator
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relations with theHi ’s, namely,

[Hi, J
xx
ij ] = +iJ yxij [Hj, J

xx
ij ] = +iJ xyij (A.2a)

[Hi, J
yx

ij ] = −iJ xxij [Hj, J
xy

ij ] = −iJ xxij (A.2b)

[Hi, J
yy

ij ] = −iJ xyij [Hj, J
yy

ij ] = −iJ yxij (A.2c)

[Hi, J
xy

ij ] = +iJ yyij [Hj, J
yx

ij ] = +iJ yyij . (A.2d)

Combinations of the operators (A.1) symmetric and antisymmetric in their(x, y) variables,
analogues of (2.7b)’s symmetry in(i, j) indices, yield

E±α(++)
ij
= (J xxij − J yyij )± i(J xyij + J yxij ) (A.3a)

E±α(+−)ij
= (J xxij + J yyij )∓ i(J xyij − J yxij ) (A.3b)

satisfying the desired equations

[Hi,E±α(++)
ij

] = ±E±α(++)
ij

[Hj,E±α(++)
ij

] = ±E±α(++)
ij

(A.4a)

[Hi,E±α(+−)ij
] = ±E±α(+−)ij

[Hj,E±α(+−)ij
] = ∓E±α(+−)ij

(A.4b)

with

α
(++)
i,j = (+1,+1) (A.5a)

α
(+−)
i,j = (+1,−1) (A.5b)

α
(++)
k = α(+−)k = 0 for k 6= i, j. (A.5c)

Note that the two operator sets{ 12(J xxij ∓ J yyij ), 1
2(J

xy

ij ± J yxij ), 1
2(Hj ±Hi)} commute exactly

like {lx, ly, lz} in three dimensions. The occurrence of (symmetric or antisymmetric)pairs of
rotation operators in the role of bothlx andly , respectively, reflects the feature of the pairwise
change ofmi andmj . The symmetry of these operator pairs under interchange of thefirst
and second coordinatesxi ↔ yi andxj ↔ yj of the relevantHi andHj extends the present
construction to ladder operators that change them quantum numbers ofH operators of the
third type in (2.2), involving twoz-coordinates.

For odd dimensions,̀ ladder operator pairs pertaining to coordinate pairs(i,0) change
only one of themi ’s. If again xi, yi make up the operatorHi pertaining tomi , the two
ladder operators acting onmi are complex linear combinations of the two infinitesimal rotation
operators which involve either ofxi oryi , together with the single unpaired coordinate (denoted
asx0 in section 2, e.g. thez coordinate in the familiar case ofSO(3)). In this case, the ladder
operators are completely analogous to those inSO(3).

Appendix B. Transformation between Jacobi trees

As an example of transformation between Jacobi trees, consider the two trees

A
A
A
A

� A�
�
�

�
�
�
�

1 2 3 4 5

A

-
A
A
A
A

A
A
A

� �
�
�
�
�
�

1 2 3 4 5

D
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The mass weighted relative coordinates for tree A result from independent-particle
coordinates by the transformation

ξA1 =
√

M1M2

M1 +M2
(r2 − r1) (B.1a)

ξA2 =
√

M3M4

M3 +M4
(r4 − r3) (B.1b)

ξA3 =
√
(M1 +M2)(M3 +M4)

M1 +M2 +M3 +M4

(
M3r3 +M4r4

M3 +M4
− M1r1 +M2r2

M1 +M2

)
(B.1c)

ξA4 =
√
(M1 +M2 +M3 +M4)M5

M1 +M2 +M3 +M4 +M5

(
r5− M1r1 +M2r2 +M3r3 +M4r4

M1 +M2 +M3 +M4

)
(B.1d)

i.e. by first connecting particles 1 and 2, then 3 and 4, then the complex{12} to the complex
{34}, and finally the complex{1234} to 5. The fifth Jacobi coordinate represents the centre
of mass which remains the same for all trees consisting of the same particles, and is hence
irrelevant to transformations of the four relative coordinates.

The transformation from A to D resolves into three elementary ‘transplantations’:

A
A
A
A

� A�
�
�

�
�
�
�

1 2 3 4 5

A

-
TAB A

A
A
A

A
A
A�
�
�

�
�
�
�

1 2 3 4 5

B

-
TBC A

A
A
A

A
A
� �
�
�

�
�
�
�

1 2 3 4 5

C

-
TCD A

A
A
A

A
A
A

� �
�
�
�
�
�

1 2 3 4 5

D

The transformationTAB from A to B affects only the first and the third among the mass
weighted Jacobi coordinates, since it transplants branch 2 from the complex{12} to the complex
{234}. It is therefore represented by applying to the 4-vector(ξA1 , ξ

A
2 , ξ

A
3 , ξ

A
4 ) the matrix

TAB =


cosφAB 0 − sinφAB 0

0 1 0 0
sinφAB 0 cosφAB 0

0 0 0 1

 (B.2a)

i.e. by a ‘kinematic rotation’ through an angle

φAB = tan−1

√
M2(M1 +M2 +M3 +M4)

M1(M3 +M4)
(B.2b)

according to (2.13). Note the general structure in the mass coefficients: transplanting
branchq from the complex{pq} to the complex{qr} corresponds to a rotation byφ =
tan−1

√
Mq(Mp +Mq +Mr)/MpMr (in the first quadrant, i.e. with positive signs for both the

cosine and sine). The transformationTBC transplants branch 3 from{34} to {23}, andTCD
transplants the complex branch{234} from{1234} to{2345}, with the respective transformation
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matrices

TBC =


cosφBC − sinφBC 0 0
sinφBC cosφBC 0 0

0 0 1 0
0 0 0 1



TCD =


1 0 0 0
0 1 0 0
0 0 cosφCD − sinφCD
0 0 sinφCD cosφCD


(B.3a)

and rotation angles

φBC = tan−1

√
M3(M2 +M3 +M4)

M2M4

φCD = tan−1

√
(M2 +M3 +M4)(M1 +M2 +M3 +M4 +M5)

M1M5
.

(B.3b)

The complete transformation for this sequence is represented byTAD = TCD · TBC · TAB with

TAD =


cosφAB cosφBC − sinφBC − sinφAB cosφBC 0
cosφAB sinφBC cosφBC − sinφAB sinφBC 0
sinφAB cosφCD 0 cosφAB cosφCD − sinφCD
sinφAB sinφCD 0 cosφAB sinφCD cosφCD

 . (B.4)

Inserting the explicit expressions for the anglesφ verifies that the coordinatesξDi , 16 i 6 4,
indeed describe the relative coordinates of tree D in terms of independent particles coordinates,
namely

ξD1 =
√
(M2 +M3)M4

M2 +M3 +M4

(
M2r2 +M3r3

M2 +M3
− r4

)
(B.5a)

ξD2 =
√

M2M3

M2 +M3
(r2 − r3) (B.5b)

ξD3 =
√
(M2 +M3 +M4)M5

M2 +M3 +M4 +M5

(
M2r2 +M3r3 +M4r4

M2 +M3 +M4
− r5

)
(B.5c)

ξD4 =
√
M1(M2 +M3 +M4 +M5)

M1 +M2 +M3 +M4 +M5

(
M2r2 +M3r3 +M4r4 +M5r5

M2 +M3 +M4 +M5
− r1

)
. (B.5d)

Appendix C. Finite transformations of hyperspherical harmonics

Finite transformations of multi-dimensional harmonics (or operators) correspond to the
infinitesimal ones considered in section 4 just as the prototype transformation (2.3) (pertaining
to a physical-space rotation) corresponds to the infinitesimal (2.1). This correspondence
holds generally, since all transformations relevant to this paper resolve into products of two-
dimensional rotations, as stressed repeatedly in the text.

Section 4 has identified hyperspherical harmonics in the frame of a representation based
on a vectorλ in the`-dimensional space of maximally commuting operator sets{Hi}. Within
this scope, we might deal here just with`-dimensional rotations ofλ. This space itself is,
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however, subject to rotations of the{Hi} induced by the 3(N − 1)-dimensional coordinate
rotations considered in section 2 forN -particle aggregates. Generic infinitesimal operators on
such spaces were indicated in (2.6) byJ xyij , whose labelxy refers to a pair of coordinate axes,
whereasij refers to a pair of particles.

Viewing physical-space rotations, identified by three Euler angles, as our model, recall
how two of these angles pertain to rotations about az-axis (hence parallel to anxy-plane) and
the third one to a shift of̂z’s orientation to a new direction̂z′, usually understood to lie on
the previousxz-plane. Whereas rotations by an angleϕ aboutẑ simply multiply eigenvectors
of lz with eigenvaluem by eimϕ , rotations by an angleθ in the xz-plane transform it into a
superposition of eigenvectors whose eigenvaluesm′ result by transforming the initialm with
the Wigner matrixd(l)m′m(θ). (The indexl stands here for the largest value (‘highest weight’) of
m.)

Correspondingly, in a multi-dimensional space, we consider two distinct classes of two-
dimensional rotations: (a) rotations about one of the{Hi} operators’ symmetry axes (i.e. in a
plane orthogonal to that axis) which multiply a harmonic eigenvector ofHi with eigenvalue
|mi | 6 λi by eimiϕi and (b) orientation changes of anHi ’s own axis, within a specified plane
through that axis, yielding a superposition of harmonics with Wigner coefficientsD

λi
µ′,µ, whose

subscripts differ only by replacing theirmi component withm′i .
The multi-dimensional framework deals with transforming from one coordinatebasis,

including its operator set{Hi}, to a newbasiswith its operator set{H ′j }, each set of indices
{i = 1, 2, . . .} and{j = 1, 2, . . .} being ordered. This framework affords articulating generic
transformations through sequences of two-dimensional rotations by Euler angles{ϕα} and
{θν}: the initial ϕα=1 equals the angle between theHi ’s zero azimuth and the plane of the
pair {Hi=1, H

′
j=1}’s axes. The initialθν=1 equals similarly the angle between the axes of

Hi=1 andH ′j=1. The nextϕα=2 shifts the plane of theHi=1, H
′
j=1 axes toH ′j=1’s zero azimuth.

Corresponding angles{ϕα=3, θν=2, ϕα=4}pertain to the operator pair{Hi=2, H
′
j=2}, a procedure

to continue recursively.
Insofar as the{Hi} operators are anchored to their coordinate systems, their two classes

of rotations drag their coordinate axes along. Altogether, transformations of harmonics
indices by coordinate rotations are thus seen to resolve into three elements: (a) rotation of
the ‘representation vector’λ in the `-dimensional space of the{Hi} set; (b) rotation of the
{Hi}’s themselves, described above; (c) further rotations of coordinates with respect to the
{Hi}.

Example: kinematic rotation of harmonics

Here we transform hyperspherical harmonics of two Jacobi vectors representing a three-particle
system. Equations (2.12) and (2.13) have described the transformation of a Jacobi vector pair
from treeA to treeB

A :


ξA1 =

√
M1M2

M1 +M2
(r1− r2)

ξA2 =
√
(M1 +M2)M3

M1 +M2 +M3

(
M1r1 +M2r2

M1 +M2
− r3

) (C.1a)

B :


ξB1 =

√
M2M3

M2 +M3
(r2 − r3)

ξB2 =
√
M1(M2 +M3)

M1 +M2 +M3

(
r1− M2r2 +M3r3

M2 +M3

) (C.1b)
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as a kinematic rotation by an angleβ = tan−1√(M1 +M2 +M3)M2/(M1M3),

{ξB1 , ξB2 } = {cosβξA1 − sinβξA2 , sinβξA1 + cosβξA2 }. (C.2)

Since each vectorξ has three spatial components, we deal here with a six-dimensional
coordinate transformation with components

{ξA1 , ξA2 } = {(ξA1 )x, (ξA1 )y, (ξA1 )z, (ξA2 )x, (ξA2 )y, (ξA2 )z} ≡ {x1, y1, z1, x2, y2, z2} (C.3)

and similarly forξBi . Thex-component ofξB1 results from a rotation by the angleβ in the
x1x2-plane, thex-component ofξB2 by a rotation through−β in the (oriented)x2x1-plane, and
likewise for theiry- andz-components. The corresponding transformation of three-particle
harmonics|λ,µA〉, as represented, for example, by (3.3), is indicated according to section 3
by

|λµB〉 = TAB(β)|λµA〉 =
∑
µ′A

|λµ′A〉Dλ
µ′A,µA

(β). (C.4)

Dealing here with Cartesian coordinate rotations of theξ vectors, at variance with the preceding
polar coordinate description, our present operatorTAB factors into three separate (commuting)
transformations of harmonics corresponding to rotations byβ in each of the three coordinate
planesx1x2, y1y2, andz1z2

TAB(β) = exp(iβJ xx12 ) exp(iβJ yy12 ) exp(iβJ zz12). (C.5)

Convenient expressions of the three infinitesimal operators in this expression ofTAB appear
in earlier parts of this paper. (a) Equation (2.2) identifiesJ zz12 as the operatorH3 for our
three-particle system, yielding immediately

exp(iβJ zz12)|λµA〉 = exp(im3β)|λµA〉. (C.6)

(b) Equation (A.3b) identifies the combinationJ xx12 + J yy12 as the sum of the operatorEα(+−)12

and its reciprocalE−α(+−)12
, both acting on the eigenvaluesm1 andm2 of the{H1, H2} pair, the

symbolα(+−)12 meaning ‘raisingm1 and loweringm2’. The combinationEα(+−)12
+E−α(+−)12

of two
reciprocal (Hermitian conjugate) operators is itself Hermitian. The resulting matrix elements
〈λµ′A| exp(iβ{Eα(+−)12

+ E−α(+−)12
})|λµA〉 amount to Wignerd(j)m′,m elements, with parameters

specified by the following observations. ProjectingµA andµ′A ontoα(+−)12 generalizes the
lower indices ind(j)m′,m to the present higher-dimensional setting:

m = µA · α
(+−)
12

α
(+−)
12 · α

(+−)
12

= 1
2(m1−m2) (C.7)

and similarlym′ = (m′1 − m′2)/2. Section 4.2 discussed in item (e) a succession, orchain,
of harmonics labelled here byµA + nα(+−)12 , with total length 2λs , restricted, however, by
(4.9). The ‘multipole order’ represented by the upper parameter ind

(j)

m′,m corresponds here
to half the length of this chain of harmonics. Finally, the generalization of the ‘triangular
condition’ familiar from three dimensions now requires|λµA〉 and|λµ′A〉 to lie on thesame
chain of harmonics|λ,µA +nα(+−)12 〉. Analogy to the relationlx = 1

2(l+ + l−) suggests treating
exp[iβ(Eα(+−)12

+E−α(+−)12
)] like a rotation about thex-axis in three dimensions. With the standard

definition of Euler-angle rotations, the corresponding matrix element picks up an additional
phase factor exp[i(m′ − m)π/2] resulting from rotating they- onto thex-axis and back.
Note also that the sum of reciprocal operators in our matrix element lacks the factor1

2, thereby
effectively multiplying the angleβ in thed-symbol’s argument by a factor of 2. The procedure,
outlined here for a three-particle example, extends similarly to larger aggregates.
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Appendix D. Outline of procedures for treating large sets of identical particles

Constructing wavefunctions of a few (three or four) electrons, with the required
antisymmetrization, is rather familiar, being extended to atomic shell filling, for example, in
chapter 8 of [82]. Its extension to much larger sets remains problematic. Deceptively simple
considerations, to be presented below, indicate that this extension may actually proceed along
the same lines, essentially because successive steps prove independent of one another. Whether
these considerations constitute more than just a ‘solution in principle’ for this fundamental
problem of quantum many-body theory remains to be seen. The inevitable exponential
proliferation of operations to be carried out hampers their actual implementation for all but the
smallest sets of particles. Significant simplifications occur particularly for a system’s ground
state configuration owing to (in general) higher symmetry in this state. Even for this case,
however, the antisymmetrization of sets with more than three identical particles still presents
a formidable task. The most promising approach to this problem’s systematic solutionand
its implementationis currently being developed by Barnea and Novoselsky [42], employing
the concepts discussed in this topical review, namely, Jacobi coordinates and hyperspherical
harmonics.

Coordinates and their symmetrization

Identity of particles implies that permutation ofany pair of them leaves any function of the
pair unchanged. Artificial labelling of such particles, by indicesi = 1, 2, 3, . . . , appears
nevertheless generally desirable for purposes of ‘book-keeping’. It is then necessary to
‘symmetrize’ any function of particle positions,f (r1, r2, . . .), to ensure itsinvariance under
permutation of each pairof indices(i, j), by superposing sets of such functions differing by
the whole set of relevant permutations. Spin and position coordinates should be combined,
of course, in this construction that proves increasingly laborious with increasing number of
particles.

Classification by seniority

The ‘seniority’ label (‘v’) of an atomic state indicates the number of its particle pairs
characterized as1S and thus isolated from its remaining particles. This characterization means
invariance under rotation of space coordinates of both spin and position variables. The spin
part of this label applies equally regardless of the total number of particles in the system. The
‘S’ label implies a spherically symmetric matching of the pair’s angular distribution, whose
extension to multi-dimensional systems needs elaboration. Considering that this symmetry is
attained by combining a pair of orbitals even and odd, respectively, under reflection through
a plane—thus stretching in orthogonal directions—we suggest achieving the corresponding
invariance in higher dimensions by combining pairs of hyperspherical harmonics pertaining
to Jacobi trees constructed by selecting orthogonal space directions at each stepwise addition
of one particle.

Introduction of ‘triple tensors’

This operation, introduced by Judd in the 1960s and described in [82] (pp 209ff), yields a
systematic classification of the shell-filling process for the electrons of each atomic shell.
It rests on elementary applications of coordinate-rotation transformation pairs and of their
‘reduction’, which appear as equally serviceable regardless of their dimensionality.
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Separation of particle subsets

This operation, familiar in atomic systems and leading there to the ‘fractional parentage’
procedure, has a major role in multi-particle settings where, typically, electron subsets perform
varied functions forming ‘closed shells’ (or subshells) of different atoms as well as chemical
bonds,preserving the relevant symmetry and coherences. The structure and flexibility of
the Jacobi trees corresponding to alternative hyperspherical harmonics appear well suited to
extension to multi-particle settings, with appropriate development of recursion techniques.
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