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Emergent structure in a dipolar Bose gas in a one-dimensional lattice
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We consider an ultracold dipolar Bose gas in a one-dimensional lattice. For a sufficiently large lattice recoil
energy, such a system becomes a series of nonoverlapping Bose-Einstein condensates that interact via the
long-range dipole-dipole interaction (ddi). We model this system via a coupled set of nonlocal Gross-Pitaevskii
equations (GPEs) for lattices of both infinite and finite extent. We find significantly modified stability properties
in the lattice due to the softening of a discrete roton-like mode, as well as “islands” in parameter space where
biconcave densities are predicted to exist and that only exist in the presence of the other condensates on the
lattice. We solve for the elementary excitations of the system to check the dynamical stability of these solutions
and to uncover the nature of their collapse. By solving a coupled set of GPEs exactly on a full numeric grid, we
show that this emergent biconcave structure can be realized in a finite lattice with atomic 52Cr.
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I. INTRODUCTION

Recent progress on the experimental realization of ultra-
cold dipolar quantum fluids is providing an unprecedented
opportunity to study these systems in detail. Interesting dipolar
effects have been demonstrated in systems with modest dipolar
interactions, such as Bose-Einstein condensates (BECs) of
52Cr [1,2]. Additionally, the achievement of a near-quantum-
degenerate gas of fermionic 40K87Rb [3], the transfer of
bosonic 41K87Rb into its rovibrational ground state [4] and the
cooling and trapping of atomic Dy [5] shows promise of a rich
future for this field as these species host large dipole moments
that may demonstrate new physics both in the mean-field
regime and beyond.

Because of the anisotropic nature of the dipole-dipole
interaction (ddi), the physics of a dipolar system depends
strongly on the geometry of the trap in which it is held.
For example, inelastic scattering processes of both bosonic
and fermionic species are predicted to be highly suppressed
in tighter, quasi-two-dimensional (q2D) traps when the trap
is applied along the polarization axis of the dipoles [6–10].
This suppression leads to more stable, longer-lived many-
body systems of reactive species. Additionally, it was shown
using a BEC of atomic 52Cr that tighter confinement in the
polarization direction energetically stabilizes a dipolar BEC
(DBEC) against collapse [11]. Thus, tight trapping along the
polarization axis is necessary to obtain stable, high-density
dipolar quantum fluids.

Such a trap is realizable in a one-dimensional (1D) optical
lattice, where a laser is reflected onto itself and high- and
low-intensity regions are formed by its interference pattern.
The presence of the lattice brings up an interesting point
regarding the physics of such a system. While the ddi is
anisotropic, it is also long range, scaling as 1/r3, and if
the lattice spacing is sufficiently small then the effect of the
ddi is non-negligible between the lattice sites. For example,
interlayer superfluidity is predicted to exist in two adjacent
layers of polar fermions [12], and scattering in the 2D plane
is predicted to be significantly modified by the presence of a
weakly bound state of dipoles in adjacent layers [13]. Dramatic
effects are predicted for layers of bosons as well, for both
q2D [14,15] and radially trapped [16,17] lattice sites. The

presence of the lattice is predicted to significantly alter the
dispersion via the softening of a roton-like mode in the system,
and thus to alter the stability properties of the Bose gas.

In this work, we consider a gas of bosonic dipoles in a
1D lattice with the dipoles polarized along the lattice axis
so that the system is cylindrically symmetric. Assuming that
the lattice recoil is sufficiently large, we model the potentials
of the individual sites as cylindrically symmetric harmonic
traps. At ultracold temperatures, this leads to a lattice of
nonoverlapping DBECs coupled by the long-range ddi. We
study the stability of this system both for an infinite and
finite 1D lattice. Additionally, we find regions in parameter
space where a biconcave structure is predicted to exist that
is emergent in the lattice system; in other words, that does
not exist in a single condensate. To ensure the accuracy of
our results, we calculate the elementary excitations of the
system and use them to determine whether our solutions are
dynamically stable. In so doing, we map the structure and
stability of a 1D lattice of purely dipolar DBECs.

II. FORMALISM

We consider an ultracold dilute gas of bosonic dipoles in
a 1D optical lattice in the z direction with lattice spacing
dlat. If the lattice is sufficiently deep, it can be modeled by
a series of Nlat harmonic traps, where each site is described
by a cylindrically symmetric potential Uj (r) = 1

2Mω2
ρ[ρ2 +

λ2(z − jdlat)2], where M is the mass of the individual bosons
and λ = ωz/ωρ is the trap aspect ratio. This system is well-
described by the coupled set of nonlocal Gross-Pitaevskii
equations (GPEs):[

ĥj (r) +
Nlat∑
j ′=1

φ
j ′
d (r) − µj

]
�j (r) = 0, (1)

where ĥj (r) is the noninteracting or single-particle Hamilto-
nian

ĥj (r) = − h̄2

2M
∇2 + Uj (r), (2)

�j (r) is the condensate wave function at site j , j is an integer,
and µj is the corresponding chemical potential. Without the
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presence of the long-range ddi, these Nlat equations would
be independent. The ddi couples the equations through the
mean-field potentials φ

j

d (r) given by the convolution

φ
j

d (r) =
∫

dr′Vd (r − r′)nj (r′), (3)

where nj (r) = |�j (r)|2 is the density of the condensate
occupying the j th site with norm

∫
dr′nj (r′) = Nj , Nj is the

condensate number for site j , and Vd (r − r′) is the two-body
ddi potential for dipoles polarized along ẑ, given by [18]

V (r − r′) = d2 1 − 3 cos2 θr−r′

|r − r′|3 , (4)

where d is the dipole moment of the bosons and θr−r′

is the angle between r − r′ and ẑ. A description of the
fully condensed stationary state of this system of dipolar
Bose-Einstein condensates (DBECs) is then given by the set
of solutions {�j (r),µj } that minimize the energy functional
corresponding to Eq. (1), given by

E[{�j (r)}] =
∑

j

∫
dr ��

j (r)

⎡
⎣ĥj (r) + 1

2

Nlat∑
j ′=1

φ
j ′
d (r)

⎤
⎦�j (r).

(5)

Generally, a full description of a dilute BEC of interacting
atoms includes contact interactions given by the pseudopo-
tential Vc(r − r′) = gδ(r − r′) where g ∝ as and as is the
s-wave scattering length of the atoms. This interaction is
short range and results in the mean-field potential φ

j
c (r) =

g|�j (r)|2. Modeling a system of nonoverlapping BECs in a
1D lattice interacting only via contact interactions results in
a set of uncoupled GPEs. While the interplay of contact and
dipole-dipole interactions is predicted to produce interesting
effects [19] that would likely be modified by the presence of
the lattice, we set as = 0 in this work to illuminate purely
dipolar effects. Because of its long-range nature, the ddi does
not produce a simple mean field like the contact interaction
and requires particular attention.

In practice, the dipolar mean field is calculated in k space to
eliminate the problems associated with the divergence of the
ddi in real space. To do this, the Fourier transforms of the
densities nj (r) and the ddi Vd (r − r′) must be calculated.
Taking F to be the Fourier transform operator,

ñj (k) = F
[
nj (r)

] ≡
∫

drnj (r)e−ik·r. (6)

Here, it will prove useful to define the shifted densities νj (r) =
nj (rj ) where rj = {ρ,z − jdlat}, so that all νj (r) are formally
centered about the origin. Then, νj (r−j ) = nj (r), and we can
write ñj (k) = F[νj (r−j )]. With some simple manipulation,
this expression reduces to

ñj (k) = F[νj (r)]eikzdlatj . (7)

Thus, the k-space density of the DBEC at site j can be rewritten
as the Fourier transform of nj (r) translated into the local set of
coordinates, with an additional exponential term accounting
for this spatial translation. Now, by the convolution theorem,

the mean-field contribution from the DBEC at site j can be
written as

φ
j

d (r) = F−1[Ṽd (k)ñj (k)] (8)

where Ṽd (k) is the Fourier transform of the ddi [20]:

Ṽd (k) = 4πh̄2add

M

(
3
k2
z

k2
− 1

)
(9)

and add = Md2

3h̄2 is the characteristic dipole length. In this
work, we calculate νj (r) directly by calculating the shifted
condensate wave functions �j (r) such that νj (r) = |�j (r)|2
and account for the spatial separation of the DBECs, or the
presence of the lattice, with the expression given in Eq. (7).
Thus, the wave functions �j (r) and �j (r) are related by
�j (r) = �j (rj ).

III. WAVE-FUNCTION ANSATZ

For a single DBEC, calculating the mean-field energy on
a full numeric grid has proven fruitful [21,22]; however, this
method is computationally very expensive when considering
multiple interacting DBECs, both in real space and in k space.
In real space, the convolution integral for the dipole-dipole
mean field must be done directly, where there is no 1/r3

divergence if the condensates do not overlap. In k space,
the grid must be large enough to resolve the entire lattice
because of the eikzdlatj dependence of the k-space densities.
To avoid these problems, we consider solutions of the form
�j (r) = ψj (ρ)χj (z), where

χj (z) = 1√
1 + A2

2,j

[χ0,j (z) + A2,jχ2,j (z)], (10)

χ0,j (z) = 1√
lz,jπ

1
4

exp

[
− z2

2lz,j
2

]
, (11)

and

χ2,j (z) = 1

2
√

2lz,jπ
1
4

exp

[
− z2

2lz,j
2

]
H2

(
z

lz,j

)
, (12)

where H2(x) = 4x2 − 2 is the second Hermite polynomial.
This ansatz includes the zeroth and second harmonic oscillator
wave functions with variable width and relative amplitude.
Plugging this ansatz into the GPE and integrating out the z

dependence results in a modified GPE in the radial coordinate
ρ that also depends on the widths lz,j and the relative
amplitudes A2,j of the axial wave functions, but not the z

coordinate explicitly. We derive this modified GPE for a single
DBEC, given by Eq. (A2), in Appendix.

To test the ansatz given in Eq. (10), we apply it to the
well-known system of a single DBEC in a harmonic trap. This
system was predicted to exhibit, for certain trap geometries
and ddi strengths, biconcave structures where the maximum
density of the DBEC exists not in the center of the trap, but
in a ring about the center of the trap [23]. For example, such
structure is predicted to exist in a trap with aspect ratio λ = 7
for ddi strengths near the stability threshold.

Figure 1 compares the total energies of a single DBEC in a
trap with λ = 7 as a function of the ddi strength (N − 1)gd/aρ ,
where aρ = √

h̄/(Mωρ) is the radial harmonic oscillator length
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FIG. 1. (Color online) Differences in energy of a DBEC in a trap
with aspect ratio λ = 7 as a function of interaction strength between
that calculated using the ansatz given in Eq. (10) and that calculated
exactly on a full numeric grid. The blue dotted line shows the energy
difference calculated using no second-order harmonic-oscillator wave
function and a fixed axial width lz = az, the red dashed line shows the
energy difference using the same wave function but with lz treated
variationally and the black solid line shows the energy difference
including the second-order harmonic-oscillator wave function where
the relative amplitude A2 and lz are treated variationally.

and gd = 2
√

2πh̄2add

M
is the ddi coupling, for various restrictions

placed on the variational parameters of the axial wave function.
Plotted is the energy difference (E − Efull)/Efull, where Efull is
the energy calculated by solving the GPE exactly (within strict
numerical precision) on a full numeric grid in ρ and z. The
blue dotted line shows the energy of the DBEC when A2 = 0
and lz is fixed to be the axial harmonic oscillator length, az =√

h̄/(Mωz), the red dashed line shows the energy when A2 = 0
and lz is treated variationally, and the black line shows the
energy when A2 and lz are both treated variationally. Clearly,
the full variational treatment is much more accurate than the
cases where the second harmonic-oscillator wave function is
not included (A2 = 0). Indeed, it stays within 1% of the exact
energy for all values of (N − 1)gd/aρ for which the DBEC is
stable. We find this to hold true for larger trap aspect ratios as
well. Figure 2 shows the values of the variational parameters
for the same cases as in Fig. 1. In this figure, the left vertical
axis is labeled lz/az and the right vertical axis is labeled A2,
shown by the black dots.

Beyond energetics, this ansatz also predicts semiquan-
titatively the structure and stability of a single DBEC.
An interesting feature of the biconcave structure predicted
in Ref. [23] is that it exists in “islands” of parameter
space defined by (N − 1)gd/aρ and λ. Figure 3 shows this
structure- stability diagram for a single DBEC calculated using
(a) A2 = 0 and lz/az = 1, (b) A2 and lz variational, and (c)
a full numeric grid in ρ and z. Interestingly, the biconcave
islands are present in each diagram and occur for almost
exactly the same values of (N − 1)gd/aρ . They are, however,
shifted in λ, moving to smaller values as more restrictions
are placed on the condensate wave function. The diagram for
the full variational ansatz (b) qualitatively matches that of the

FIG. 2. (Color online) The values of the axial wave-function
parameters that, together with the radial wave function calculated on
a grid, minimize the energy of a single DBEC in a trap with aspect
ratio λ = 7. The blue dotted line shows the results for lz = az, the red
dotted line shows lz when it is treated variationlly and A2 = 0, and the
black solid line shows lz when both it and A2 are treated variationally.
In this last case, the behavior of A2 is given by the black dotted line.

full numeric grid. Thus, we expect that this ansatz will give
physically meaningful results, if not quite quantitative ones.

As we discuss below, a key benefit of this ansatz for the 1D
lattice system is that it is analytic in z. Another such ansatz
that has this property is that of correlated Gaussians, which
have been shown to reproduce the results of full numeric
calculations for DBECs quite well [24]. However, we applied
this ansatz to the lattice system and found that it is numerically
unstable with the minimization techniques used here.

IV. INFINITE LATTICE

With confidence in the ansatz given in Eq. (10), we now
apply it to the 1D lattice system. An interesting example to
consider is that of an infinite lattice with Nlat → ∞. This
approximation introduces a discrete invariance to the system
so that we can set �j (r) = �j ′ (r) for all j,j ′. Thus, we can
neglect, for the time being, the indexing of the wave functions

λ

(N
−

1)
g
d

a
ρ

a

b
c

5 10 15
0
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FIG. 3. (Color online) Structure-stability diagram for a single
DBEC. The colored regions indicate a dynamically stable condensate,
and the pink (darker) regions indicate parameters for which the DBEC
has biconcave density. (a) and (b) are calculated using the ansatz for
the axial wave function given in Eq. (10) and (c) is calculated using a
full numeric grid. For (a), A2 = 0 and lz/az = 1 and, for (b), A2 and
lz are treated variationally.
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and let �j (r) → �(r) for all j . Then, the mean-field potential
at any site is, from Eq. (7), given by

φd (r) =
∞∑

j=−∞

∫
dkṼd (k)ñ(k)eikzdlatj e−ik·r, (13)

where

ñ(k) = ñρ(kρ)
e− 1

4 k2
z l

2
z

1 + A2
2

{
1 + A2

[
A2

−
(

1√
2

+ A2

)
k2
z l

2
z + 1

8
A2k

4
z l

4
z

]}
. (14)

We can manipulate the infinite sum in Eq. (13) to give [25]

∞∑
j=−∞

eikzdlatj = 2π

dlat

∞∑
j=−∞

δ

(
kz − 2πj

dlat

)
. (15)

The term that accounts for the infinite lattice can therefore be
written as a Dirac comb in kz with spacing 2π/dlat between
peaks. Inserting this expression into Eq. (13) gives the mean-
field potential

φd (r) = 2
gd

dlat
F−1

2D [Finf(kρ)ñρ(kρ)], (16)

where 2gdFinf(kρ)/dlat is the effective k-space ddi for the
infinite lattice and Finf(kρ) is given by

Finf(kρ) =
√

π

2

∞∑
j=−∞

e
−2π2j 2 l2z

d2
lat(

1 + A2
2

)2

{
1 + A2

[
A2

−
(

1√
2

+ A2

)
4π2j 2 l2

z

d2
lat

+ 2A2π
4j 4 l4

z

d4
lat

]}2

×
(

12π2j 2

k2
ρd

2
lat + 4π2j 2

− 1

)
. (17)

The GPE for an infinite lattice of interacting DBECs is reduced
to a single GPE in the radial coordinate ρ where all of the axial
dependence of the wave function is captured by the variational
parameters A2 and lz.

We study the structure and stability of this infinite lattice of
interacting DBECs by solving the modified GPE for the system
(applying conjugate gradients [26] to minimize the corre-
sponding energy functional) and studying the Bogoliubov–de
Gennes (BdG) excitations. We find that the sum in Eq. (17) is
sufficiently converged if a cutoff jcut is applied to the index j

such that jcut � dlat/(2πlz).
Consistent with other results [14,15], we find that the

presence of the lattice serves to destabilize the system due
to the softening of a discrete roton-like mode in the system.
For a single DBEC in a trap, tight axial confinement aligns
the dipoles so that they are predominately repulsive and, for
sufficiently low densities or interactions strengths, stabilizes
the condensate. In the presence of a 1D lattice, the attraction
from the dipoles at other lattice sites extends the condensate in
the axial direction, increasing the integrated axial density and,
ultimately, making the system less stable. This destabilization
is made less dramatic as dlat is increased.

FIG. 4. (Color online) Structure-stability diagram for an infinite
lattice of DBECs in traps with aspect ratio λ = 10 as a function of
lattice spacing dlat/az and interaction strength (N − 1)gd/aρ . The
colored region indicates dynamic stability, while the pink (darker)
regions indicate parameters where the DBECs have biconcave
density. The inset shows an isodensity plot of a DBEC with biconcave
density.

To study the structure and stability of the infinite lattice, we
choose specific trap aspect ratios and explore the parameter
space defined by (N − 1)gd/aρ and dlat. Figure 4 shows the
region of dynamic stability for an infinite lattice of DBECs
in traps with λ = 10. For lattice spacings dlat/az � 5, the
condensate wave functions at adjacent sites overlap and the
strong dipole-dipole attraction leads to complete instability.
In this figure, the colored regions indicate dynamic stability
and the pink (dark) regions indicate parameters at which the
DBECs exhibit biconcave density. As dlat/az is increased, the
diagram approaches that given by a line at λ = 10 in Fig. 3 for
a single DBEC. However, for smaller lattice spacings, a second
biconcave island appears. Without the presence of the lattice,
biconcave structure would not exist for these parameters. Thus,
this structure is “emergent” in the lattice system. The inset in
Fig. 4 shows an isodensity plot of a DBEC with biconcave
density.

Figure 5 shows the region of dynamic stability up to lattice
spacings of dlat/az = 80 for a infinite lattice of DBECs in
harmonic traps with λ = 20. Here, the convergence of the
stability line to (N − 1)gd/aρ ∼ 550 is clear. The inset shows
a close-up view of the diagram where a biconcave island is
predicted to exist. As the aspect ratio is increased, the values
of interaction strength (N − 1)gd/aρ that the biconcave islands
span becomes relatively smaller compared to the asymptotic
value of the stability line. Figure 6 shows the stability lines for
infinite lattices with aspect ratios λ = 50, 100, 150. We find
stability islands that exist at the stability threshold within the
lattice spacings dlat/az = 6 to 10 for all of these aspect ratios.
Because they are so narrow in (N − 1)gd/aρ , though, they are
not included in this plot.

By working in the ρ and z coordinates, a cylindrical
symmetry is assumed. However, it was shown in [23] that
DBECs with biconcave densities are dynamically unstable to
angular modes, or quasiparticles. While the method used here
is sensitive to dynamic instabilities that are purely radial, an
extra step must be taken to detect angular instabilities.
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FIG. 5. (Color online) Structure-stability diagram for an infinite
lattice of DBECs in traps with aspect ratio λ = 20 as a function of
lattice spacing dlat/az and interaction strength (N − 1)gd/aρ . The
inset shows a close-up of the diagram at the parameters indicated.
The pink (darker) region in the inset indicates parameters where the
DBECs have biconcave density. An isodensity plot of a DBEC with
biconcave density is shown in this inset.

A. Bogoliubov–de Gennes equations

The Bogoliubov–de Gennes (BdG) equations describe the
low-lying quasiparticles of the condensate. They are derived
by inserting the ansatz

ψ(ρ) → [ψ(ρ) + δu(ρ)ei(mϕ−ωt) + δv(ρ)e−i(mϕ−ωt)]e−iµt

(18)

into the time-dependent GPE and linearizing about δ, assuming
that δ 
 1. Here, m is the quantum number describing the
projection of angular momentum of the quasiparticle onto the
z axis. In general, the energy eigenvalues of the BdG modes
{u,v�} can be written as ω = ωR + iωI , where ωR and ωI are
purely real. When all ωI = 0, the system is dynamically stable.
However, when some ωI �= 0, the system is dynamically
unstable, and the quasiparticle amplitude grows exponentially
in time on a time scale ∼1/ωI .

Like the single DBEC in [23], we find that the biconcave
structures in the infinite lattice are, for some critical density
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dlat/az
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g
d
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×103
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FIG. 6. (Color online) Stability lines for an infinite lattice
of DBECs for aspect ratios λ = 50, 100, 150 as a function of
lattice spacing dlat/az and interaction strength (N − 1)gd/aρ . The
parameters beneath the lines are dynamically stable, while those
above the lines are dynamically unstable.

or ddi, dynamically unstable to angular quasiparticles with
m � 2. Reference [21] shows that this angular instability
leads to angular collapse, or collapse with angular nodes, of
the biconcave DBECs. A measurement of the character of
collapse, whether it be radial or angular, then provides a tool
to map the structure along the stability threshold of the system.

In our analysis, we found exotic ground-state densities very
close to the stability threshold, like those found for a finite
lattice in Ref. [16]. These solutions host multiple radial density
oscillations; however, we find they are dynamically unstable
and are thus unlikely to be experimentally observable.

V. FINITE LATTICE

While the infinite lattice of DBECs provides a clear, simple
example of emergent structure in this system, it is a difficult
system to realize experimentally. In a realistic experiment,
the lattice has a finite extent and the occupations of the
sites vary from site to site. To model this more realistic
lattice system, we consider an odd number of occupied lattice
sites indexed by j ∈ [−jlat,jlat] where jlat = (Nlat − 1)/2 with
the particle number given by a Gaussian distribution, Nj =
Nmax exp [−(j/jlat)2], where Nmax is the particle number in the
condensate in the center of the lattice at site j = 0, and the
outer-most sites have particle number Nmax/e [16].

Instead of using an analytic form for the axial parts of the
condensate wave functions, we solve the coupled set of GPEs
given by Eq. (1) on a full grid (large enough to encapsulate
the entire lattice) in ρ and z for each condensate. We find
good convergence by using the conjugate gradients method
to minimize the full energy functional of the system [26].
Additionally, to ensure numerical precision we apply a cutoff
to the ddi in ρ and z so that a relatively small grid can be used
while eliminating the effects of artificial “image” condensates
that are present due to the use of the fast Fourier transform
(FFT) algorithm in our calculation [19].

As an example, we consider a lattice with trap aspect ratios
λ = 50, jlat = 4 (corresponding to 9 occupied lattice sites),
lattice spacing dlat = 8az, and (Nmax − 1)gd/aρ = 550 on a
numeric grid of size [Nz,Nρ] = [1024,128]. Figure 7 shows
the density at z = 0 of a DBEC at the center of the lattice
(j = 0) and, for comparison, the density of a DBEC with the
same trap aspect ratio and ddi strength (N − 1)gd/aρ = 550
but without the presence of the lattice. While the DBEC in the
single trap does not exhibit biconcave structure, the DBEC in
the lattice does, showing that this emergent structure in the
lattice system is present not only in the infinite lattice system,
but also in the experimentally realistic system of a finite lattice
with variable occupancy. Indeed, such a system is realizable
with atomic 52Cr, having a permanent magnetic dipole moment
of µ = 6µB where µB is the Bohr magneton, axial harmonic
oscillator frequencies of ωz = 2π × 30 kHz and a maximum
condensate occupancy of Nmax 
 77 × 103 atoms.

The experimental observability of biconcave structure in
a lattice of DBECs is an important point to address. While
nondestructive phase-contrast imaging techniques of trapped
condensates have been successful [27], it is questionable
whether such techniques can resolve the small differences in
the spatial density of the biconcave condensate, especially
in a 1D lattice when the other trapped condensates do not
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FIG. 7. (Color online) Radial densities at z = 0 of a DBEC with
(N − 1)gd/aρ = 550 in a trap with aspect ratio λ = 50. The blue
dashed line shows the density of a DBEC in a single harmonic trap,
and the red solid line shows the density of a DBEC in the center site of
a 1D lattice with nine occupied sites (jlat = 4). This DBEC exhibits
biconcave structure, while the single DBEC does not, demonstrating
the emergence of this structure in the lattice system. These densities
were calculated by solving the GPE (coupled GPEs) exactly on a full
numeric grid.

necessarily exhibit such structure. However, it was shown in
Ref. [21] that DBECs with biconcave structure will, at a critical
density, collapse anisotropically with nodal structure about the
ring of maximum density. This angular character is predicted
to be preserved in the expansion of the collapsed state, thereby
providing an indirect signature of biconcave structure in the
expanded cloud. In a system of DBECs with nonzero scattering
lengths, collapse of the system can be induced by decreasing
the scattering length below a critical value via a Fano-Feshbach
resonance [21].

VI. CONCLUSION

In conclusion, we have mapped the structure and stability
of a lattice of interacting, purely dipolar DBECs. By asserting
an analytic form for the axial part of the condensate wave
functions [Eqs. (10)–(12)], we derive a simple, modified GPE
for the radial part of the wave functions when the lattice is
infinite. We find isolated regions (“islands”) in the parameter
space defined by the lattice spacing and the ddi strength where
the DBECs are predicted to exhibit biconcave densities, where
the maximum density exists not in the center of the trap
but in a ring about the center of the trap. To model a more
experimentally realistic system, we consider a finite lattice
with varying condensate number and solve the coupled set of
GPEs exactly on a full numeric grid. In doing so, we show that
this emergent biconcave structure should be observable in a
finite 1D lattice of DBECs of atomic 52Cr.
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APPENDIX: MODIFIED GPE USING ZEROTH AND
SECOND HARMONIC-OSCILLATOR WAVE FUNCTIONS

Consider the ansatz given by Eqs. (10)–(12) for a system
with a single harmonically trapped DBEC, so the indexing
of the condensate wave function can be ignored and we can
simply write �(r) = ψ(ρ)χ (z). We derive the modified GPE
by multiplying the (dimensionless) GPE:

[
−1

2
∇2 + U (r) + φd (r) − µ

]
�(r) = 0, (A1)

by χ (z) and integrating over z. This operation gives the
modified GPE,

{
ĥeff(ρ) + 2

gd

lz
F−1

2D

[
ñρ(kρ)Feff

(
kρlz√

2

)]}
ψ(ρ) = 0,

(A2)

where ĥeff(ρ) is the effective single-particle Hamiltonian,

ĥeff(ρ) = −1

2
∇2

ρ + 1

2
ω2

ρρ
2 − µ + 1

1 + A2
2

×
[(

1

l2
z

+λ2l2
z

) (
1

4
+5

4
A2

2

)
− A2√

2

(
1

l2
z

−λ2l2
z

)]
,

(A3)

and Feff(x) is given by

Feff(x) = 1(
1 + A2

2

)2

[
1 +

√
2A2(3x2 − 1) + 3

4
A2

2

× (3 + 5x2 + 6x4) + 1

4
√

2
A3

2(1 + 9x2 + 42x4

+ 12x6) + 1

64
A4

2[41 + 3x2(81 + 134x2 + 60x4

+ 8x6)] − 3
√

π

2

{
1 + A2

[
A2

(
2 + A2

2

)

+ 2(
√

2 + 2A2)
(
1 + A2

2

)
x2 + A2

(
3 + 4

√
2A2

+ 5A2
2

)
x4 + A2

2(
√

2 + 2A2)x6 + 1

4
A3

2x
8

]}

× xex2
Erfc [x]

]
, (A4)

and Erfc[x] is the complementary error function.
The corresponding mean-field energy due to the ddi
is then

Ed = gd

lz

∫
d2ρnρ(ρ)F−1

2D

[
ñρ(kρ)Feff

(
kρlz√

2

)]
. (A5)
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A. Griesmaier, S. Giovanazzi, and T. Pfau, Nature (London)
448, 672 (2007).

[2] T. Lahaye, C. Menotti, L. Santos, M. Lewenstein, and T. Pfau,
Rep. Prog. Phys. 72, 126401 (2009).

[3] K.-K. Ni, S. Ospelkaus, M. H. G. de Miranda, A. P. B. Neyenhuis,
J. J. Zirbel, S. Kotochigova, P. S. Julienne, D. S. Jin, and J. Ye,
Science 322, 231 (2008).

[4] K. Aikawa, D. Akamatsu, M. Hayashi, K. Oasa, J. Kobayashi,
P. Naidon, T. Kishimoto, M. Ueda, and S. Inouye, e-print
arXiv:1008.5034.

[5] M. Lu, S. H. Youn, and B. L. Lev, Phys. Rev. Lett. 104, 063001
(2010).
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