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TOPICAL REVIEW
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Abstract. We review topics of current interest in the physics of electronic, atomic and molecular
scattering in the vicinity of thresholds. Starting from phase space arguments, we discuss the
modifications of the Wigner law that are required to deal with scattering by Coulomb, dipolar
and dispersion potentials, as well as aspects of threshold behaviour observed in ultracold atomic
collisions. We employ the tools of quantum defect and semiclassical theories to bring out the rich
variety of threshold behaviours. The discussion is then turned to recent progress in understanding
threshold behaviour of many-body break-ups into both charged and neutral species, including
both Wannier double ionization and three-body recombination in ultracold gases. We emphasize
the dominant role that hyperspherical coordinate methods have played in understanding these
problems. We assess the effects of external fields on scattering, and the corresponding modification
of phase space that alters the Wigner law. Threshold laws in low dimensions and examples of their
applications to specific collision processes are discussed.

1. Introduction

When charged or neutral particles interact at low energies, at small collision velocities or
in weakly bound systems, their interaction evolves over time and distance scales that are
characteristically different from the usual atomic ones. The evolution from one configuration
to another, i.e. clustering into atomic or molecular aggregates or fragmenting into constituents,
proceeds through thresholds, e.g. excitation, ionization and dissociation limits. Particle
interactions in the vicinity of a threshold thus provide the essential link between weakly
bound and fragmented systems. As the de Broglie wavelength of these particles is large
compared to any natural interaction length, the dynamics near threshold is amenable to
analytical exploration.

Atomic physics typically focuses on sharp structures, e.g. bound states, resonances,
Ramsauer minima, etc, of atoms and small molecules. Dynamics that change rather slowly with
energy underly these sharp structures and can often be characterized by a few constants. The
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constants are determined by atomic dynamics in a relatively small region of configuration space
where all components of the atom or molecule are close together, while the sharp structures
relate to large distances where the system has separated into a few fragments. For example,
reflection of Schr̈odinger waves from a potential barrier, as occurs at negative energies, sets up
standing waves at well defined energies corresponding to bound states. With a slight increase
in energy, the waves can escape to infinity, but over short distances the bound and unbound
waves are nearly identical, the local wavelength in this region is dominated by the strong
potentials that prevail and is thereby insensitive to small changes in the energy.

Much has been learned by studying bound state energies and closely associated threshold
structures in atomic and molecular physics. The study of threshold effects in atomic physics
has traditionally centred on the dynamics of electron impact and electronic structure since,
until very recently, only electrons and positrons had wavelengths sufficiently long for a few
parameters to characterize the scattering process over an appreciable energy range. These
applications are of continuing interest owing to the steady advance of techniques for controlling
and detecting slow electrons and, more recently, slow positrons. The variety of atomic species
available for high-resolution studies, e.g. in storage rings and traps, however, continues to
increase.

Laser cooling and trapping of neutral atomic species has for the first time provided a
laboratory for atomic and molecular collisions at ultracold temperatures (61 mK). It is now
routinely possible to probe atom–atom collisions involving only a few partial waves (often
only one) of relatively long de Broglie wavelength, thus exposing the physics of threshold
behaviour. It has also been established that external fields can manipulate the interaction
properties of ultracold atoms and molecules. This prospect leads to fascinating modifications
of threshold behaviour. The bulk of ultracold collisions involve aggregates of alkali atoms of a
bosonic flavour. A recent development which truly demonstrates the dominance of threshold
laws is the observation of a spin-polarized degenerate Fermi gas whose formation via s-wave
elastic collisions is prohibited by Fermi–Dirac statistics. This allows one to peek directly into
the p-wave threshold law in an aggregation process.

Quantum dots and surface phenomena represent other areas where threshold effects are
important. Here, the threshold laws are modified by the reduced number of effective dimensions
available to the Schrödinger waves. For example, the scattering length in two dimensions takes
on a very different meaning than in three dimensions. Studying these differences can advance
our understanding of threshold phenomena, generally.

A powerful general-purpose method which unifies the treatment of weakly bound
complexes and break-up continua is the multichannel quantum defect theory (MQDT) and
a variant, the multichannel effective range theory (Bethe 1949, Nath and Shaw 1965,
Newton 1966). In what follows, it is observed that many of the threshold phenomena in
atomic, molecular and surface physics can be analysed in the spirit of MQDT and can be
parametrized in terms of a few weakly energy-dependent parameters. Despite the diversity of
phenomena, threshold behaviour can always be extracted by the standard approach of Wigner’s
theory. This theory is most fully developed when there are only two fragments in the final
state.

Threshold laws involving more than two fragments are less well understood, and, thus
far, less susceptible to one unifying theoretical approach. Such laws are important for a
variety of fields of physics, but particularly so in atomic physics owing to the long range of
atomic forces. The celebrated Wannier threshold law for final states involving three charged
particles is a notable example where standard expectations have been confounded. The rather
counterintuitive results of Wannier’s theory rely heavily upon classical mechanics and have not
been fully brought into the general arsenal of techniques employed in quantum calculations.
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The success of Wannier theory is all the more surprising since classical analysis fails to produce
the Wigner law, except for the Coulomb potential.

This paper will review the standard Wigner theory for two-body final states. The diverse
threshold phenomena that arise for short-range, Coulomb, dipole and polarization potentials
will be discussed in section 2. Because the potentials often vary slowly with distance, the
Jeffreys–Wentzel–Kramers–Brillouin (JWKB) approximation for the threshold wavefunctions
will also be examined. Extension of the theory to three-body final states is the subject of
section 3. Finally, threshold phenomena in lower-dimensional spaces are examined in section 4.

While there is no unifying theory for an arbitrary number of aggregates, simple phase
space arguments can be used to obtain some idea of the expected behaviour. They are not
rigorous and must be used with caution, but they will be mentioned here in order to set the
framework for a more firmly based analysis. Consider that several particles separate to large
distances. After factoring out the centre-of-mass motion, there will be several unbounded
degrees of freedom,N = 3(NP − 1), in the case ofNP particles. We will further suppose
that all coordinates have been scaled according to the corresponding particle mass so that the
total energy of systemE relates to the wavenumbers (we use atomic units throughout) by
E = (k2

1 + k2
2 + · · · + k2

N)/2. Then a cross section for any process that leads to fragmentation
has the form

dNσ = |M|2δ(E − (k2
1 + k2

2 + · · · k2
N)/2) dk1 dk2 . . .dkN (1)

where|M|2 is the squared matrix element for the process and an energy-conserving delta
function has been included. Introducing the total wavenumberK according to

K2 = k2
1 + k2

2 + · · · + k2
N (2)

and a corresponding unit vector̂K in N dimensions, gives

dNσ = |M|2δ(E −K2/2)KN−1 dK dK̂

= 2(N−2)/2|M|2δ(E −K2/2)(K2/2)(N−2)/2 d(K2/2) dK̂. (3)

Integrating over the wavevectorK gives

σ = 2(N−2)/2|M|2E(N−2)/2 (4)

where the overline on|M|2 denotes an angle average.
The key ingredient of simple phase space arguments is the assumption that, in the absence

of any evidence to the contrary, the average matrix element is essentially constant over small
ranges ofE nearE = 0. Equation (4) then gives the standard threshold law that cross sections
are proportional toE(N−2)/2. For example, ifN = 3, we recover the usualE1/2 threshold law
for two bodies, while forN = 6, one obtains the expectedE2 behaviour for three-particle
fragmentation.

Long-range potentials, most notably Coulomb or dipole interactions, induce characteristic
energy dependences in the matrix element, thereby altering the phase space threshold laws.
Polarization and other interactions with potentials that drop off faster thanr−2 do not usually
change inelastic threshold laws, but they often imply that the phase space law has only a very
short range of validity. The asymptotic waves for all such potentials are known analytically, and
an approximate description through the JWKB approximation often suffices. Such ‘Wigner
threshold laws’ are well established for two-body final states and can be employed with
considerable confidence in new physical situations. Section 2 reviews this subject in the
context of atomic physics.

Theories for multi-particle fragmentation are much less well developed, with no rigorous
method that can be applied in all cases. Even theE2 law for short-range potentials must be
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qualified for the exceptional case where the two-body s-wave scattering lengthas is infinite.
Whenas → ∞, the three-body break-up threshold cross section becomes singular owing to
an effect discussed by Thomas (1935) and later by Efimov (1970). When the fragments are
charged, the threshold law was obtained by Wannier using semiclassical analysis, but the law
has never been proven in the sense that Wigner’s threshold laws have been. Section 3.1 outlines
a derivation of Wannier’s threshold law and discusses some of its limitations.

For three or more particles, there is no widely accessible JWKB approximation. While
Feynman’s semiclassical propagator forms the basis for such approximations in principle, it is
too difficult to employ generally for many particles, owing to the possibility of chaotic motion.
Even so, valuable insights have emerged from the classical theory, in particular concerning the
range of validity of threshold laws. Alternatives that do not employ classical orbits directly
include a multi-crossing model discussed in section 3.1.2, and also a hidden-crossing theory,
familiar from ion–atom collisions. Three neutral particles interacting via short-range forces can
be described in hyperspherical coordinates whose asymptotic properties are readily exploited
using Wigner’s analysis for short-range interactions. The proviso here is that the ordinary
radial coordinate is replaced with the hyper-radius, as in section 3.2.

External fields often freeze out some electronic degrees of freedom in atoms and molecules,
which would otherwise be available to the electrons, as with the transverse motion of electrons
in atoms in strong magnetic fields, and with trapped electrons in mesoscopic devices, such
as quantum dots. Phase space arguments must be modified. Derivation of the threshold
phenomena in one and two dimensions is included in section 4.

2. Two-body threshold laws

A complete development of two-body threshold behaviour was given by Wigner (1948) over
50 years ago, emphasizing that the longest-range forces govern the energy dependences of
observables near threshold. As in other developments Wigner made, such as theR-matrix
theory, the interaction between the two bodies is usefully separated into small and larger,
wherer is the separation distance. The key point is that the energyE in the relevant channel,
when it lies just above threshold (E = 0), is a significant parameter only at asymptotically
larger. At smallr, in contrast, when the bodies are close together and interacting strongly, the
potentials that prevail completely dwarfE. Thereby, the local wavenumber in that region is
insensitive to small changes inE, depending instead on those strong potentials. It is only when
the bodies separate to larger and these potentials drop off, particularly asr →∞, thatE and
its associated asymptotic wavenumberk in the channel (E = k2/2 in atomic units) become
significant. Therefore, sensitive dependences of the cross sectionσ on k near threshold can
only arise at larger. Indeed, by the same token, it is the longest-range potential in that channel
that will dominate the behaviour ofσ closest to threshold.

This makes the study of threshold behaviour easier than seeking a full solution of the
problem, skirting the complexities of the small-r region. At the same time, threshold behaviour
is a useful diagnostic of the long-range potentials in the problem.

2.1. Short-range potentials

Once the particles have traversed Wigner’s threshold zone, a small-r region where the two-body
potential is dominant, the probability of escape of fragments is determined by the phase space
available at the energyE for the particles to escape to infinity (see section 1). As discussed
earlier, withNP = 2 andN = 3, the threshold behaviour for an inelastic differential cross
section isσ(k) ≡ (dσ/dE) ∝ k2(dk/dE) = k, a lineark dependence. For elastic scattering, it
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is the phase shift that has thisk dependence. Corresponding phase space dependences govern
threshold behaviour in other dimensions (see section 4).

For channels with non-zero orbital angular momentum`, as is often the case in atomic and
molecular systems, the ‘angular momentum potential’ (or ‘centrifugal barrier’)`(` + 1)/2r2

forms an effective long-range potential. Indeed, its 1/r2 dependence is what marks the
separation between short- and long-range regions for external potentials, any that fall off
faster (slower) than 1/r2 belonging to the former (latter) category. In the case of short-range
potentials, this angular momentum term provides the longest-range potential and governs
the threshold behaviour (section 2.5). Two equivalent views of the 1/r2 behaviour lead to
an additionalk` dependence in the matrix element contributing to the phase shift or cross
section. One view of tunnelling through the angular barrier in going from the reaction zone
to infinity will be considered in section 2.6, but here we turn to a more direct picture. The
relevant dimensionless combination beingkr, the ‘suppression’ in the amplitude at smallr of a
wavefunction with non-zerò, namelyr`, translates into ak` in any matrix element involving
such a wavefunction. Thereby, the threshold behaviour, consistent with equation (3), becomes

dσinel/dE ∝ k2`+1

tanδel ∝ k2`+1
(5)

considered as the standard Wigner threshold laws for short-range potentials (Wigner 1948).
Together with a kinematic 1/k2 factor, an elastic cross section has the dependenceσel ∝ k4`.

Stripped down to its barest essentials, the Wigner argument leading to the results in
equation (5) is as follows (section 132 of Landau and Lifshitz 1977, Rau 1984a). Outside
the radiusr0 of the short-range potential, the radial Schrödinger equation exactly atE = 0
has only the kinetic energy terms, the radial kinetic energy and angular momentum potential.
Therefore, the general solution is

R`(E = 0) = A1r
` +A2r

−(`+1) (6)

with A1 andA2, particularly the ratioA1/A2, having no dependence onE. At these same
distancesr > r0, atE > 0, the Schr̈odinger equation being homogeneous in the combination
kr, the solution

R`(E) = (regular)− tanδ`(irregular) (7)

must, for smooth and continuous matching to equation (6), be of the form

R`(E) = (kr)` + tanδ` (kr)
−(`+1) (8)

with

tanδ` = (A2/A1)k
2`+1 R`(E) = k`R`(E = 0) (9)

giving the results in equation (5). This argument does not require any detailed knowledge of
the regular and irregular solutions involved and will be adapted in sections 2.5 and 3 for more
complicated potentials.

2.2. Coulomb potential

TheZ/r Coulomb interaction between two charged bodies is long range relative to angular
momentum and, indeed, the longest-range potential encountered in atomic and molecular
physics. The dependences in equation (5) are completely modified as is obvious because`

ceases to be a significant parameter, the 1/r potential and not̀ (` + 1)/2r2 being dominant
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at infinity. Wigner had already in his classic paper (Wigner 1948) worked out these Coulomb
threshold laws. In addition to the phase space factor,k, the suppression (enhancement) of the
squared wavefunction at smallr in the case of repulsive (attractive) Coulomb interaction is
(1/k) exp(−πZ/k) and 1/k, respectively, and independent of` (p 566 of Landau and Lifshitz
1977). Therefore, for the attractive Coulomb potentials, the inelastic cross sections and elastic
phase shifts become constant, independent of energy and angular momentum near threshold.
Inelastic thresholds open with a finite, non-zero jump in the cross section at threshold. A useful
insight into the occurrence for all` is provided by considering the region just below threshold
which, in such a Coulomb system, has an infinite pile-up of Rydberg states with arbitrarily high
`. An energy average over the resonant excitation of these states gives the non-zero value that
extrapolates above threshold as a similar constant cross section (Gailitis 1963, Seaton 1983,
figure 2.1 of Fano and Rau 1986).

The energy independence of the cross section at threshold for attractive Coulomb potentials
is connected to the existence of a so-called ‘Coulomb zone’, a region stretching over a large
range ofr in which the Coulomb potential dominates over the kinetic energy. Over this entire
region, the local wavelength of the wavefunction’s oscillations is independent ofE, being
determined byZ alone (section 36 of Landau and Lifshitz 1977). Only pastr > Z/E lies the
‘far zone’ with oscillations governed by the wavelength 1/k. AsE → 0, the Coulomb zone
covers the entire asymptotic range and the energy dependence drops out of the wavefunction
and the threshold law. At the same time, the JWKB approximation applies in the Coulomb
zone and describes in common the continuum and bound states forE ≈ 0.

2.3. Effective range expansions

To go further than the leading energy dependence of the Wigner threshold laws as in
equation (5), the same division between small and larger proves crucial. Thus, the first relation
in equation (9) may be viewed as expressing an expansion ofk2`+1 cotδ` near threshold, the
leading term being constant in energy,(A1/A2), with further terms involving higher powers
of E. For ` = 0, this gives Wigner’s effective range expansion introduced in the early days
of nuclear physics,k cotδ0 = −(1/a) + reffE + · · · , wherea = −(A2/A1) is the scattering
length andreff the ‘effective range’ (Bethe 1949, Newton 1966).

Subsequently, multichannel quantum defect theory in atomic and molecular physics has
interpreted these results as follows (Seaton 1983, Fano and Rau 1986). At smallr (> r0),
the radial wavefunction and the parameters therein can be defined with no reference to the
asymptotic energyE. Thus from equation (6),R0(E = 0) = A1(1−a/r)with a independent
of E, and even the normalizationA1 can be similarly chosen. The scattering lengtha is
determined by matching logarithmic derivatives of this solution, valid just outsider0, to that
of the interior solution within the reaction zone which starts at the origin asr`.

The scattering length can be regarded, therefore, as a ‘smooth, short-range phase shift’,
tanδ0

0 = −a/r0, the superscript zero on quantities indicating insensitivity toE. The physical
phase shiftδ` in equation (7), on the other hand, is defined at asymptoticr with reference to
regular and irregular functions defined at larger including their normalization, typically chosen
as normalization per unit energy. All sensitive energy dependences are contained therein so that
the factork (or, more generally,k2`+1) in equation (5), tanδ0 = (kr0)(−a/r0) = (kr0) tanδ0

0,
translates the smooth phase shift defined at smallr to the energy-dependent physical phase
shift at infinity.

Such translations through the parameter calledB in MQDT, which is essentially(kr0)2`+1,
are codified not just for the phase shift but for the regular and irregular functions themselves and
all the other scattering quantities which depend on them. A base pair of regular and irregular
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solutions (f 0, g0) for any long-range field, defined at smallr and insensitive to energy, are
related to a corresponding pair (f, g), appropriate to asymptotic distances and normalized per
unit energy, through(

f

g

)
=
(
B1/2 0

B1/2G B−1/2

)(
f 0

g0

)
(10)

whereG is another MQDT parameter, not essential for our purposes here. Note thatB1/2,
which reduces to thek`+1/2 in equation (5), links the normalizations appropriate to small and
larger. Counterpart relations below threshold, involving a parameterA in place ofB, occur
in MQDT but are ignored here, although they are useful for extrapolating to negative energies
(see chapters 4 and 5 of Fano and Rau 1986).

The connection between the asymptotic phase shifts and the smooth, short-range ones is
provided by the relations obtained from equation (10),

tanδ0
` = B−1/2 tanδ`[B1/2 − B−1/2G tanδ`]

−1

tanδ` = B tanδ0
` [1 + G tanδ0

` ]
−1.

(11)

Thus, once the parametersB andG are catalogued for any long-range potential, as they
have been (table 5.1 of Fano and Rau 1986), one can pass back and forth between the two
phase shifts. In particular, tanδ0

` obtained from matching to solutions in the reaction zone (or
from Wigner’sR-matrix) can be expanded as a slowly varying function in powers ofE, and
the second equation in equation (11) then gives the full effective range expansion for tanδ`
with all its possibly complicated energy dependences arising from the parameterB (and, to a
lesser extent,G).

The above single-channel treatment extends to many channels. Consider anN -channel
system and introduce the multichannel wavefunction in the form of anN ×N -matrixψ which
has the following form outside the reaction sphere,r > r0,

ψ = h(−) − h(+)S (12)

whereS is the scattering matrix andh(±) are channel wavefunctions with travelling-wave
behaviour. They are linear combinations of the standing waves (f, g) and have the following
asymptotic behaviour:

h
(±)
ij ∼ δij k−1/2

i exp[±i(kir − liπ/2)] (13)

where ki and li are linear and angular momenta in channeli. The asymptotic form in
equation (13) assumes that allN channels are open. However, the whole treatment can be
easily generalized if there areNc additional closed channels. The corresponding diagonal
matrix elements ofh(+) behave like e−|ki |r , and the matricesh(−) andS become rectangular
with N + Nc rows andN columns. For the sake of simplicity, we will not dwell further on
details related to closed channels (see chapters 7 and 8 of Fano and Rau 1986).

The partial (for a given set of angular momenta) cross section for transition from initial
statei to a final statef is proportional to|Tf i |2, whereT is the transition matrix related to the
scattering matrixS = I − T , with I the identity matrix. The functionψ is matched with the
internal wavefunction in the form

ψ = Rdψ

dr
(14)

whereR is the WignerR-matrix, a meromorphic function of energy with poles only on the real
axis. In deriving the threshold laws, we assume thatR depends weakly on energy. A special
treatment is necessary if there is a bound, a virtual or a resonance state near the threshold.
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Solving equation (14) forS, we obtain finally the equation of Ross and Shaw (1961),

T = −2ikl+1/2(M − ik2l+1)−1kl+1/2 (15)

whereM depends onR and is also a meromorphic function of energy. This equation allows us
to obtain threshold laws for elastic and inelastic processes. In particular, the Wigner threshold
law for an inelastic process is

Tf i ∼ klf +1/2
f . (16)

Furthermore, assuming that all poles of theM-matrix are far from the threshold, we can
expandM in powers ofk2

f and obtain the effective range expansion for all transition matrix
elements near threshold. If detM has a zero near threshold, we have the case of near-threshold
resonance scattering.

The case of the Coulomb interaction in the final state can be treated similarly by substituting
the Coulomb functions forh(±). As a result, the cross section for inelastic processes becomes
finite at threshold in the case of attraction and exponentially small in the case of repulsion.

2.4. Dipole potential

The dipole potential is of the form−D/r2, whereD can be either positive (attractive dipole)
or negative (repulsive dipole). A polar molecule presents an instance, as also does any excited
atom with a degeneratèmanifold, for an incoming charge. When the dipole is combined with
the centrifugal potential, the resulting effective potential,λ(λ+1)/r2, will have complex angular

momentaλ = − 1
2 + iα, whenD > Dcr. Here,α =

√
2D − (` + 1

2)
2 andDcr = 1

2(`+ 1
2)

2. The
MQDT parameters are available (see chapter 5 of Fano and Rau 1986, Greeneet al1979) and,
as in the case of the Coulomb field, inelastic cross sections start with a finite step at threshold
(with an additional slow oscillation ink). Again in this situation, there is correspondingly
an infinity of dipole-bound states below the threshold (see section 35 of Landau and Lifshitz
1977, Greene and Rau 1985, Hino and Macek 1996).

2.4.1. Degenerate channels.Due to conservation of parity, the dipolar interaction is non-
diagonal in angular momentum, so that the problem is always a multichannel one even outside
the reaction sphere. Fortunately, the dipolar interaction exhibits the same long-range behaviour
as the centrifugal potential. If the dipolar interaction couples channels with the same energy,
the problem is reduced to the diagonalization of the matrix

A = `(` + 1)− 2D (17)

whereD is the dipole moment matrix obtained by calculating the matrix element of dipolar
interaction between angular momentum eigenstates. Two cases of practical importance
are electron-impact excitation of the hydrogen atom and scattering by non-rotating polar
molecules. In the first case, the matrixD has a finite size due to conservation of the total angular
momentum of the system. Methods for the diagonalization and classification of eigenvalues
are discussed in Herrick (1975), Nikitin and Ostrovsky (1978) and Gailitis (1982). In the
second case, the size of the matrixA is infinite but its eigenvalues rapidly converge in all
cases of practical importance. In both cases, the assumption of degenerate channels, which
is necessary to have an induced dipole moment, involves an approximation: we assume that
the Lamb shift (for collisions with hydrogen atoms) or rotational spacing (for collisions with
polar molecules) is small compared to the electron energy. Necessary modifications for lower
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energies for electron–molecule scattering will be discussed in the next section. Other cases
involving collisions with muonium and other heavy particles were discussed by Gailitis (1982).

Diagonalization of the matrixA allows us to express the solution of the Schrödinger
equation outside the reaction sphere as a linear combination of Bessel functions with indices
λi+ 1

2, whereλi are related to the eigenvalues3i ofA through3 = λ(λ+1). Then theR-matrix
matching condition can be applied in the same way as in the case of short-range interactions.
The final result is conveniently expressed in terms of a matrixS ′ which is connected toS by a
non-unitary transformation (Gailitis and Damburg 1963),

S = exp(iπl/2)U exp(−iπλ/2)S ′ exp(−iπλ/2)U−1 exp(iπl/2) (18)

whereU is the orthogonal matrix which diagonalizesA. Then forS ′ we obtain (Gailitis and
Damburg 1963, Fabrikant 1977)

S ′ = 1 + 2ikλ+1/2{M − (tanπλ + i)k2λ+1}−1kλ+1/2. (19)

The form of the threshold law depends critically on the lowest eigenvalue30. If 30 > − 1
4,

all λi are real, theT -matrix element for the inelastic process is proportional tokλ0+1/2 and the
cross section becomes proportional tok2λ0+1. If 30 < − 1

4, λ0 + 1
2 is pure imaginary, and the

cross section is finite at the threshold. This occurs at all excitation thresholds in the case of
the hydrogen atom. In the case of scattering by polar molecules, this happens if the dipole
moment exceeds the critical valueDcr = 0.6395 atomic units (au). In this case, the major
energy dependence of the cross section is given by the denominator of equation (19). In
particular, the cross section for inelastic processes with the dipolar interaction in the final state
can be written as (Fabrikant 1977, 1978) (k ≡ kf )

σf i = constant

|e−iβ + eπαk2iα|2 (20)

whereα = Im λ and the parameterβ depends on elements of theM-matrix as well as on the
dipole moment.

Althoughβ is generally complex, its imaginary part is small if interactions with other
channels (other than dipole-coupled near-threshold channels) is weak. In particular,β is
real for pure elastic scattering. In this case, analytic continuation of theT -matrix below the
threshold into the region of negativek2

f allows us to find the poles whose positions are given
by the equation

k2 = −exp{−[π(2n + 1) + β]/α} n = 0, 1, . . . . (21)

These are, of course, the well known dipole-supported states discussed originally by Fermi
and Teller (1947). Note that these states converge rapidly (exponentially) to the threshold. The
rotational splitting reduces the number of these states from infinity to a finite number, sometimes
even to zero. For example, the HF and H2O molecules have supercritical dipole moments;
however, they do not have stable anion states. Crawford and Garrett (1977) concluded that
a dipole-supported state remains bound after inclusion of rotation if its fixed-nuclei binding
energy exceeds a tenth of the rotational constant.

If there are open channels below threshold, the bound states become dipole-supported
Feshbach resonances. They have been observed in photodetachment experiments (Jacksonet al
1979, Lykkeet al 1984). If the vibrational motion of the molecule is included, each dipole-
supported state can generate a series of vibrational Feshbach resonances, originally called
‘nuclear-excited’ Feshbach resonances (Bardsley and Mandl 1968). A pronounced vibrational
Feshbach resonance below the first vibrational excitation threshold was recently observed
(Hotop et al 1995, Schrammet al 1999) in the process of dissociative electron attachment
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Figure 1. Calculated cross section for dissociative attachment in collisions of low-energy electrons
with CH3I molecules in the ground vibrational state. The thresholds for vibrational excitation of
the symmetric C–I stretch mode are shown by broken vertical lines.

to the methyl iodide molecule. The dipole moment of methyl iodide,D = 0.638 au, is not
strong enough to support a bound state. It was shown (Schrammet al1999) that this resonance
is mediated by the combined effect of the dipolar and polarization interactions. In figure 1
we present the theoretical dissociative attachment cross section. In addition to the vibrational
Feshbach resonance, a very pronounced cusp structure (a discontinuity of the derivative of the
cross section in energy) is seen at the first and second thresholds. The theory of the threshold
cusps based on analyticity and unitarity of theS-matrix was developed by Baz’ (1957). They
result directly from equation (15) which is due to Ross and Shaw (1961). We should note,
however, that the original theory of the cusp structure should be modified (Fabrikant 1977) to
include the effects of the dipolar interaction. In H− (Bryantet al 1977, Harriset al 1990), the
Feshbach resonances are associated with simultaneous excitation of two electrons below each
manifold of degenerate detachment threshold. The binding of these resonances occurs due to
the attractive induced dipole potentials which form because of the accidental degeneracy of
hydrogen angular momentum states.

Above threshold, the analytical structure of equation (20) leads to oscillations of the cross
section as a function of energy. However, these oscillations cannot be observed in practice
(Fabrikant 1977); see also Greene and Rau (1985) for a similar discussion involving three
bodies in section 3. If the dipole moment is just larger than the critical value, the period of
oscillations exceeds the rotational spacing, whereas for higher dipole moments the amplitude
of oscillations becomes exponentially small.

Turning to the more complicated example of a rotating dipole, we must distinguish between
two cases. In the first case, rotation removes all degeneracies of the dipole-coupled channels.
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In the second case, degenerate channels coupled by the dipolar interaction still remain. The
second case is typical of symmetric-top molecules.

2.4.2. Diatomic and non-symmetric polyatomic molecules.If the electron energy in the final
state is small compared to the rotational spacing, the dipole coupling becomes equivalent to the
action of a diagonal potential which, in the case of electron–atom collisions, behaves at large
distances as a polarization potential−β/2r4 (note thatβ can be both positive and negative).
In the case of scattering by polar molecules the long-range behaviour of the effective diagonal
potential depends on the total angular momentumJ . If J = 0, the effective polarizability is
given by (Clark 1979, Fabrikant 1983)β = D2/3B whereB is the rotational constant. For
J > 0 and s-wave electrons, the effective static polarizability vanishes, and the long-range
behaviour is determined by the dynamical polarization decaying asr−6. In all cases, the Wigner
threshold law is restored. It is also possible to find an analytical correction to the Wigner law
of the order ofβk2

f ln kf (Damburg 1968, Gailitis 1970).
The region of transition between the Wigner law and the dipole threshold law is much

more complicated. Even in the simplest two-channel case, the solution has a very complicated
analytical structure (Gailitis 1970). Therefore, most of the studies in this region were performed
by numerical integration of the coupled equations (Fabrikant 1978, 1983).

An interesting situation occurs when the dipole moment of the molecule is supercritical,
that is, the fixed-nuclei approximation leads to the appearance of dipole-supported states.
When the rotational splitting is included, all or most of them disappear because of the effective
cut-off of the dipole potential. As just discussed, at large distances the effective electron–dipole
interaction decays asr−4 or even faster. At shorter distances, where the rotational spacing is
smaller than the electron–dipole interaction, the adiabatic body-frame representation (Clark
1979, Fabrikant 1983) is more appropriate. In this region, the dipole potential leads to binding
and anisotropy of the electron wavefunction. The size of the inner (adiabatic) region may be
as large as a few hundred au. It means that the dipolar interaction may be strong enough to
create a diffuse bound or a virtual state (Freyet al 1994). In particular, very diffuse virtual
states were found in electron scattering by HF (Hillet al 1996) and CH3Cl (Freyet al 1995,
Fabrikant and Wilde 1999).

In the presence of a nearby bound or virtual state, theS-matrix element for transition
i → f behaves as (k ≡ kf )

Sf i ∼ klf +1/2

k − iκ
. (22)

The position of theS-matrix pole is given byk = iκ, whereκ is positive in the case of a bound
state and negative in the case of a virtual state. In collisions whenlf = 0 dominates, we obtain
for the excitation cross section (see section 143 of Landau and Lifshitz 1977)

σf i = ak

k2 + κ2
(23)

wherea is a constant. Equation (23) actually assumes that the interchannel coupling is weak.
However, the dipolar coupling between rotational channels gives the major contribution to
the formation of a bound or a virtual state, and its influence on the electron wavefunction is
substantial. The corresponding analysis based on the multichannel formula of Ross and Shaw,
equation (15), leads to the following modification of equation (23):

σf i = ak

k2 + 2k Im κ + |κ|2 . (24)
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Figure 2. Rates for electron-impact rotational de-excitation of the HF molecules in different
rotational statesj .

TheS-matrix pole acquires a non-zero real part. Constantsκ anda, as well as the positions
of S-matrix poles, depend onJ . This dependence was calculated for HF (Fabrikant 1996).
For higherJ , the pole moves further away from the origin, and its influence on the threshold
behaviour becomes weaker.

Experimentally, the influence of dipole-supported bound and virtual states was detected
in studies (Freyet al1994, 1995, Hillet al1996) of rotational de-excitation of polar molecules
by low-energy (Rydberg) electrons. The dependence onk of the rate constant,K ∝ kσf i , is an
indication of deviation from the Wigner law and a signature of diffuse dipole-supported states.
In figure 2, we present de-excitation rates for electron collisions with rotationally excited HF.
By comparing this behaviour with the experimental data (Hillet al 1996), it was found that
the energy of the HF− virtual state atJ = 0 is about 1.3 meV.

2.4.3. Symmetric-top molecules.In symmetric-top molecules, rotation reduces the dipole
moment, but does not average it to zero, as for diatomic and non-symmetric polyatomic
molecules. The reduced dipole momentDav can be defined asDav = K/

√
J (J + 1), whereJ

is the rotational angular momentum andK is its component about the symmetry axis.
ForJ = K = 0, the dipole moment is completely averaged out due to rotation. In addition,

there is only one scattering channel at electron energies below the first rotational excitation
threshold. Therefore, the threshold law in this case is the same as for a diatomic molecule. In
particular, if the binding energy in the fixed-nuclei approximation is less than a tenth of the
rotational constant, the bound state is transformed into a virtual state. IfJ > 0 butK is still
low, the molecular dipole moment is still averaged out (forK = 0) or almost averaged out (for
low K). However, the initial scattering channel is rotationally coupled with other channels
corresponding to scattering by states with lower rotational energies. As a result, theS-matrix
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pole moves off the real axis in the complex energy plane but stays on the non-physical sheet
(Fabrikant and Wilde 1999). The behaviour of theS-matrix element for a rotationally inelastic
process is given by equation (22).

At higherK, Dav grows and theS-matrix element for a rotationally inelastic process
can be written, similarly to equation (22), askλ+1/2F(k2λ+1) (Fabrikant 1983), whereF is a
meromorphic function of its argument. The threshold exponentλ + 1

2 depends now onJ and
K (Engelking 1982). For calculation of the threshold exponent, the dipolar coupling between
the degenerate channels (so-called strongly coupled channels) is important (Engelking 1982,
Engelking and Herrick 1984). For a subcritical reduced dipole moment, the analogue of
equation (22) has the form (Freyet al 1995)

σf i = akλ+1/2

k2λ+1 + κ2λ+1
(25)

whereλ is determined in the same way as in equations (17) and (18) but includes couplings
only between degenerate channels. The effect of a non-zero averaged dipole moment is more
important for oblate symmetric tops (such as NH3) whose rotational distribution at room
temperature is dominated by states withK close toJ . For prolate symmetric tops,K is
typically small compared toJ .

The most populated states at room temperature are those withK � J . They lead to
theS-matrix behaviour in equation (22) with complexκ. TheS-matrix poles in the energy
plane atJ > 0 are similar to the virtual-state pole in the sense that they do not represent any
quasibound states and are not associated with a time delay in scattering. Their imaginary part is
positive, whereas it should be negative for quasibound states. However, they can substantially
increase the near-threshold cross sections if their positions are close to the origin. Results of
calculations for methyl chloride are discussed in Fabrikant and Wilde (1999).

2.5. Polarization and other dispersion potentials

Interactions among fragments of an atomic or molecular system are not, strictly speaking,
short ranged. Two-body break-up processes, even when the fragments are uncharged, always
involve multipole interactions that decrease with some reciprocal power of the distance
between the fragments: examples include the detachment of an electron from a negative
ion, governed at large distances by a 1/r4 polarization potential, and the van der Waals (1/r6)
interaction between neutral ground-state atoms of a dissociating diatomic molecule. The
availability of new high-resolution photon sources for near-threshold spectroscopy, advances
in the experimental observation of positron–atom collisions, the curious behaviours of ultracold
gases, the continuing interest in the stability and detachment of new species of negative ions
and the continued importance of low-energy electron propagation through molecular gases all
require an improved understanding of the effects of these multipole interactions on two-body
break-up processes.

Interaction potentials of the form−β/2rs with s > 2 are sometimes termed ‘short range’
because they are dominated by inertia (i.e. by the centrifugal barrier) at large distances.
In this section, in contrast, we refer to these interactions as ‘dispersion forces’. The term
‘dispersion’ emphasizes that fragmenting systems interact via the exchange of virtual photons;
the coefficientsβ calculated in standard references using dispersion relations (Marinescuet al
1994, Marinescu and Dalgarno 1995).Dispersion forces modify the form of the effective
range expansion; even the leading term of the expansion (i.e. the threshold law) is changed for
sufficiently high angular momentum states. This characteristic of dispersion forces, and their
relevance to virtually all two-body break-up processes, warrants a careful elucidation of the
required modifications of Wigner’s theory.
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The role of dispersion forces in the scattering of slow particles was outlined by Landau and
Lifshitz (1977, section 132) using Born’s approximation. In particular, that reference shows
(Landau and Lifshitz, section 132, problem 4) that dispersion forces produce a long-range (or
‘anomalous’) contribution to the phase shift of

√
πmβ

4h̄2

0((s − 1)/2)0(`− (s − 3)/2)

0(s/2)0(` + (s + 1)/2)
ks−2 s > 3. (26)

For sufficiently high`, this long-range phase shift will dominate the short-range shift that
follows the Wigner law. Also, in the particular case of s-wave scattering from a 1/r3 potential,
the phase shift was found to vary ask ln k near threshold.

Effective range expansions for dispersion potentials were obtained fors = 4 using
the Mathieu functions (O’Malleyet al 1961, Holzwarth 1973) and for arbitrarys using the
nonlinear first-order equation for the phase shift (Levy and Keller 1963). The latter method
has been generalized to anisotropic potentials (O’Malley 1964, Fabrikant 1984). The two-
potential formula of scattering theory can also be used to obtain effective range expansions
(Hinckelman and Spruch 1971) even for the case ofs = 3 (Shakeshaft 1972).

Here, we will simply sketch a derivation of the threshold laws for dispersion forces,
following closely the arguments presented in section 2.1. We begin with an analysis of the
threshold wavefunctions, and deduce the threshold laws through an analysis of the scaling of
Schr̈odinger’s equation with energy. The presentation differs from that in section 2.2 largely
because the phase shift is now defined relative to anenergy-dependentphase [ν− (`+ 1

2)]π/2
of waves in the combined dispersive and centrifugal potentials. This ‘renormalization’ of the
centrifugal phase shift (i.e. the ‘anomalous’ phase described above) is the key to understanding
threshold laws in dispersive potentials.

If short-range forces can be neglected beyondr0, then Schr̈odinger’s radial equation (in
atomic units) for a reduced massµ and forr > r0 is[ −1

2µr2

d

dr
r2 d

dr
− β

2rs
+
`(` + 1)

2µr2
− E

]
R`(r, E) = 0 (27)

which now contains the dispersion potentialVs = −β/2rs as well as the centrifugal barrier.
There are nowfour readily identifiable regions ofr: a core region (r < r0), a dispersion zone
(r0 < r < [µβ/`(` + 1)]1/(s−2)), an inertial zone ([µβ/`(` + 1)]1/(s−2) < r < 1/

√
2µE) and

a far zone (r > 1/
√

2µE). Note that the inertial zone is non-existent in the important case of
s-wave scattering (` = 0).

Solutions of equation (27) exactly at threshold (E = 0) are Bessel functions of order
η = 2` + 1/(s − 2) and of a scaled variablex = [2/(s − 2)]

√
µβ/rs−2. A pair of linearly

independent solutions are simply

√
rR

(1)
` (r > r0, E = 0) = Jη(x) ∼

r→0

√
2

πx
sin
(
x − 1

2π(η − 1
2)
)

√
rR

(2)
` (r > r0, E = 0) = Yη(x) ∼

r→0
−
√

2

πx
cos

(
x − 1

2π(η − 1
2)
)
.

(28)

Note that these solutions oscillate rapidly (for attractive dispersion potentials) near the
origin, due to the unphysical singularity of the 1/rs potential. The second solution,Yη, is
indeterminate whenη is an integer. In this case,Y is determined in standard texts by an
application of l’Hospital’s theorem, and its series expansion contains a logarithmic term in
r. All partial waves of the 1/r3 potential (s = 3) of current interest in ultracold collisions
have integral values ofη. The logarithm complicates the analysis of threshold laws and the
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effective range expansion. A rigorous mathematical proof of the threshold law for repulsive
1/r3 interactions was given by Shakeshaft (1972) using the theory of Hinckelman and Spruch
(1971) and later by Gao (1999) using a complete quantum defect theory. Here, we provide a
more elementary derivation of the threshold law based on the principles utilized in section 2.1
for short-range potentials.

The threshold wavefunction outside of the core boundaryr0 is a superposition of the base
pair in equation (28), described by a core phase shiftδ0 that varies with energy only on the
scale of 1/µr2

0 and can be considered constant,

√
rR`(r > r0, E = 0) = cosδ0 Jη(x)− sinδ0 Yη(x). (29)

The leading terms of this threshold wavefunctionin the inertial zoneare obtained by retaining
only the leading powers ofx in the expansion of the Bessel functions

R`(r, E = 0) ∼
r→∞

sinδ00(1 +η)

πηCη

[
r` +

πηC2η

02(1 +η) sin(δ0)

Fη(r, C)

r`+1

]
(30)

whereC = √µβ/(s − 2) and

Fη(r, C) =
sin(πη + δ0)/ sinπη η 6= 1, 2, . . .

−2 sinδ0

π
ln

(
C

r(s−2)/2

)
+ cosδ0 +

sinδ0

π
(ψ(1)− ψ(n− 1)) η = n = 1, 2, . . . .

(31)

This form of the threshold wavefunction, valid when the centrifugal barrier dominates the
dispersion potential, is reminiscent of equation (6) of section 2.1. A logarithmic dependence
on r for integral values ofη appears explicitly in equation (31). Below, we join this form of
the wavefunction onto finite-energy solutions valid in the inertial zone. (As described earlier,
the far zone is removed to infinity at threshold.)

At a finite energy,E > 0, we rewrite equation (27) in terms ofz = kr, andM` =
√
rR`,[

z
d

dz
z

d

dz
+ z2 − (` + 1

2)
2

]
M`(z, µβk

s−2) = −µβk
s−2

zs−2
M`(z, µβk

s−2). (32)

In contrast to Wigner theory, Schrödinger’s equation is no longer homogeneous inz = kr,
but depends as well on the scaled dispersion coefficientµβks−2. The threshold wavefunction
equation (30) is readily cast in terms of this parameter, yielding

√
rR`(r, E = 0) ∼

r→∞
sinδ00(1 +η)

πη(C ′)η

[
z`+1/2 +

πη(C ′)2η

02(1 +η) sin(δ0)

Fη(z, C
′)

z`+1/2

]
(33)

whereC ′ =
√
µβks−2/(s − 2).

The right-hand side of equation (32) represents the dispersion potential. Neglecting it
results in a Bessel function solution representing free propagation of the wave throughout the
inertial and far zones. The right-hand sidemust be incorporated, at least perturbatively,for a
smooth matching onto the threshold wavefunction in the inertial zone. This remark identifies
µβks−2 as the key perturbation parameter determining the threshold law and higher-order
terms in this expansion provide the required modifications of the effective range expansion.
The same conclusion emerges in the JWKB treatment of section 2.6.



R108 Topical Review

2.5.1. Even power-law potentials.Perturbative solutions of equation (32) for even values of
s were constructed by Cavagnero (1994), where it was noted thatJ±(`+1/2) arenotvalid zeroth-
order solutions. This surprising result stems from the fact that dispersion potentials aresecular
perturbationsthat drive the unperturbed system at resonance, leading to divergent solutions.
Convergent solutions are obtained by shifting (or renormalizing) the angular momentum
quantum number

(` + 1
2)

2 = ν2 + (µβks−2)0(1) + (µβks−2)20(2) + · · · (34)

and adjusting the0’s precisely to avoid resonance. Correct zeroth-order solutions, valid as
k→ 0 throughout the inertial and far zones, are then simply

M±` (z, µβk
s−2) = J±ν(z) + O(µβks−2). (35)

Solving equation (34) forν yields

ν = (` + 1
2) + constant(µβks−2) + · · · . (36)

Within the inertial zone, equation (35) then has the form

M±` (z) ∼ z±ν = z±(`+1/2)
(
1± aµβks−2 ln z + · · ·) (37)

for which only the first factor enters near threshold. The finite-energy wavefunction resulting
from the continuation of equation (33) then has the limiting form√

(r)R`(r, E) = (1/k`+1/2)
[
Jν(z) + constantk2`+1J−ν(z)

]
(38)

reminiscent of Wigner’s theory. However, within the far zone, the Bessel functions now have
phases of−νπ/2 in place of−`π/2, with the result

tanδ ∼ constantks−2 + constantk2`+1 s = 4, 6, 8, . . . . (39)

The first term arises from the long-range phase shift associated withν, and the constant in
front of it agrees precisely with the Born result, equation (26). For 2` + 1< s − 2 the Wigner
threshold law is preserved, while for higher` the dispersion potential dominates. This result
is also in accord with the early proof (Spruchet al 1960) for the polarization potential, and
with the general remarks of Rau (1984a).

The wavefunction in equation (38) holds throughout the inertial and far zones, but is
normalized at the origin; its smallr form is simply the energy-independent equation (29).
Accordingly, the amplitude in equation (38) diverges at threshold ask−(`+1/2). Normalization
of this wavefunction per unit energy then requires multiplication of both equations (29) and (38)
by k`+1/2. This amplitude factor at smallr indicates thatinelastic processesare still governed
by the Wigner law, independent of the dispersion potential; see also section 2.6 below.

2.5.2. Odd power-law potentials. The secular perturbation theory (Cavagnero 1994,
Rosenberg 1998) no longer suffices to determine the leading term in the expansion ofν when
s is odd. This stems from the fact that the dispersion potential couplesJ`+1/2 andJ−`−1/2

directly in some order, both of which are solutions of the unperturbed equation. An alternative
procedure, adopted below, is to write down a formally exact solution of equation (32) in terms
of a Laurent series (Spruchet al 1960, Peach 1979, Gao 1999), and to evaluateν from the
expansion of an infinite determinant in powers ofµβks−2. A similar expansion is considered
below in section 2.6.

For odd power-law potentials (s = odd), but withη non-integral, the result is

ν = (` + 1
2) + constant(µβks−2) + · · · . (40)
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The remainder of the derivation proceeds as above, with the result

tanδ ∼ constantk(s−2) + constantk2`+1 s = 5, 7, 9, . . . 2` 6= s − 3, 3s − 7, . . .

(41)

precisely as withs even.
Turning now to the case of integralη, equation (31) demonstrates that for fixedz,

Fη(z, C
′)→ (s − 2) cos(δ0)

π
ln k (42)

so that the near-threshold wavefunction has the form√
(r)R`(r, E) = (1/k`+1/2)

[
Jν(z) + constantk2`+1 ln kJ−ν(z)

]
. (43)

For the important case of s-wave scattering in a 1/r3 potential (see the excellent review
by Weineret al 1999, section 4), one finds

ν = 1
2 +µβk s = 3 l = 0. (44)

The long-range phase shift associated with this potential is accordingly linear ink and is
dominated by thek ln k term in equation (43). Accordingly, as in the Born theory,

tanδ = constantk ln k (45)

a result surmised in Levy and Keller (1963) and first proved by Shakeshaft (1972). The elastic
scattering cross section from a 1/r3 potential thus diverges at threshold as(ln k)2.

While no general derivation of the threshold laws for other integral values ofη has yet been
presented, the procedure just outlined should be adequate to construct the relevant threshold
behaviours. This analysis demonstrates that, while dispersive potentials are ‘shorter ranged’
than the centrifugal barrier, they nevertheless modify the Wigner threshold law for most partial
waves, and in the case of the 1/r3 potential, can even lead to divergent cross sections.

Finally, it is interesting to compare the above analysis to that for the Coulomb potential.
Settings = 1 in equation (32) shows that the Coulomb potential cannot be treated perturbatively
except at very small distances. The relevant perturbation theory is then performed, not in terms
of z, but in terms of the parameterx ∼ √r. The reason for the difference lies in the fact that
the dispersion zone lies inside the inertial zone, while the Coulomb zone lies outside it.

2.6. JWKB treatment

In many cases, the feature already mentioned at the beginning of section 2, that the threshold
behaviour arises from larger where the local wavenumber is slowly varying, permits a simpler
JWKB treatment that is sufficiently accurate to forgo a complete MQDT analysis of the base
functions (f, g) of the respective long-range potential. Figure 3 is instructive in the insight
it provides into the relevant MQDT parameters. At an energyE > 0, the propagation from
smallr in the vicinity of the reaction zone to infinity involves two phase integrals, fromr0 to
r1 and fromr1 to∞, wherer1 is the classical turning point.

In the usual way of a Langer (1937) modification,`(` + 1) → `
2
, with ` = ` + 1

2 for a
JWKB treatment, we haver1 = `/k. The tunnelling integral in this treatment is precisely the
first MQDT parameter,

B1/2 = (2π`)1/2 exp

[
− lim
r→0

(∫ r1

r

|k(r ′)| dr ′ + ` ln r

)]
(46)
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Figure 3. Schematic of MQDT parametersB andη as JWKB phase integrals at an energyE. A
short-range potential, the angular momentum barrier and an attractive dispersion potential (long-
broken curve) are shown.

wherek(r)2 = k2 − `2
/r2 − 2Vs(r) is the local wavenumber. Note that for a short-range

potential,|k(r ′)| in equation (46) reduces tò/r andB1/2 to thek` of section 2.1.
Whereas the tunnelling phase integral modifies the amplitude of the radial wavefunction,

in addition, there is a real phase stemming from the regionr1 to infinity arising from the angular
momentum potential and any otherVs(r) such as a power-law dispersion potential indicated
in figure 3. This defines a ‘long-range phase shift’

δ` = (π/4) + lim
r→∞

[∫ r

r1

k(r ′) dr ′ − kr + (Z/k) ln r

]
. (47)

The definition includes the usualπ/4 contribution from the turning point and a logarithmic
contribution when there is a Coulomb potential. When equation (46) has only the angular
momentum potential,δ` reduces to the−π`/2 contained in the asymptotic behaviour of (f, g).

Besides providing these JWKB interpretations of the MQDT parameters, figure 3 also
clarifies the different effects that a power-law potentialVs(r) = −r−s has on the two results
in equation (5) as noted in our discussion of dispersion forces in section 2.5. For an inelastic
process, the outgoing wavefunction in that channel has perforce to tunnel out fromr0 through
the angular momentum barrier as the bodies separate to infinity, the ‘initial feed’ atr0 having
resulted from some other incoming channel (for whichk in the outgoing channel of interest is
not a significant parameter). This tunnelling induces thek2`+1 behaviour (which may be
valid for only a tiny energy region above threshold (Slateret al 1978)), any otherVs(r)

only contributing to further modulations of the outgoing wavefunction and thereby further
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k dependences. On the other hand, for elastic scattering, the bodies starting atr → ∞ need
never tunnel in through the angular barrier all the way tor0 but only part way to be able to
scatter fromVs(r) (Rau 1984a).

The JWKB results in equations (46) and (47) also provide quantitatively accurateB and
δ` for any power-law potential,Vs = −β/2rs . The simple integrations involved in the two
expressions can even be carried out analytically. Thus, for instance, for the polarization field
s = 4 of section 2.5, its contribution toδ` is

δ` =
∫ ∞
r1

dr
([
k2 − (`2

/r2) + (β/r4)
]1/2 − [k2 − (`2

/r2)
]1/2)

. (48)

Expanding in powers ofβ, we have

δ` = (β/2)
∫ ∞
r1

dr r−4
[
k2 − (`2

/r2)
]1/2 − (β2/8)

∫ ∞
r1

dr r−8
[
k2 − (`2

/r2)
]−3/2

+ · · ·

with r1 = `/k. By writing u = (k2r2/`
2
) − 1, each of these integrals reduces to a beta

function,B( 1
2,

3
2), etc, so that

δ` = (πβk2/8`
3
) + (15πβ2k4/128̀

7
) + · · · . (49)

This result agrees with that of section 2.5 for large`, as expected for a semiclassical
approximation. Note the expansion in terms ofβks−2, s = 4.

Remarkably, an obvious re-interpretation of powers of` according to the prescription,

8`
3→ (2` + 3)(2` + 1)(2`− 1), 128̀

7→ (2` + 7)(2` + 5) . . . (2`− 5), that is,

`
p−1→ 0(` + p/2)/0(` + 1− p/2) (50)

makes equation (49) exact, valid also for small`. Quite generally, for arbitrarys and to
arbitrary ordern in powers ofβ, we obtain for the expression corresponding to equation (49)

δ` =
∑
n=1

√
π

4

βn

n!

0(− 1
2 + 1

2sn)

0(1− n + 1
2sn)

0(` + 3
2 − 1

2sn)

0(` + 1
2 + 1

2sn)
kn(s−2). (51)

The leading term coincides with the results in equation (26). Similarly, the parameterB can
be evaluated from equation (46).

2.7. Ultracold collisions

The past two decades have witnessed the rapid development of technologies for lowering
neutral atomic and molecular gases to temperatures well below 1 K. The relevant procedures—
laser cooling, magnetic trapping, forced evaporative cooling, and buffer-gas cooling, to name
a few—have produced samples as cold as tens of nanoKelvin, implying collision energies in
the picoelectronvolt range. At these low energies, typically only a few partial waves contribute
to scattering. Consider for example sodium, a commonly trapped alkali atom, whose p- and
d-wave centrifugal barriers lie at energiesE/kB = 0.36 and 5.3 mK, respectively. Its elastic
cross sections at low temperatures are therefore strongly dominated by the first few partial
waves.

Specifically, the threshold behaviour of colliding neutral atoms follows the rules outlined
in sections 2.1, 2.5.1 and 2.5.2. The long-range interaction between neutral, ground state alkali
atoms is dominated by an attractive van der Waals potential of the form−C6/r

6. As a result,
according to equation (39), elastic cross sections behave asσel ∝ E2` for ` = 0 or 1, whereas
σel ∝ E3 wheneverl > 1. Thus only the s-wave cross section is non-vanishing at the lowest
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Figure 4. Low-energy elastic scattering cross sections for fermionic40K atoms, illustrating the
Wigner law in this system. When the atoms are spin-polarized (full circles) the Pauli exclusion
principle forbids s-wave scattering, implying aT 2 temperature dependence. In a gas with a mixture
of spin states (broken curve), the familiar s-wave law is restored. (Adapted from DeMarcoet al
1999.)

collision energies. Typically, higher partial waves exert little influence in ultracold-collision
dynamics, except when shape resonances occur (Boestenet al 1997). Observation of these
resonances often yields sensitive clues towards unravelling details of the interatomic potentials.

A notable exception to the dominance of s-wave collisions occurs in the scattering of
identical fermionic atoms, i.e. atoms prepared in a single spin state by optical pumping
(DeMarcoet al 1999). In this case, identity of the spins of the two colliding atoms, combined
with the Pauli exclusion principle, demands that the spatial component of the wavefunction have
odd exchange symmetry, ruling out s-waves altogether. Figure 4 shows data illustrating this
effect, based on a collisional re-thermalization measurement in40K. The full circles exhibit the
cross section for spin-polarized atoms, a circumstance which effectively ‘shuts off’ the s-wave
component; a fit to the low-temperature data does indeed find the expectedT 2 dependence. In
contrast, when the sample is not optically pumped, so that atoms in different spin states can
collide, the s-wave cross section is restored (open circles).

Whereas threshold energydependencesof atomic cross sections have long been known,
their valueshave only been accessible recently, in the context of cold-collision studies.
Adequate knowledge of elastic cross sections is naturally important for assessing the prospects
of evaporative cooling or buffer-gas cooling techniques that rely on high collision rates. In
addition to energy-dependent cross sections, it is necessary to evaluate the s-wave scattering
lengthsa, which have been found to dominate the mean-field energy of Bose–Einstein
condensates (Edwards and Burnett 1995). Indeed, fora < 0, it has long been known that
an infinite, homogeneous Bose condensate is completely unstable against collapse (Huang and
Yang 1957, Leeet al 1957). Confinement of these condensates in harmonic traps tends to
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stabilize these systems, at least up to a certain critical number of atoms (Doddet al 1996).
Thus the microscopic threshold behaviour of each pair of atoms can control the macroscopic
behaviour of the entire quantum gas.

Perhaps equally importantly, inelastic collision cross sections must also be assessed at low
temperatures, particularly for magnetic trapping experiments. In a magnetic trap, paramagnetic
atoms and molecules are confined by their−Eµ · EB interaction with a spatially dependent
magnetic fieldEB. If an inelastic collision process should flip the direction of the atom’s spin,
it is no longer trapped; too many of these collisions could bring a rapid end to the experiment.
Moreover, spin-changing collisions often liberate an amount of energy corresponding to a fine-
or hyperfine-splitting interval in the atom. These energies are typically far larger than the cloud
temperature or even the trap depth, and can heat the atom cloud disastrously. For applications
to evaporative or buffer gas cooling, it is essential that inelastic rates be significantly lower than
elastic rates so that cooling can occur before all the atoms are lost. This requirement becomes
ever more strict at lower temperatures, since exothermic s-wave cross sections diverge at
threshold, in contrast to nearly constant elastic cross sections (k2`−1 versusk4`, with ` = 0).
On the other hand, inelastic collisions can occasionally prove beneficial. For example, current
technologies for producing ultracold molecular samples tend to yield molecules in their high-
lying vibrational and rotational states. Highly effective quenching of these modes is expected
to assist in the production of ultracold ground state molecules (Balakrishnanet al1998, Forrey
et al 1998).

2.7.1. Threshold scattering properties.Apart from the simplest case of a pair of hydrogen
atoms, cold-atom scattering lengths are virtually impossible to predict by purelyab initio
means. Unless the interatomic potential energy surfaces are extremely accurately known, the
errors accumulated in evaluating scattering phase shifts can become a significant fraction ofπ .
Put another way, even those potentials determined by vibrational spectroscopy and high-energy
scattering are optimized to different energy ranges than near threshold (Dulieuet al 1994).

Nevertheless, some general conclusions can be drawn even in the absence of specific
information. Gribakin and Flambaum (1993) and Flambaumet al (1999) have approached
the problem of scattering lengths and effective ranges for general−C6/r

6 potentials, within
a semiclassical framework. Their main conclusion is the statistical statement, that the ‘most
likely’ scattering length for a givenC6 and reduced massµ is given by

ā = 0( 3
4)√

20( 5
4)

(√
2µC6

h̄

)1/2

. (52)

Moreover, they conclude that, on average, atomic scattering lengths are three times as likely
to be positive as negative. Interestingly, the measured singlet and triplet scattering lengths of
the alkali atoms do show a preference fora > 0 (Weineret al 1999), with 11 positive and five
negative scattering lengths (this is admittedly a small sample size).

Burkeet al (1998) refined this prediction within an exact quantum mechanical treatment
cast in terms of quantum defect theory. Their result asserts that

a = −ā tanπµ [1 +G(0) tanπµ]−1 (53)

in terms of the zero-energy MQDT normalization parameterG(0) and the quantum defectµ.
The value ofG(0) is within a few per cent of−1 for virtually all atoms. Thus, treatingµ as
a random variable distributed uniformly between−0.5 and +0.5, equation (53) also predicts
that approximately34 of all scattering lengths are positive.

For more definitive information, we rely on experiments, which can determine scattering
lengths in a variety of ways. In a few cases, direct collisional measurements of cross
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Figure 5. Schematic molecular potential curves illustrating the photoassociation process in
ultracold atomic collisions. See text for details. (Adapted from Bohn and Julienne 1999.)

sections have been inferred by measuring thermalization rates (DeMarcoet al 1999, Newbury
et al 1995). However, the working tool for unravelling scattering lengths these days is
photoassociation (PA) spectroscopy. This technique, first envisioned by Thorsheimet al
(1987), is illustrated schematically in figure 5. The colliding atoms approach one another,
governed by their ground state interaction potentialVg(r) (which may actually stand for a
coupled-channel ground state). The collision takes place in the presence of a CW laser field
detuned to the red of the atomic resonance by typically tens or hundreds of GHz. The atoms can
then make a transition jointly into a bound state of the electronically excited potentialVe(r).
This level may then spontaneously emit a photon, or may be probed via a second laser. In any
event, resonance with the bound state generally reveals itself through a diminished population
of trapped atoms.

Quantitatively unravelling PA spectroscopy requires some understanding of the resulting
lineshapes, which possess characteristic features arising from threshold effects. The basic
lineshape, proposed by Napolitanoet al (1994) and expanded by Bohn and Julienne (1999), is
given by the thermal average of the loss rate constant(πh̄/µk)|Sin,loss|2, where|Sin,loss|2 is the
squared scattering matrix element representing the transition from the incident channel to the
loss channel. Here we consider only the s-wave contribution to this scattering. The scattering
probability itself has formally a Breit–Wigner lineshape versus energy

|Sin,loss|2 = γ0

[E − (1 +E0)]
2 + ((γ + 0)/2)2

. (54)

Hereγ is the spontaneous emission rate from the excited state,1 is the laser’s detuning from
this state, and0 andE0 are the laser-induced stimulated rate and line shift, respectively.

Thus the relative strengths of these PA signals are governed primarily by the rate0,
which is in turn proportional to the Franck–Condon overlap integral of the continuum and
bound states. Indeed, exploiting the fact that PA transitions occur at fairly large values ofr
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(e.g. tens of atomic units for typical detunings), Julienne (1996) has shown that a reflection
approximation adequately represents the relative line strengths

0 = ICex|fg(rC)|2. (55)

HereI stands for the laser’s intensity,Cex for a factor that depends both on the excited state
potentialVe and on the electric dipole transition operator andfg is the energy-normalized
continuum wavefunction in the electronic ground state. In this expressionfg is evaluated at
the detuning-dependent ‘Condon radius’rC, which is the value ofr at which the laser photon’s
energy just makes up the energy difference betweenVg andVe. Thus the photoassociation
signal provides a fairly direct mapping of the ground state wavefunction at low collision
energies, providing in turn scattering length information. Measurements of lithium scattering
lengths have been performed in this way (Abrahamet al1996). In favourable cases of positive
scattering length, the ground state wavefunction has the formfg ∝

√
k(r−a). If the experiment

can probe values of the Condon radius comparable toa, then the PA signal at the corresponding
detuning will possess a minimum, making an almost direct measurement ofa. An analogous
p-wave minimum was indeed useful in determining sodium scattering lengths (Tiesingaet al
1996).

Further refinements of PA spectroscopy extend these basic notions to multichannel
wavefunctions and to rotationally resolved spectra. In this way, the sodium (Tiesingaet al
1996) and potassium (Burkeet al 1999, Williamset al 1999) scattering lengths have been
determined. Finally, the most definitive experiments are generally those that employ a second
PA laser to drive a resonant transition from the first bound state to a bound state of the ground
state potential lying below the incident thresholds. Thus the positions of the highest-lying
bound states of the incident potentials can be measured. This information on energies just
below the threshold is generally sufficient for extracting scattering lengths and other pertinent
information just above threshold, reinforcing the connection between bound and continuum
states in this energy range. Such measurements have proven valuable in lithium (Abraham
et al 1997) and rubidium (Tsaiet al 1997).

Even though the formal expression for scattering probability equation (54) has a Breit–
Wigner form, its actual energy dependence near threshold is strongly shaped by the energy
dependences of0 andE0. For example, given thek1/2 energy dependence of the energy-
normalized ground state wavefunctionfg, equation (55) implies that0 ∝ √E near threshold,
and of course vanishes altogether forE < 0. Upon thermal averaging, this shape results in
a characteristic asymmetry in the lineshape, exemplified by a long tail to the low-frequency
(red) side of the line (Napolitanoet al 1994).

We note finally that scattering lengths are occasionally determined ‘by accident.’ An
experiment by Myattet al (1997) demonstrated that two spin states of87Rb could be
magnetically trapped simultaneously, even though it was expected that spin-changing collisions
between the two would rapidly deplete the trap. The anomalously low spin-exchange rates
were quickly understood to originate in the near equality (moduloπ ) of the singlet and triplet
phase shifts for this isotope (Kokkelmanset al 1997, Julienneet al 1997, Burkeet al 1997).
Since the triplet scattering length had already been determined by photoassociation, this happy
accident provided the first determination of the Rb singlet scattering length.

2.7.2. Manipulating threshold behaviour.A remarkable feature that has emerged in ultracold-
atom technology is the ability to tune threshold behaviour with external fields. This ability is
tied to the fact that typical collision time scales (say, microseconds) are far longer than those
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of internal atomic motions, such as spin precession or photoabsorption. Thus an external field
can alter the atoms during the collision, altering in turn the way they interact.

For this purpose, application of electric fields (Marinescu and You 1998), magnetic fields
(Stwalley 1976, Tiesingaet al 1993), and lasers (Fedichevet al 1996b, Bohn and Julienne
1997) have all been suggested. Tuning of scattering lengths, while of basic interest to the
study of threshold behaviour, also offers the prospect of creating ‘designer superfluids’, i.e.
Bose condensates with an arbitrary mean-field interaction energy.

The most promising of these techniques, and the only one so far demonstrated, has involved
magnetic fields; we will accordingly focus on this case. The basic idea is that a pair of atoms
colliding in a given state of total spin may possess a Feshbach resonance below a threshold
corresponding to a spin state of greater fine or hyperfine energy. The zero-field position of this
resonance typically lies at an energy which is too high for the atoms to reach at low temperature.
However, by applying a magnetic field it may be possible to lower the resonance to a position
much nearer threshold, by Zeeman-shifting the thresholds. This resonance will influence the
zero-energy phase shift, and hence the scattering length. In particular, if the resonance is made

Figure 6. First observation of a magnetic-field-induced Feshbach resonance, in Bose-condensed
23Na. When the field reaches 907 G, the scattering length (shown in (b), normalized to its zero-field
value) exhibits a characteristic resonance shape, implying tunability of the condensate’s properties.
(a) The effect of this resonance on survival probability of the condensed atoms is shown. Reprinted
by permission fromNature392151, copyright (1998) Macmillan Magazines Ltd.
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to lie precisely at the incident threshold, the phase shift becomesπ/2, and the usualδ ∝ k
threshold behaviour of equation (5) is absent; the scattering length is then infinite. Thus such
a resonance may be an appropriate tool for probing the Efimov phenomenon, as discussed in
section 3.2.1. Artificially boosted cross sections may also be of use for evaporatively cooling
species whose natural elastic cross sections may be too small. The isotopes85Rb and39K fall
into this category, as do all spin-polarized fermionic atoms, which do not have s-wave cross
sections at all.

Figure 6 presents the data from the first experiment to measure a magnetic-field-induced
Feshbach resonance, in sodium (Inouyeet al 1998). Subsequently, similar resonances have
been observed in cold rubidium (Courteilleet al1998, Robertset al1998) and caesium (Vuletić
et al 1999). The data shown in figure 6 were obtained in a Bose-condensed sample, whereby
the scattering length itself is almost directly determined. (The mean-field contribution to the
condensate’s energy is proportional toa; hencea can be extracted from the condensate’s
rate of expansion upon shutting off the trapping potential.) These resonances are extremely
sensitive probes of interatomic potentials. Indeed, by fitting the detailed lineshape for trap
loss, Robertset al (1998) have generated the most accurate rubidium potentials to date for use
in cold-collision studies.

As always, inelastic processes are lurking, ready to disrupt the experiment. Particularly in
the case of a narrow Feshbach resonance, the colliding atoms have a lengthy interaction time,
implying that the spin-exchange process has plenty of time to produce untrapped spin states.
Interestingly, the experiment depicted in figure 6 is immune to spin-exchange, but suffers
perhaps a more insidious inelastic process. Namely, the rate for three-body recombination
rises precipitously near the resonance. In this process, two atoms combine into a molecule,
while a third atom carries away the molecular binding energy. Since the binding energy is
generally also enormous compared to the trap depth, three-body recombination is a significant
contributor to trap loss. The rates for this process are expected to scale as the fourth power of
the scattering length, and so can become devastating near the resonance (Fedichevet al1996a,
Nielsen and Macek 1999, Esryet al 1999). More details are provided in section 3.2.2.

3. Three-body threshold laws

The Wigner threshold laws follow rather rigorously from first principles owing to the clean
separation between an inner regionr < r0 where the wave motion is complicated, but varies
slowly withE, and an outer region where the motion is well represented by partial waves whose
asymptotic forms are rigorously known. In contrast, for three or more particles, there is no such
separation between an inner and an outer region, and the asymptotic forms are not rigorously
known. This is particularly true for charged particles since exchange of energy and angular
momentum through Coulomb interactions can occur even at large distances if the kinetic energy
is small, as it must be at threshold. The break-up of an atom or molecule into three or more
fragments thus differs qualitatively from the break-up into only two fragments. To recognize
this difference we will refer to the break-up into three or more fragments as ‘fragmentation’.
It remains true, however, as in the case of two fragments, thatE is a significant variable only
for the particular channel of interest and only for asymptotic separations.

The threshold laws for fragmentation are the concern of this section. Because rigorous
asymptotic forms for multiparticle wavefunctions are often not in hand, the theory of
fragmentation threshold laws is necessarily more approximate than for two-body reactions.
As a consequence, experimental information has played a critical role in the development
of the correct laws for charged particle fragmentation. An extensive discussion of the
experimental work, however, is beyond the scope of this review. Instead, we will concentrate
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on the theoretical developments that have led to the now generally accepted threshold
laws.

As with two-body channels, it is worth noting that the initial configuration leading to the
final state of interest plays no role in the energy dependence. Thus, electron-impact ionization
of hydrogen and photo-double-detachment of H− both involve the common (p + e− + e−) final
state and share the same threshold law. However, such alternative phenomena may, because
of selection rules, involve alternativèi or other long-range forces. In anNP-body channel
that does not involve any Coulomb potentials (more accurately, any potential longer in range
than 1/r2), the longest-range potential for a non-zero`i being the corresponding angular
momentum barrier, the matrix elementM in equation (3) picks up a factork`ii from the final
state wavefunction and equation (4) is modified to

σ ∝ E(N−2)/2+
∑

i `i . (56)

If, on the other hand, an attractive Coulomb potential exists for a channeli, the
wavefunction acquires ak−1/2

i factor, so that each suchi contributes anE−1/2 dependence
to σ through the matrix element. Thus, the threshold law appropriate to a three-body channel,
A+ +B− +C, is σ ∝ E3/2.

3.1. Wannier threshold laws

Most important for atomic physics are fragmentation processes involving several charged
particles. An exact wavefunction for such an assembly at low energies is not available even for
asymptotic separations between the particles. Wannier (1953) formulated an elegant classical
interpretation of low-energy collisions between charged particles. Although the essentials of
his treatment have been reaffirmed by theory (Rau 1971, 1984b, Peterkop 1971 , Read 1984a)
and experiments (Cvejanovic and Read 1974, Lablanquieet al 1990, Donahueet al 1982),
questions on the behaviour of the interaction below and above the threshold, the absolute cross
section and the detailed dependence of the angular and energy distribution remain. In this
section, we will focus mainly on theoretical developments since the last reviews (Rau 1984b,
Read 1984b) of the field.

Wannier’s example of two electrons escaping from a positive charge illustrates the basic
problem. Different simple pictures/descriptions of the asymptotic final state argue for different
normalizations and, thereby, for different threshold laws. If the electronic wavefunctions are
treated as individual Coulomb waves, each will contribute ak

−1/2
i factor in the matrix element

in equation (4), leading to a linear threshold law (Rudge and Seaton 1965),σ ∝ E, whereas in
the case when one electron completely screens off the other, the product of a Coulomb wave
and a plane wave contributes one such factor and the cross section behaves asσ ∝ E3/2. An
alternative view which takes into account the interaction of a charged particle with the induced
dipole gives a linear threshold law which oscillates logarithmically with energy (Temkin 1982,
1984, Greene and Rau 1985). Clearly, successive approximations to the independent electron
picture yield a variety of threshold laws. What is required is a theory of correlated motion of
electrons in the field of a positively charged ion.

Wannier’s classical theory conjectures that the dominant configuration for the electrons is
one in which they depart in opposite directions, whilst maintaining equal distances from the
ion. That the electrons stay on opposite sides of the nucleus is immediately plausible because
of the mutual electrostatic repulsion between the two slow electrons. The latter conjecture, of
approximately equal distances or, equivalently in classical terms, equal speeds, is significant
and crucial. WithE = E1 +E2 vanishingly small, any departure from the energy equipartition
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will only be magnified during the escape, resulting in one of the electrons, the slower one,
falling back into a closed orbit around the nucleus and only the faster electron being ionized.

Wannier analysed the coupled Newtonian equations of motion for the two electrons in such
a subset of configuration space and demonstrated two classes of trajectories, ‘converging’ and
‘diverging’. In the former, the evolution is toward the central equipartition configuration,
E1 = E2 = 1

2E, whereas in the latter it is away from it, as time increases. At any non-zero
energy above threshold, the converging trajectories are a set of measure zero relative to the
diverging ones so that the latter determine the threshold behaviour.

In mass-scaled Jacobi coordinates (Fedorov and Jensen 1993, Barnea and Novoselsky
1998)

rj =
√
Mjmj+1

Mj+1

(
rj+1− 1

Mj

j∑
i=1

miρi

)
j = 1, 2, . . . , NP− 1 (57)

whereρj andmj are, respectively, the independent particlej coordinates and masses, and
Mj =

∑j

i=1mi is the total mass of the system, the kinetic energy operator has the symmetric
form − 1

2

∑NP−1
j=1 ∇2

j , and the total energy of the particles is given in terms of the relative

wavevectorskj byE = 1
2

∑NP−1
j=1 k2

j .
It is desirable, and indeed necessary as demonstrated by Wannier (1953), to employ

a collective description of the evolution of the charged particles in space, en route to
fragmentation. One such coordinate system, naturally suited to the collective motion of charged
and neutral particles (see also section 3.2.1) is the hyperspherical coordinates (Smith 1960,
1962, Macek 1968, Fano and Rau 1986, 1996, Lin 1995). The hyper-radiusR in terms of the
mass-scaled radial coordinates is

R =
√√√√(NP−1)∑

j=1

r2
j . (58)

WhenR is small, all particles are close together and this parameter is a natural generalization
of the interparticle distancer of the Wigner theory. Alternatively, fragmentation corresponds
to largeR, with the proviso that all of the interparticle coordinates also become large. This is
expressed by settingrj = R sinϕj and requiring thatϕj remain non-zero asR →∞. Thus,
we will use as our set of coordinates the hyper-radiusR and a set of hyper-angles denoted by
the unit vectorR̂ in N = 3NP− 3 dimensions.

3.1.1. Rau–Peterkop analysis.When a group of charged particles fragments at nearly
zero total energy, they move out of an inner ‘reaction zone’, where the motion is unknown
but changes only slowly with the total energyE, into a region where the potential energy
V (R) = C(R̂)/R is much larger than the kinetic energy. In this region, called the ‘Coulomb
zone’, the particles may exchange energy and angular momentum before moving into the
region called the ‘far’ zone, where the potential energy is small compared with the kinetic
energy so that energy exchanges effectively vanish. With the boundary between the Coulomb
and the far zones moving outward as 1/E asE → 0, the threshold law is mainly determined
by motion in the Coulomb zone.

A key point of Wannier’s analysis is that, classically, only very specific configurations
allow slow charged particles to escape to infinite distances. Except for an overall rotation
of the system, these configurations have all the particles at fixed hyperangles, so that only
R changes. Any other configuration would allow slower particles to screen the faster ones
producing an exchange of energy so that, at threshold, the slower particles must fall back into
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bound states. This corresponds to excitation rather than fragmentation. Fragmentation thus
corresponds to orbits that concentrate in regions of unstable equilibrium. These configurations
play an essential role and are called the scaling configurationsR̂s since only the overall size
of the system changes with time. They are saddle points of the potential surfaceC(R̂)/R in
the space of hyperangles.

Since these orbits are unstable, only those that are very close to the scaling configuration
lead to fragmentation. At the border between the reaction and Coulomb zones, only those
orbits that lie within a certain angular window, whose size depends upon the excess energy,
can escape. At threshold, the window is a point inR̂-space, but expands at a certain rate asE

increases. This rate of expansion is a power law,EζW , whereζW is the Wannier index. The
fragmentation cross section is proportional to the rate of expansion of the escape window.

Rau (1971) and Peterkop (1971) sought a semiclassical, rather than a purely classical,
formulation of Wannier’s arguments. We will articulate these arguments employing the
formulation of Kazansky and Ostrovsky (1992, 1994). Motion near the scaling configuration
is represented by the radial JWKB wavefunction

F(R) = K(R)−1/2 exp

[
i
∫ R

K(R′) dR′
]

(59)

whereK(R) =
√

2(E − C(R̂s)/R) is the local momenta for orbits exactly at the scaling
configuration. To allow for motion near the scaling configuration, the complete wavefunction
is written as a product ofF(R) and another functionφ(R, R̂). For motion near the scaling
configuration,φ varies slowly withR. Upon substituting the ansatzψ(R, R̂) = F(R) φ(R, R̂)
into the Schr̈odinger equation, neglecting small terms of orderR−2, and introducing a mock
time dτ = dR/[R2K(R)], we obtain a time-dependent Schrödinger equation,

i
∂φ

∂τ
− (h0(R̂) +R(τ)[C(R̂)− C(R̂s)]

)
φ = 0 (60)

whereh0(R̂) derives from the hyperangular part of the kinetic energy operator. It is essentially
the generalized angular momentum operator of Smith (1960, 1962).

The general solution of such equations is given in terms of Feynman’s propagator. The
timeτ0 corresponds to a hyper-radiusR0 on the border between the reaction and the Coulomb
zones. The propagator preserves wavefunction normalization so that the initial flux atR0

evolves to the final flux at infinite distances. Part of the flux populates bound states and part
represents fragmentation. It would be necessary to solve equation (60) exactly to find the
proportion of bound and continuum states. Some work has been done to find the propagator
by numerical solution of equation (60), but further approximations (Kazanskyet al 1997) are
needed.

An alternative approach, consistent with the semiclassical treatment, is to treat motion in
all the coordinates semiclassically, using van Vleck’s (1923) semiclassical propagator and the
classical orbits of the full system. Such an analysis for a collinear model of the helium atom,
in which the interelectronic angle was set to 180◦, found the probability for double escape to
fit a power law with the Wannier exponent (Rost 1994). All possible orbits were considered,
but it was confirmed that only orbits in the neighbourhood of the scaling configuration lead
to fragmentation. It was found that motion near the scaling configuration determined the
fragmentation cross section for energies at least 10 eV above the threshold. This was the first
indication that the Wannier theory applied over an extended energy range, and may not be
limited to a small region near threshold.

To extract an expression for the threshold law, it is necessary to identify a part of the
wavefunction that corresponds to fragmentation only. This has been done by expanding both
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C(R̂) andh0(R̂) in a power series around̂Rs and retaining only the constant and quadratic
terms. The resulting Hamiltonian is just that for coupled oscillators, and a transformation
to normal modes leads to the Schrödinger equation for uncoupled oscillators with time-
dependent coupling constants. The solutions of such equations are known (Macek 1990,
Jakubassa-Amundsen and Macek 1989), so that they can be employed to extract an approximate
wavefunction for largeτ , or, equivalently, largeR. In accordance with the usual results of
scattering theory (Mott and Massey 1965), the coordinatesR̂at largeR go over to the directions
of the wavevectorK̂. With the energy normalization we have used in equation (59), the
scattering amplitude is proportional toφ(τ, R̂)→ φ(τ, K̂), R(τ)→ ∞. It follows that the
total fragmentation cross section is given by

σ ∝ lim
R(τ)→∞

∫
|ϕ(τ, K̂)|2 dK̂. (61)

At first glance, because the approximate propagator also preserves normalization, it
appears that the right-hand side of equation (61) is equal to unity, incorrectly implying a
constant fragmentation cross section, characteristic of two-body Coulomb threshold laws in
N dimensions. To resolve the apparent discrepancy with the Wannier law, it is necessary to
examine the approximate time-dependent Schrödinger equation more closely.

In terms of the normal modes, the Schrödinger equation has the form

i
∂φ

∂τ
−
(
−1

2

∑
j

∂2

∂ξ2
j

+R(τ)
∑
j

C1j ξ
2
j

)
φ = 0 (62)

whereC1j are the expansion coefficients ofC(R̂) in the normal-mode coordinatesξj . Although
the angular coordinates are limited to finite ranges, it is assumed that the coordinatesξj take
on all values between±∞. The constantsC1j may be either positive or negative. If they
are positive, the motion in thej ′th mode is stable and integration over the normal coordinates
is effectively limited to regions near the scaling configuration. Motion in the stable normal
modes makes no contribution to the threshold law owing to the preservation of the wavefunction
normalization in those degrees of freedom.

If C1j is negative, then thej ′th mode is unstable and the solution oscillates infinitely
rapidly for largeξj so that integrations over the wavefunction are also effectively limited to the
scaling configuration, but integrations over the magnitude of the wavefunction are not. In this
case, large values of the normal coordinates correspond to physically inaccessible values of the
angular coordinates. Because the wavefunction does not vanish in these unphysical regions,
the integral in equation (61) cannot be extended over all values ofξ , so that this part of the
propagator does not preserve the normalization of the wavefunction, and the integral over the
angular coordinatêKj will not be unity.

To find the wavefunction at infinite distances, we need the propagator in the unstable
coordinatesξj . A form adapted to the Wannier theory is given in Jakubassa-Amundsen and
Macek (1989) and Macek (1990), namely

K(τ, ξj ; τ0, ξ
′
j ) = (2πωbj (τ, τ0))

−1/2 exp

[
iω̇bj (τ, τ0)ξ

2
j − 2ξj ξ ′j + ωaj (τ, τ0)ξ

′
j

2

2ωbj (τ, τ0)

]
(63)

where the functionsωaj (τ, τ0) andωbj (τ, τ0) are solutions of the classical equations

ω̈(τ, τ0) +R(τ)2C1jω(τ, τ0) = 0 (64)

with initial conditionsωaj (τ, τ0) = 1, ω̇aj (τ, τ0) = 0,ωbj (τ, τ0) = 0, ω̇bj (τ, τ0) = 1.
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It will be shown below that asR → ∞ andE → 0, the ratioωa/ωb approaches a
constant, while 1/ωb vanishes as some power ofE in the limit asE→ 0. Because 1/ωb goes
to zero, we can expand the exponential exp[iξj ξ

′
j /ωbj (R)] in powers of 1/ωbj and retain the

first non-vanishing term. Usually the first non-vanishing term will be the constant term so that

φ→ 2πωbj (τ, τ0)
−1/2 exp

[
i
ω̇bj (τ, τ0)

2ωbj (τ, τ0)
ξ2
j

] ∫
dξ ′j exp

[
i
ωaj (τ, τ

′)
2ωbj (τ, τ ′)

ξ ′j
2
]
φ(ξ ′j ). (65)

The cross section then becomes proportional to
∏′
j (2π |ωbj (τ, τ0)|)−1,R(τ)→∞, where the

primed sum runs only over indicesj for whichC1j < 0.
The functionsωa,b(τ, τ0) are known exactly, but in this review, we emphasize the

solutions along the lines sketched in section 2.1, and employed by Rau (1971). Rau (1971)
pointed out that the threshold laws may be extracted from theE = 0 solutions. Since
τ(E = 0) = −2(2|C0|R)−1/2, it follows that the solutions to equation (64) have the form

ω = ARν+
j +BRν

−
j (66)

whereν±j = − 1
4 ± 1

4

√
1− 16C1j /|C0|, andA andB are constants determined by the initial

conditions. AsR → ∞, the first term in equation (66) dominates andwbj goes asRν
+
j .

For non-zero values of energy,R should be replaced by the Wannier radiusRW = |C0|/E
asymptotically. This gives|1/wbj | → Eν

+
j . There will be one such factor for each normal

coordinate withC1j < 0, so that we obtain the generalized Wannier threshold law for charged
particle fragmentation

σ ∝ E
∑′

j ν
+
j (67)

where the primed sum runs over the indices of all unstable normal modes. Here we have used
that the distribution is independent ofE, which holds sinceωaj (τ, τ0)/ωbj (τ, τ0) becomes a
constant asE→ 0.

For the special case of only two particles, there is only one unstable modej = 1 and we
obtain the celebrated Wannier threshold index for two electrons and a positively charged ion
with chargeZ. In this case, one finds

C0 = −4Z − 1√
2

C11 = −12Z − 1

2
√

2
ν+

1 = −
1

4
+

1

4

√
100Z − 9

4Z − 1
. (68)

For Z = 1, one obtainsν+
1 = ζW = 1.127, first calculated by Wannier (1953). The

irrational exponent differs greatly from the simple rational ones for two-body threshold laws
discussed in earlier sections. The dependence of the exponent onZ reflects an interplay
between the nuclear attraction and the repulsion between the electrons. The exponent becomes
unity in the limit Z → ∞, in accordance with the earlier remark that the product of two
Coulomb waves gives a linear threshold law. The excess of the exponent from unity should,
therefore, be seen as the suppression of double escape due to the unstable motion away from
the potential saddle.

This result was extended to other three-particle systems (Kuchiev and Ostrovsky 1998,
Feagin 1984, Klar 1981) and to ions withZ > 1. For the general three-particle system with
arbitrary masses and charges, it is necessary to solve a high-order algebraic equation forC1j

andC0, but the form of the threshold law remains unchanged. For ionization of neutral atoms
by positron impact, Klar (1981) foundζW = 2.651. Feagin (1995) has also examined terms of
the next order beyond the quadratic in the expansion around the scaling configuration, obtaining
a cross section for an extended energy region above threshold, and corresponding energy and
angular distributions of the escaping electrons; see also Rau (1976).
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In the demonstration just given, the power law does not depend upon the initial function
φ(τ, R̂). Exceptions to this statement do occur owing to symmetry constraints. If the initial
function is an odd function ofξ ′j , then even terms in the expansion of the propagator vanish
and the first odd term determines the threshold law. Then the cross section is proportional to
1/|ωb|3 and the threshold exponent is 3ν+

j . An example of this symmetry effect is seen in the
threshold exponent for ionization of atomic hydrogen by electron impact when the final state
has3S symmetry. Here the triplet function is spatially antisymmetric and thus corresponds
to a function with one node so that the threshold exponent is 3.381 rather than 1.127 (Feagin
1984).

The differing exponents for singlet and triplet states were investigated experimentally by
Lubell and co-workers (Lubellet al 1977). They found that singlet and triplet total cross
sections had identical Wannier exponents. It was later found (Greene and Rau 1982, 1983)
that states with total angular momentum greater than zero were also populated at threshold,
and that both singlet and triplet states of the higher total angular momenta obeyed a similar
power law, with the exponent ofζW = 1.127. The argument in the previous paragraph for
a higher exponent applies only for spatial antisymmetry that leads to a node at the Wannier
configuration in the unstable direction, that is, antisymmetry under purely radial interchange
of the electrons. This occurs only for3S and1Pe symmetries, all others having a piece of
the wavefunction that remains symmetric under this interchange even while being overall
spatially antisymmetric (Greene and Rau 1982, 1983). In retrospect, the spin-asymmetry
experiments were the first experimental demonstration of threshold fragmentation into states
with L > 0. As will be discussed below,ab initio computations (Kato and Watanabe 1997)
show that states withL > 4 give non-negligible contributions to e− + e− + H+ fragmentation
at threshold.

The threshold law has been extended to four-particle fragmentation (Klar and Schlecht
1976, Grujic 1981, Feagin and Filipczyk 1990, Kuchiev and Ostrovsky 1998), A+Z +
e− + e− + e−, where there are two unstable normal modes, and also to five-particle break-
up. Since the scaling configuration is highly symmetric, with three electrons at the vertices of
an equilateral triangle, the two unstable normal modes are degenerate. All calculations agree
on the Wannier threshold law, but this agreement was shown to be fortuitous (Kuchiev and
Ostrovsky 1998). Poelstraet al (1994) and Feagin and Filipczyk (1990) employed a spurious
phase space factor(NP− 2) in place of the mode degeneracy number. The mode degeneracy
for the unstable mode accidentally becomesN − 2 for such highly symmetric systems. For
systems of lower symmetry, this is not the case, and the discrepancy becomes apparent even
in the value of the index.

Comparisons of the Wannier threshold law with experiment (Cvejanovic and Read 1974)
generally confirm the predictions of Wannier (1953) in equation (67) for two-electron escape
from the field of a positively charged ion. Not only the energy exponent but various other
features of energy and angular correlations contained in the wavefunctions have been confirmed
experimentally (Rau 1984b, Read 1984b, Lablanquieet al1990). The power law has also been
investigated for other systems such as e+ + e− + A+ and H+ + H− + H+. In these cases, the
data do not rule out the Wannier law. Comparison of experiment and theory is not definitive
for these systems because of large uncertainties in the data in the vicinity of threshold. The
Wannier threshold law is now generally accepted, although its range of validity is not known.
It is surprisingly large for the highly symmetric system e+ + e− + A+, but may be rather small
in other cases.

3.1.2. Multicrossing models. The Wannier theory obtains a wavefunction at zero energy
that is a part of the total wavefunction, namely the part that leads to fragmentation. Even
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Figure 7. The adiabatic hyperspherical potential energy curves in H− for the1Po symmetry. The
curves are shown on an effective quantum number scale,νµ(R) = [−2Uµ(R)]−1/2. The ridge line
νw = 18−1/4R1/2 is shown as a broken line.

near the scaling configuration, there is also a part that does not represent fragmentation,
but rather excitation into two-body channels. The propagator in equation (63) incorporates
these channels, for example, through the eigenstates of the reduced Hamiltonianh(R̂) =
h0(R̂) + R[C(R̂) − C(R̂s)]. The hyper-radius is a parameter in this Hamiltonian since the
free-particle part refers only to the angular coordinates. The eigenstates and eigenvalues of
h(R̂) are the adiabatic eigenstates and eigenvalues,φn(R; R̂) and εn(R)R2, introduced in
connection with doubly excited states of two-electron species (Macek 1968).

A typical set of adiabatic hyperspherical potential energy curves are shown in figure 7.
The curves are the eigenvaluesεn(R)R2 as a function of the adiabatic parameterR and
exhibit avoided crossings (Fano 1983). The width of the crossing region and the separation
in energy at the avoided crossing are indicators of the strength of the coupling between the
adiabatic potential energy curves. Transitions between different states occur at the avoided
crossing regions. In the example of electron scattering from atoms, a useful picture of the
ionization process emerges by considering multiple traversals of the adiabatic potential energy
curves.

To locate these crossings, consider a plot of the potential taken along an unstable coordinate
perpendicular to the line of the scaling trajectory. For two-electron species, there is only one
unstable coordinate. The potential has the schematic shape shown in figure 8, with two
Coulomb singularities at the edges and a barrier between them. The lowest eigenvalueε1(R)

is located above the barrier for smallR, at the top of the barrier for an intermediate value
of R, and below the barrier for largeR. For largeR, the states are just the eigenstates of a
one-electron atom, while forR ≈ 0 they are the hyperspherical harmonics (Erdelyiet al1953)
in six dimensions. At an intermediate value ofR, the state sits right at the top of the barrier.
At this value, the eigenstates concentrate in the potential valleys, and become Rydberg states.
Higher energy curves retain the hyperspherical harmonic character so that the energy curve
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Figure 8. A schematic of top-of-the-barrier motion for two electrons is shown. Three eigenvalues
typical of motion for small, intermediate and largeR are displayed with long-broken, broken and
full curves, respectively.

shows an avoided crossing where the lowest curve becomes Rydberg-like while the next higher
curve still has the hyperspherical harmonic character. At still largerR, this state also comes
down to the top of the barrier and undergoes a similar change to a Rydberg state. The process
continues indefinitely, leading to a sequence of avoided crossings in the adiabatic potential
curves.

Notice that the wavefunction at the top of the barrier sits at a position of classically
unstable equilibrium on an inverted oscillator. The eigenstates in this top-of-barrier region
are the adiabatic version of the eigenstates of the time-dependent Wannier propagator of
equation (63). In effect, the eigenstates of the Wannier propagator are the diabatic states
of h(R̂) in the region of the avoided crossing. The Wannier propagator follows the diabatic
potential curve shown as a broken line in figure 7. At some radius of the order ofRW, the
diabatic state represents ionization.

One such model of curve crossing has been proposed by Demkov and Osherov (1967).
Using this model, it is possible to compute the probability for the system to remain in the
bound two-body excited levels at a distanceR, after a certain number of crossing regions have
been traversed. If it is assumed that the diabatic state is effectively free forR ≈ RW, then
the probability that the diabatic state survives the multiple crossings, which will be called the
survival probability, equals the fragmentation probability. This probability should have the
form given by the Wannier theory. For H+ + e− + H+, the Wannier exponent is quite large,
equal to 60.8. The multicrossing theory (Ovchinnikov 1990) obtained a numerical value close
to this, but also found a lnE term. It was later discovered that the lnE came from an error
in the potential curves, and should be removed. With this correction to the exponent, the
multicrossing work agrees with the Wannier theory.
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Figure 9. Photoelectron spectrum of helium near the double-ionization threshold. The broken
curve is a Wannier law fit to data with differing amplitudes on either side of the threshold at 79 eV.
Reprinted by permission from the authors, Cvejanovicet al (1995).

It can be concluded that multiple crossings of adiabatic energy curves is one way to
construct a quantal version of the Wannier fragmentation theory. The multiple-crossing theory
has the advantage that it gives a theory for the excitation of high-lying Rydberg states, and
may even allow one to compute atomic processes forE < 0. In this connection, it has been
pointed out (Fano 1974, Fano and Rau 1985) that the total cross section for excitation to all
Rydberg states by electron impact should vanish as|E|1.127, that is, the Wannier threshold law
applies both above and below the fragmentation threshold. A quantitative treatment of this
surmise is lacking but experiments (Buckmanet al 1983, Cvejanovicet al 1996) bear out this
conclusion (see figure 9).

The avoided crossings for e−+e−+H+ were computed for large values ofR by Sadeghpour
and Greene (1996). The transition probability at each avoided crossing was computed
from a two-state linear Landau–Zener model. The probabilityP(E) for making an infinite
number of successive jumps, starting on the ground state of hydrogen, was written down as
P(E) = P12P23P34 . . . = exp(−2πS), where

S =
∞∑
n=1

γn =
∞∑
n=1

1
(n)
c

8v(n)c P
(n)
c

. (69)

P
(n)
c , v(n)c and1(n)

c are the values of the interchannel coupling between the adiabatic potential
curvesn andn + 1, the relative approach velocity along the curven, and the separation of
the curvesn andn + 1, respectively. All of these parameters are evaluated at the hyper-
radius of the closest approach, at the avoided crossing,R = Rc. Writing the relative

velocity,v(n)c =
√

2(E +C0/R
(n)
c ) =

√
k2 + c2/n2, whereR(n)c = (2C0/c

2)n2 for the Rydberg

electrons, it was found numerically thatP (n)c = a/n, and1(n)
c = d/n3, as expected on general

grounds. The sum in equation (69) was evaluated by approximating it as an integral over a
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continuousn to give in the limit ask→ 0, the absolute ionization probability

P(E) = A+E
ζW E = 0+ (70)

whereA+ = (2c2)−ζW and the Wannier exponentζW = πd/8ac. The sum in equation (69) can
be analytically continued below the double-escape threshold for an arbitrarily large Rydberg
state to yield

P(E) = A−|E|ζW E = 0− (71)

whereA− = A+{[1 + (1 + 1/c2)1/2]/[1 + (1− 1/c2)1/2]}ζW . Two observations can readily be
made: (a) the total probabilities for transitions below and above the double-escape threshold
have similar dependences on energy and (b) the theory predicts anasymmetric cuspatE = 0
(A− > A+), consistent with the measurements of Cvejanovicet al (1996). Deviations from
the power-law threshold are predicted to be exponential in

√
E, i.e.

P(E) = AEζW exp(−Q
√
E). (72)

Expanding the exponentials in half-integer powers of the energy gives a similar result as the
numerical fit of Rost and Wintgen (1996) to the electron scattering data of Cvejanovic and
Read (1974).

3.1.3. Hidden-crossing method.The multicrossing model is, in principle, anab initiomethod
since all of the ingredients of that theory are computationally accessible. Of course, the need
to extract parameters for each avoided crossing from computed potential curves introduces
uncontrollable errors since the fitting parameters depend upon the assumed functional form
of the energy curves near the avoided crossings. An alternative, closely related, approach is
based upon consideration of the asymptotic wavefunction in an adiabatic representation.

The asymptotic forms of radial wavefunctions are conventionally extracted by considering
wavefunctions at complexR, i.e. on the circle at infinity. This idea was employed for the
adiabatic representation of multiparticle wavefunctions. In the analytic continuation of the
solutions to complexR, it was noted that the adiabatic functions themselves changed form
dramatically. On the real axis, the adiabatic functions are known to represent atomic bound
states. None of these functions correspond to positive energy asR→∞, so that the ionization
components in the adiabatic representation are not seen explicitly. However, for complex
values ofR, the hydrogenic bound states change to harmonic oscillator states corresponding
to waves concentrated on potential barriers. This happens because the top-of-barrier function
exp[iaj

√
Rξ2

j ], aj =
√|C1j |/2 becomes exponentially decreasing for ImR > 0. The lowest

eigenstate seeks out regions where the corresponding wavefunctions have minimum extent,
and this is just at the top of the potential barrier where the classical motion is unstable.

The top-of-barrier eigenstates that appear at complexR are the fragmentation components
missing on the real axis. One of the surprising results of this analysis is that the bound states
only appear on a narrow strip along the real axis ofR. Almost everywhere else on the unit
circle at infinity, the adiabatic states are top-of-barrier harmonic oscillator states. It follows that
fragmentation components can be extracted by analysing the adiabatic solutions for complexR.
This has been done in Macek and Ovchinnikov (1996) but the analysis employs mathematical
considerations that are relatively unfamiliar in atomic physics. Fortunately, the results are easily
understood when the semiclassical approximation is used. One finds that the fragmentation
component is given by

9frag(R, R̂) ≈ 1√
K(R)

exp

(
i
∫ R

K(R′) dR′
)
φ(R; R̂) (73)
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whereK(R) = √2(E − ε(R)), and the integral goes along a path in the complex plane to a
valueR where the adiabatic functionφ(R; R̂) corresponds to a top-of-barrier eigenstate. This
function is analytically continued to real values ofR to obtain the fragmentation amplitude

S(E) = S0(E) exp

[
i
∫ ∞
R0

(K(R)−K0(R)) dR

]
φasy(RW; K̂) (74)

whereK0(R) =
√

2(E − C0/R),K(R) =
√

2(E − εasy(R)), and

εasy(R) = C0/R − C1/R
3/2 − C2/R

2. (75)

S0(E) is a slowly varying function of the energy andR0 is a point on the real axis near the
boundary of the reaction and Coulomb zones. The functionεasy(R) represents an asymptotic
expansion of the adiabatic eigenvalues for complexR on the circle at infinity. The wavefunction
φasy(R; R̂) represents the corresponding asymptotic eigenfunction analytically continued to
the real axis. It has the complex top-of-barrier form exp[iaj

√
Rξ2

j ].
The threshold law emerges upon computingS(E) in the limit of smallE. By expanding

K(R) aboutK0(R), one findsσ ∝ Eζ
ad
W , where the adiabatic Wannier indexζ ad

W =√
2 ImC2

1/|C0|− 1
4 differs slightly from the actual Wannier indexζW =

√
2 ImC2

1/|C0| + 1
16−

1
4. ForZ = 1, the adiabatic index equals 1.104 instead of the correct value of 1.127. The
difference between these two numbers is traced in the Rau–Peterkop analysis to a cross-term
betweenR and the unstable motion, an explicitly non-adiabatic effect.

The slight error in the Wannier index is a disadvantage of the hidden-crossing theory. This
is compensated by the fact that the theory gives an absolute cross section over an extended
energy range. Comparison of the hidden-crossing theory with experiment shows that the
theory is higher than experiment by about 10–20%. This is comparable to the results of
Crothers (1986), although those results are limited to energies very near threshold.

In order to compute the fragmentation amplitude over an extended energy range, it was
found necessary to include higher-order terms in the asymptotic expansion ofε(R). These
terms originate with the anharmonic terms in the expansion ofC(R̂rms) near the scaling
configuration. These give rise to theC2/R

2 term in equation (75), which in turn contributes
an exp(−Q√E) factor in the cross section. This term is significant because it shows that
higher-order terms in the cross section are not analytic in energy (see also section 3.1.2).

It turns out that the
√
E term has little effect on the cross section for fragmentation by

electron impact because the anharmonic terms are small for potentials symmetric about the
scaling configuration. For positron impact, the potential is not symmetric about the scaling
configuration, and both cubic and quartic anharmonic terms contribute. The coefficientQ

was computed in Ihraet al (1997) and found to equal 0.73. This is large enough to affect
the cross section over an extended energy range. Measurements of the ionization of He by
positron impact over an energy range from 0 to 10 eV were found to disagree with just the
power-law expressionAEζW alone, but agreed with the extended lawAEζW exp(−Q√E). The
comparison with the data of Moxomet al (1996) essentially confirms the extended threshold
law.

3.1.4. Ab initio methods. While the Wannier threshold law is now fairly well established,
the present theory leaves many unanswered questions, e.g. the range of validity of the
law, the value of the constant multiplying the power law, and some details of energy and
angular distributions of the electrons. In addition, the extension of the theory to negative
energies is not apparent. Some progress on these matters have been achieved byab initio
calculations.
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The firstab initio calculations of the Wannier threshold cross section are those of Crothers
and co-workers (Crothers 1986, Crothers and Lennon 1988). They computed the ionization
amplitude for electron impact on helium using a product of a plane wave and an accurate bound
target state wavefunction for the initial state and the modified Wannier functions of Rau (1971)
and Peterkop (1971) for the final state. By extrapolating toE < 0, they were also able to
obtain some information on doubly excited ‘ridge’ states (Loughan and Crothers 1997).

The time-dependent Schrödinger equation has been used recently (Pindzola and
Robicheaux 1998) to calculate the ionization cross section for electron scattering from a model
helium atom. The ionization flux in the time domain was extracted by subtracting unity from
the sum of the fragmentation flux for forming two-body ionic bound states. General agreement
with the Wannier threshold law was obtained.

The convergent close-coupling method (CCC) represents another approach which has
proven fairly successful for obtaining total cross sections (Bray and Stelbovics 1993,
Bray 1997). This method employs a conventional coupled-state calculation augmented by
pseudostates to represent continuum channels. The total inelastic cross section and the cross
section for elastic scattering and excitation to any state are computed by solving the coupled-
channel equations. The ionization component is extracted by subtracting the elastic and
inelastic cross sections from the total cross section. The results are consistent with Wannier’s
threshold law for energies above 1 eV.

The R-matrix methods with pseudostates (RMPS) and the variational calculations of
Callaway (1991) also compute cross sections that are in agreement with the Wannier threshold
law for sufficiently high energies. Very recently, the RMPS method has been investigated for
energies within 0.5 eV of threshold (Scottet al 1997). At present only the1S symmetry has
been computed in detail. Results are encouraging and it appears that even at this energy the
method agrees with the Wannier theory. These successes are important because both the CCC
and RMPS are designed to treat many-electron atomic species.

The most accurate calculations in the threshold region, at both positive and negative
energies, for electron impact on atomic hydrogen are those based upon the hyperspherical
close-coupling expansion (Kato and Watanabe 1995, 1996, 1997). By using a large number of
coupled channels, up to 900 in some cases, an accurate total wavefunction is computed atR of
the order of 1000 au. The excitation and elastic scattering components are subtracted leaving a
wavefunction representing fragmentation. This wavefunction is then fitted onto a product of a
Coulomb wave and a plane wave to extract the ionization amplitude. Using this procedure, Kato
and Watanabe (1995, 1996, 1997) obtained cross sections in good agreement with experiment
and with the Wannier threshold law down to energies of 0.2 eV above threshold.

3.2. Neutral species

In this section, we return to the consideration of short-range potentials (potentials that fall
off faster than 1/r2). In particular, we will have the example of interacting neutral atoms
in mind which interact via a 1/r6 van der Waals potential. Many of the considerations for
these systems apply equally well to interacting nucleons. In fact, two of the effects we will
describe below originated in studies of nuclear structure and continue to capture interest in that
field. The short-range nature of the interactions affords a considerable simplification compared
to the charged particle case discussed in the last section since the adiabatic hyperspherical
approach can be employed to reduce the problem to a standard multichannel scattering problem.
The resulting adiabatic potentials have an effective centrifugal barrier with 1/R3 and shorter-
range corrections. Consequently, the asymptotic form of the three-body wavefunction can
be described straightforwardly in these coordinates in terms of Bessel functions in the hyper-
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radius, paralleling the treatment in section 2.5 for two bodies. The various threshold laws can
thus be deduced using a Wigner-type analysis.

3.2.1. Efimov–Thomas effect.Efimov (1970, 1973, 1990) derived a remarkable result: three
particles interacting pairwise through short-range potentials could have an infinite number
of bound states—even if no two of the particles were separately bound. The condition for
the existence of an infinite number of these ‘Efimov’ states is that the ratio of the two-body
scattering lengtha to the effective rangereff must be infinitely large. For large finitea, there
will be a finite number of bound states, some of the higher lying of which can retain the
character of an Efimov state. Whena > reff , an explicit estimate of the number of such states
is given by (Efimov 1970)

n ≈ 1

π
ln

a

reff
. (76)

Efimov was explicitly considering short-range potentials, but the limit applies to zero-range
potentials as well. The latter case had already been considered by Thomas (1935) and was
revisited by Danilov (1961). Specifically, it was already known to Efimov that three particles
interacting via attractive zero-range,reff → 0, potentials had been shown to have an infinite
number of bound states.

In the adiabatic hyperspherical approach, the Efimov effect manifests itself in the potential
curve correlating to three free atoms (Macek 1986). The abundance of bound states can be
readily understood as the consequence of this having an attractive 1/R2 tail. This result had
been found by Efimov in terms ofR2 = r2

12+r2
23+r2

31 and later through an analytical variational
treatment in hyperspherical coordinates by Macek, who showed that the adiabatic potential
asymptotically behaves as (Macek 1986)

U(R)→− t
2 − 1

4

2µR2
. (77)

In this expression,t is the variational parameter whose value was determined to be
approximately 1.006. This result was confirmed in later direct numerical calculations by Esry
et al (1996). As discussed in section 2.4.1 and equation (21), such dipole potentials support
an infinite number of bound states whose energy converges exponentially to the break-up
threshold. Another property of dipole states is that their spatial extent increases exponentially
with the principal quantum number, leading to the often-cited weak-binding property of Efimov
states. Equation (77) holds, however, only in the limit of infinite two-body scattering length.
For finite scattering lengths, the leading asymptotic correction to the non-interacting result
becomes proportional toa/R3 (Macek 1986). As a result of this transition from a short-range
(falling off faster than 1/R2) potential to a dipole potential whena→∞, the threshold law is
dramatically modified, as mentioned above, changing from the expectedE2 dependence to a
constant value at threshold.

We note that while it is very unlikely that the exact case of the Efimov effect will be seen,
a system with a finite number of three-body bound states with Efimov-like properties can be
expected to exist. The helium trimer has long been noted to be an extremely good prospect, and
it has recently been shown convincingly that of the two bound states of the helium trimer, the
excited state has the characteristics of an Efimov state (Esryet al1996, Cornelius and Glöckel
1986, Nielsenet al 1998). In nuclear systems, many examples exist of the closely related
phenomenon of ‘halo’ states. Many halo states are also weakly bound three-body states, the
bulk of whose wavefunction lies outside the range of the two-body interactions. These are
typically neutron-rich nuclei such as11Li and 6He that lie along the ‘dripline’ (Fedorovet al
1994).
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3.2.2. Recombination. We have thus far considered break-up processes and the associated
threshold laws. In this section, we examine the time-reverse process of recombination. In
particular, we consider the recombination of three neutral atoms into a diatomic molecule
and a free atom. This process is of practical interest for atomic Bose–Einstein condensation
experiments since neither the resulting molecule, nor the atom that receives the excess energy,
remain trapped. Three-body recombination thus limits the lifetime of a condensate. Three-
body recombination is also of more general interest since it is little studied as a quantum
phenomenon.

Figure 10. The lowest two adiabatic hyperspherical potential curves for the helium trimer (heavy
full curves) are shown along with the lowest potential for three non-interacting particles (light full
curve).

As for the Efimov–Thomas effect above, the adiabatic hyperspherical approach proves
to be a useful tool for the analysis of recombination. Due to the short-range nature of the
two-body potentials, the adiabatic potentials are also short ranged (whena 6= ∞). We
show in figure 10 an example of the adiabatic potentials for three identical bosons with
total angular momentum,L = 0. We have chosen the relatively simple case of the helium
trimer. The helium dimer has a single weakly bound state with a binding energy of about
1 mK, giving rise to a He–He scattering length of about 200 au. Thus, there exists only one
molecular recombination channel, and the three-body continuum channel potential is more
repulsive than the non-interacting curve (shown in the figure as the thin full curve). The
scattering analysis mirrors that discussed for two-body scattering with the result that the cross
section for recombination of three identical bosons is proportional toE−1/2 near threshold.
This is the system most relevant to Bose–Einstein condensation. The rate, a velocity times
the cross section, for recombination is a constant at threshold and is dominated by the S-
wave since the rate is proportional toEL at threshold. For fermionic systems with different
permutational symmetry requirements, this threshold law must be modified. In general, these
modifications will make the cross section less singular, i.e. depend on a higher power of the
energy.

As demonstrated recently by Inouyeet al (1998) (see also figure 6) two-body scattering
is amenable to variations over a wide range of values using moderate magnetic fields. It is
therefore interesting to study the scattering length dependence of the recombination rate. Note
that here we consider the rate rather than the cross section itself. It is appropriate to use the
two-body scattering length as a parameter for this three-body process since the asymptotic
behaviour of both the incoming three free atom channel and the outgoing molecule plus free
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atom channel potentials are determined to leading order inR−1 by the scattering length (Macek
1986, Nielsenet al 1998, Efimov 1979).

The primary scattering length dependence can be understood starting from the threshold
behaviour of the inelastic scatteringS-matrix elementS12. Near threshold,|S12|2 is proportional
toE2 (or k4). However,|S12|2 is a dimensionless quantity, a probability, so that we must have
|S12|2 ∝ (ka)4, given thata is the available unit of length. The recombination rateK is thus

K ∝ kσ12 ∝ k|S12|2
k5
∝ a4. (78)

This overall analytic behaviour of the rate has been found using various methods by Efimov
(1979), Fedichevet al (1996a), Nielsen and Macek (1999) and Esryet al (1999). It has further
been verified by direct numerical calculation of the recombination rate by Esryet al (1999).

The possibility exists for thea4 behaviour to be modified by quantum effects for both
positive and negativea (Nielsen and Macek 1999, Esryet al 1999). For positive scattering
lengths, the long-range coupling between the incident three-body channel and the molecular
formation channel peaks around 3a in the hyper-radius and leads to an interference minimum
in the recombination cross section. This effect could be partially or completely washed out in
the presence of several molecular bound states, however, due to the interference of multiple
paths. For negative scattering lengths, when the three-body channel has a barrier, the coupling
between the incident channel and the recombination channels peaks at hyper-radii within the
barrier. Tunnelling resonances can thus greatly enhance the recombination rate by making it
more likely for the atoms to reach the region of strong coupling. In addition, the coefficient
of the overalla4 scaling is larger for negative scattering lengths since the incident channel
is attractive relative to the non-interacting case. On average, the atoms penetrate further into
the strong-coupling region than for positive scattering lengths, leading to their overall larger
recombination rate.

4. Threshold laws in lower dimensions

The phase space factork, which forms the basic component of the Wigner laws in equation (5),
is correspondingly different in lower dimensions. Thus, it is replaced by no dependence onk

at all in two- and by 1/k in one-dimensional problems. These are of interest because external
fields sometimes lower the effective dimensions as does a strong magnetic field for electron–
atom/molecule problems. The transverse motion of the electron in such a channel is quantized
into the Landau levels of the magnetic field and, when only the lowest level is occupied as in
the case ofE < h̄ω whereω is the cyclotron frequency, these dimensions are frozen out as
degrees of freedom, the electron having only its residual motion in that dimension parallel to
the magnetic field. Quantum dots provide another context in which the trapped electrons are
effectively in lower dimensions (Livermoreet al 1996).

The arguments alongside equations (6)–(9) can be adapted, showing a subtlety inherent
to one dimension. Again, for a short-range (say, attractive potential confined to|x| 6 x0)
potential, theE = 0 Schr̈odinger equation for|x| 6 x0 has only the d2/dx2 kinetic energy
term with the solution

9(E = 0) = A1x +A2 (79)

with A2/A1 insensitive toE. For E > 0, if we consider separately odd- and even-parity
solutions at largex, we obtain

9−(E) = sin(kx + δ−) = cosδ−
[
sinkx + tanδ− coskx

]
9+(E) = cos(kx + δ+) = cosδ+ [coskx − tanδ+ sinkx].

(80)
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Continuity of solutions atx = 0 with the condition of proximity to threshold,k→ 0, requires
that

tanδ− = (A2/A1)k tanδ+ = −(A1/A2k) (81)

with 9(E) = k9(E = 0) in both cases. Thus, inelastic cross sections in one dimension
for either parity, are given byσinel ∝ (1/k)(k)2 ∝ k, upon combining with the 1/k of phase
space. In particular, note that even-parity states also have such ak dependence, not 1/k,
this being associated with tanδ+ going to infinity ask → 0 so thatδ+ → −π/2. This, in
turn, is associated with the feature that even the feeblest attractive potential supports a bound
state in one dimension (not in three) and, therefore, the near-threshold continuum function in
equation (81) is a sine and not a cosine function for positive parity.

Threshold laws for inelastic processes can be derived using two alternative ways: one
uses the Fermi golden rule, and the other uses the Wigner concept of the reaction sphere.
Of course both approaches, if used correctly, give the same results. However, application of
the Fermi golden rule requires some caution. In the three-dimensional case, the plane-wave
approximation for the final-state wavefunction leads to the correct energy behaviour for the
reaction cross section. However, in the one-dimensional case, the plane-wave approximation
gives the wrong results as discussed in the previous paragraph, giving inelastic cross sections
near the threshold which diverge ask−1, instead of the correct resultσ ∼ k. This behaviour
was discussed in connection with the problem of electron scattering in a magnetic field by
Ventura (1973) and Clark (1983). The correct threshold law for this case was derived using
a wavefunction which took into account the final-state interaction. Whereas this approach is
non-perturbative with respect to the final-state interaction, it still uses perturbation theory with
respect to the non-diagonal part of the interaction leading to the inelastic (or reaction) process.
Of course, this approach is justified in the problem of single-photon detachment when the
reactive interaction (atom–photon) is much weaker than the final-state interaction (electron–
atom). However, it is legitimate to ask whether the same approach would be valid in the case
of a strong reactive interaction, for example in electron-impact excitation. Another example
is interaction with channels other than the initial and final channel. For photodetachment in
a magnetic field, this corresponds to interaction with other Landau channels in the final state.
Since perturbation theory with respect to the final-state interaction fails to predict the correct
threshold law in the one-dimensional case, there is reason to suspect that it might also fail with
respect to the interchannel coupling.

4.1. Wigner derivation

4.1.1. Two-dimensional case.The flux in the incident channel in two dimensions is measured
per unit length rather than per unit area, so that the ‘cross section’ in this case has dimensions
of length. First, we need to connect the cross section with the scattering matrix. To this end,
we will consider the asymptotic behaviour of the multichannel wavefunction

9f i ∼ exp(iki · r)δf i +
eikf r

√
r
ff i(θ) (82)

where the ‘scattering amplitude’ff i(θ) has dimensions of the square root of length. By
calculating fluxes in the incident and outgoing channels we obtain, as in three dimensions,

dσf i
dθ
= kf

ki
|ff i(θ)|2. (83)
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The partial-wave expansion of the incident plane wave is

exp(iki · r) =
∑
m

imeimθJm(kir) (84)

and the scattering amplitude can also be expanded in exp(imf θ). The asymptotic behaviour
of the radial wavefunctions is finally given as

ψf i(r) ∼ imf

r1/2

[(
2

πki

)1/2 eiρi + e−iρi

2i
δf i + ei(ρf +π/4)ff i

]
(85)

whereρi = kir −miπ/2−π/4. Now it is convenient to introduce the transition matrixTf i as

ff i = −e−iπ/4

2i

(
2

πkf

)1/2

Tf i . (86)

A derivation along the lines of section 2.3 gives

T = 2[1 + i(f ′)−1g′ − i(f ′Rf ′ − f ′f )−1]−1 (87)

or, using analytical properties of the pair (f, g),

T = 2km[k2m + i(f 0′)−1g0′χm(k)k
m − i(f 0′Rf 0′ − f 0′f 0′)−1]−1km. (88)

TheT -matrix in this form is explicitly symmetric, sincek, χ , f 0 andg0 are diagonal andR is
symmetric.

Consider now the threshold behaviour whenkf → 0. If mf > 0, none of the matrix
elements in the square brackets behaves singularly, and we obtainTf i ∼ k

mf
f . However, if

mf = 0, one of the diagonal matrix elements has a logarithmic singularity, lnkf , so that
Tf i ∼ (ln kf )−1. The cross section for an endothermic process behaves as

σf i ∼ (ln kf )−2. (89)

The cross section for elastic scattering is

σff ∼ (kf ln2 kf )
−1 (90)

and the cross section for an exothermic reaction (superelastic scattering)

σf i ∼ (kf ln2 kf )
−1. (91)

4.1.2. One-dimensional case.The one-dimensional case requires some modifications
because the matching conditions should be applied at two distances:x = −x0 andx0. If the
interaction has inversion symmetry, the treatment can be simplified, and only one boundary
condition need be considered explicitly for the derivation of the threshold law (Clark 1983).
Here we will consider the general case of a non-symmetric potential.

If the incident beam propagates along thex-axis in the negative direction, the matrix of
the wavefunctions outside the reaction region is

ψf i = ψ−ii δf i +ψ+
ff T

++
f i if x > x0 (92)

ψf i = ψ−ff T −+
f i if x < −x0 (93)

whereT ++ andT −+ are reflection and transmission matrices, andψ± are diagonal matrices

ψ± = k−1/2 exp(±ikx). (94)



Topical Review R135

If the incident beam propagates in the positive direction, we have instead

ψf i = ψ+
iiδf i +ψ−ff T

−−
f i if x < −x0 (95)

ψf i = ψ+
ff T

+−
f i if x > x0. (96)

This can be rewritten in a compact form using 2N × 2N -matrices, and a derivation along
previous lines gives

Tf i ∼ k1/2
f if i 6= f . (97)

The casei = f requires more consideration. Consider first the case whenkf = 0 exactly.
Then thef channel becomes decoupled from all others, and ask→ 0, the reflection coefficient
goes to−1 and the transmission coefficient to 0. It is easy to see now that at small but finite
kf ,

T ++
ff = −1 +bkf T −+

ff = ckf (98)

whereb andc are constants. Note that if only thef channel is open, the constantb is pure
imaginary which provides conservation of probability in the channelf : |T ++

ff |2 + |T −+
ff |2 =

1. However, in the presence of other open channels,b has a non-zero real part and
|T ++
ff |2 + |T −+

ff |2 < 1.
Analytical properties of the exponentials e±ikr0 can be used to obtain the next terms of the

effective range expansion of theT -matrix. The behaviour of the non-diagonal elements of the
T -matrix, equation (97), leads to the following threshold law for the probability of inelastic
processwf i :

wf i ∼ kf (99)

which agrees with the earlier remark following equation (81) and with the result obtained by
Clark (1983) for the process of photodetachment in a magnetic field. We note, however, that our
derivation is more general, since it is non-perturbative with respect to the interchannel coupling
and does not use the symmetry property of the Hamiltonian with respect to inversion. Note
also that Wigner’s derivation in principle cannot lead to the divergent behaviourwf i ∼ k−1

f

resulting from perturbation theory because such behaviour violates conservation of probability,
while Wigner’s theory is inherently unitary.

4.2. Electron–molecule scattering

We have already discussed one important example related to scattering in one dimension:
scattering and photodetachment in an external magnetic field. Here we will discuss
other examples: electron–molecule scattering leading to formation of two heavy particles,
specifically dissociative attachment and electron-impact dissociation. If the incident electron
energy is large compared to the rotational spacing, these processes can be treated assuming that
the molecule’s orientation is fixed. Then the atomic fragments dissociate along the reaction
coordinate (for example, along the internuclear axis in the case of a diatomic molecule), and
the problem can be considered as one dimensional with respect to the nuclear motion. We
will limit our discussion to the case of endothermic reactions, when the threshold energy is
positive. According to the threshold law discussed above, the cross section for the dissociative
attachment should be proportional to the relative momentum of the nucleip,

σDA ∝ p. (100)
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Regarding dissociation, we have to consider the energy sharing between the three-
dimensional electronic and the one-dimensional nuclear motion. According to the golden
rule, the fourfold differential cross section is

d4σdiss∝ |M|2δ(E − ν − ε) d3k dp (101)

whereE is the total energy,ε = k2/2 is the electron energy in atomic units andν = D0+p2/2M
is the energy of nuclear motion, whereD0 is the dissociation energy andM is the reduced
mass of the molecule. According to the above discussion, the matrix elementM is finite at
ε = 0. After integrating overε, we obtain the following equation for the singly differential
cross section:

dσdiss∝ |M|2(E − ν)1/2(ν −D0)
−1/2 dν. (102)

Now the threshold law depends critically on the threshold behaviour of|M|. If we used the
Born approximation forM, we would obtain the cross section which is divergent atν → D0.
However, as we know, the correct threshold behaviour ofM is

M ∝ (ν −D0)
1/2 (103)

which restores the Wigner law for dσdiss,

dσdiss∝ (E − ν)1/2(ν −D0)
1/2 dν. (104)

Integrating the resulting expression overν, we obtain the expression for the total cross section

σdiss∝ (E −D0)
2 (105)

which is the same as that derived for three dimensions (Rau 1984a). However, whereas the
latter was derived using the density-of-states argument, our approach stresses the importance
of knowledge of the correct energy dependence of the matrix elementM.

In practice, the cross sections for dissociative attachment and dissociation usually exhibit
a behaviour which is different from that discussed above. If there is no potential barrier for the
dissociative attachment reaction, its cross section starts with a finite value immediately above
threshold. The singly differential dissociation cross section exhibits the Wigner behaviour
with respect to the electron energyE − ν, but it is finite at threshold with respect toν − D0

(Fabrikantet al 1991).
To interpret these deviations from the Wigner law, we have to realize that the de Broglie

wavelength of the final fragments is relatively small, and their motion can be described in
the quasiclassical approximation. The energy-normalized quasiclassical wavefunction can be
written as

ψ =
[

p

P (R)

]1/2

sin(S(R) + π/4) (106)

whereP(R) is the classical momentum as a function of the internuclear distance andS(R) is
the classical action. Asp→ 0,ψ ∝ √p, so that in the quasiclassical approximation

|MDA |2 ∝ p (107)

andσDA is finite at threshold. For the singly differential dissociation cross section, we obtain

dσdiss∝ (E − ν)1/2 dν (108)

which means that the cross section is finite atν = D0 and obeys the Wigner law ifν → E.
The total dissociation cross section is proportional to(E −D0)

3/2.



Topical Review R137

5. Conclusion

The threshold laws presented in this review encompass a vast array of phenomena in
atomic and molecular physics, including one- and two-electron photodetachment, (e, 2e)
processes, and collisions and recombination of ultracold atoms, as well as their behaviour
in external electromagnetic fields and in low dimensions. On the experimental side,
energy resolution continues to improve in electronic, atomic, molecular and ionic sources.
Perhaps most notably, the controlled environment of magneto-optical atom traps provides
researchers with opportunities to interrogate particle interactions at energies extremely close
to dissociation/recombination limits, and even to manipulate these interactions. As resolution
continues to improve the threshold laws will stand at the centre of an ever-widening array of
experiments. We have summarized these laws in one place to make them available for new
generations of experiments, as well as to place them in the context of the prior advances of the
past half-century.
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