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Nonequilibrium dynamics of an ultracold dipolar gas
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We study the relaxation and damping dynamics of an ultracold, but not quantum degenerate, gas consisting of
dipolar particles. These simulations are performed using a direct simulation Monte Carlo method and employing
the highly anisotropic differential cross section of dipoles in the Wigner threshold regime. We find that both
cross-dimensional relaxation and damping of breathing modes occur at rates that are strongly dependent on the
orientation of the dipole moments relative to the trap axis. The relaxation simulations are in excellent agreement
with recent experimental results in erbium. The results direct our interest toward a less explored regime in dipolar
gases where interactions are dominated by collision processes rather than mean-field interactions.
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I. INTRODUCTION

Much of the research on ultracold dipolar gases has
heretofore focused on the quantum degenerate regime, where
dipolar interactions can significantly influence the behavior
of the gas through the mean field. Aspects of this influence
include changing the shape and mechanical stability of the gas
[1-5], as well as altering the excitation spectrum to include
low-energy roton modes in a Bose-Einstein condensate [6-9].
A host of related phenomena have been predicted and observed
[10-13], driven by the direct action of the long-ranged,
anisotropic dipolar interaction on the particles’ motion.

By contrast, gases at a slightly higher temperature behave
more classically, and their mean-field energy is overcome by
kinetic energy as the prime source of dynamics in the gas.
In such a situation the strength and anisotropy of the dipolar
interactions can be made manifest through collisions, rather
than through mean-field effects [14]. A very recent experiment
showed this explicitly, finding that collisional relaxation of a
gas of erbium atoms at ~400 nK occurred on time scales
that varied by a factor of 4, depending on the orientation
of the atoms’ magnetic dipole moments [15]. This landmark
result illustrates the potential for anisotropic dipolar scattering
to profoundly influence the kinetics of a cold, thermal gas,
from rethermalization and relaxation to viscosity and the
propagation of sound, to name but a few features.

In this article we construct a model of the cold, nonde-
generate dipolar gas by numerically solving the Boltzmann
equation. The model is based on the direct simulation Monte
Carlo (DSMC) algorithm [16,17], which is appropriate to the
dilute limit found in experiments, when the mean-free path
Ame of the atoms in the gas is comparable to or larger than
the characteristic scale L of the gas (i.e., Knudsen number
Kn = Ay¢/L 2 1). Using this model, we explore the thermal
relaxation and damping of a dipolar gas that is suddenly
taken out of equilibrium. Where applicable, our results are
in excellent agreement with the return to equilibrium of
the erbium gas in Ref. [15] and, in particular, describe the
dependence of the relaxation rate on the polarization direction
of the dipoles. Further, we characterize the damping rate of
breathing mode oscillations generated in the gas, finding that
this damping is also strongly dependent on polarization and
is slower than the rethermalization rate. We also evaluate
the relevance of mean-field interactions in the gas. Although
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the density of erbium in the cross-dimensional relaxation
experiment was not sufficiently high to observe mean-field
effects, we briefly discuss how to modify the DSMC method
to include such physics (using particle-in-cell methods for a
dipolar Vlasov equation).

The outline of this paper is as follows: In Sec. II we
introduce and discuss the details of a cross-dimensional rether-
malization experiment which we model. In Sec. III we provide
avery brief introduction to the Boltzmann equation and discuss
its historical significance in statistical mechanics. Section III B
outlines the basic features of our DSMC algorithm, and
Sec. III C discusses the differential scattering cross sections
for low-energy dipolar interactions. Section IV discusses and
quantifies the mean-field interaction in the gas. Section V
reports our results for fermions and compares these results to
experimental data. Section VI describes similar results, but for
bosons. In Sec. VII we draw conclusions and discuss possible
avenues for future research.

II. CROSS-DIMENSIONAL RELAXATION
OF A DIPOLAR GAS

For concreteness, we here contemplate the experimental
situation of Ref. [15]. We employ the notation of that experi-
ment and use the same values of trap frequencies, density, and
species (erbium). We stress, however, that the simulations can
be made completely general for cold dipolar gas experiments
in the thermal regime, including polar molecules.

Experiments involving cross-dimensional relaxation have a
long history in cold atoms, going back to the work with cesium
[18]. Other experiments include work on Bose-Fermi [19]
and Fermi-Fermi [20] mixtures. The experimental scenario we
consider is shown in Fig. 1. The gas begins in the equilibrium
state of an approximately cylindrically symmetric trap, with
the dipole alignment direction in the y-z plane of the laboratory
reference frame. The gas is weakly trapped in the y direction
and tightly trapped in the x and z directions. The dipole
alignment direction, &, makes an angle § with the y axis.

Over a (fast) time scale #,mp, the trapping frequency along
the y axis is significantly increased, sending the system out
of equilibrium. The atoms, whose distribution is initially
still elongated along the y direction, gain extra momentum
along this direction (over the time scale of a quarter trap
period). Rethermalization requires the redistribution of this
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FIG. 1. (Color online) (a) The initial state of the gas, where the
atoms occupy the equilibrium state of an approximately cylindrically
symmetric trap, elongated in the y direction. The dipole alignment
direction is given by &. (b) The experiment begins when the trap
frequency in the y direction is suddenly increased, sending the system
out of equilibrium. Rethermalization dynamics depends on the angle
B between the dipole alignment direction and the y axis.

additional momentum or potential energy in the y direction
into the x and z directions. Due to the highly anisotropic
nature of the dipole-dipole interaction, the rate at which this
rethermalization (redistribution) occurs depends strongly on
the angle, §, between the dipole alignment direction and the y
axis (see Fig. 1).

This experiment was recently performed in Innsbruck [15],
as a very beautiful demonstration of the standards in precision
and control over cold-atomic systems. The atomic species
used was '®’Er (a fermion), which has the exceptionally
large magnetic dipole moment of 7up, where pp is the
Bohr magneton (compared to ®’Rb, with 1up, and 2Cr,
with 6, %Dy has 10up). The experiment began with an
initial temperature of 426 nK. Relative to the density of the
system, this corresponds to the regime 7iA3. & 0.25, where 7
is the average density in the trap and Ay = h/27/(mkgT)
is the thermal de Broglie wavelength. In this sense, the
system (although cold) is not deeply within a regime of
quantum degeneracy. This, then, implies that the classical
Boltzmann equation should provide the appropriate theoretical
description. This being said, quantum-mechanical effects may
indeed be a source of error in our simulations, and we attempt
to quantify this in Sec. V D.

In spite of this (relatively) low phase-space density, the
system is still sufficiently cold that the ratio between the ther-
mal de Broglie wavelength and a characteristic dipole-length
scale, ag = Cygm /(8 h?) (where Cyqq = pou?® for magnetic
dipoles and Cyq = d? /€ for electric dipoles, o and €, are,
respectively, the permeability and permittivity of the vacuum,
and p and d are the magnetic and electric dipole moments)
is At/aq & 39. From this, we conclude that the two-body
scattering physics is strongly within the quantum regime, and
the differential scattering cross sections are chosen accordingly
[14].

III. THE BOLTZMANN EQUATION FOR DIPOLAR GASES
AND THE DSMC METHOD

A. General considerations

The ability to trap and cool atoms with large magnetic
dipole moments, such as chromium [21,22], dysprosium
[23,24], and erbium [25], provide exciting possibilities for
observing novel many-body states (for a recent example,
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see Ref. [26]). Dipolar molecules are another source of
potentially even stronger interactions in dipolar gases [13,27—
31]. Developing theoretical tools to understand dipolar gases
is currently a very active area of research [8,32-37].

A particularly challenging task in many-body physics is
to develop theoretical methods for treating out-of-equilibrium
physics. To this end, we report on our progress towards a
general tool for simulating out-of-equilibrium dynamics of the
normal dipolar gas. Our approach is based on the Boltzmann
equation, which we solve using the DSMC algorithm. The
motivation for using DSMC typically occurs when the assump-
tions of fluid mechanics (which generally centers around some
form of the Navier-Stokes equation) break down, and one must
account for the granular nature of matter (usually, although not
exclusively, via statistical mechanics). Bird’s DSMC algorithm
has evolved over recent decades into a remarkably versatile and
useful tool which has been applied across seemingly disparate
fields of research [38,39].

Stochastic particle methods, such as the DSMC, have been
applied to ultracold gases in a number of previous works. For
instance, a variation of the method we describe here was used
to study evaporative cooling en route to Bose condensation
[40]. In Ref. [41], collisions between two thermal clouds near
ad-wave resonance were simulated. The results compared very
nicely to experiment [42]. Other examples include the study
of collective modes in finite-temperature dynamics [43—45],
sympathetic cooling of molecules [46], and degenerate Fermi
gas dynamics [47]. To our knowledge, our work is the first
time that dipolar differential cross sections have been used
[14]. This reduces the efficiency of the DSMC by introducing
arejection-sampling algorithm to sample the differential cross
sections. However, we find that numerical convergence is still
easily attainable with standard commodity hardware.

The classical Boltzmann equation describes the statistical
mechanics of particles in a many-body system with two-body
elastic collisions. Its modern derivation typically involves
truncation of the BBGKY hierarchy [48] such that two-body
(and higher) distribution functions factorize into products
of single-body distribution functions (this assumption was
referred to by Boltzmann as the stosszahlansatz, or the
assumption of molecular chaos). The equation for a single-
component gas reads

o . p _
|:§+;.Vr+F-Vp]f—C[f], (1)

where f = f(r,p;t) is the single-particle phase-space distri-
bution, i.e., fd’rd>p is the expected number of atoms within
the phase-space volume (r,p) — (r + d°r,p + d’p), m is the
particle mass, F denotes the external forces acting on the
system, i.e., F = —V, U(r,t), where U(r,t) is some external
potential (trapping potential), and finally,

d3p1 do /ol
Clfl= dQ——p—pllf fi— Al 2
m a2

is the collision integral. We have used the common notation
O — f(r,p\’;1). In principle, one may wish to include a
mean-field contribution in the external potential. We discuss
the relative importance of this mean-field term in Sec. IV and
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demonstrate its insignificance for the purpose of simulating
the experiment in Ref. [15].

The collision integral in Eq. (1) provides a mechanism
for rethermalization via two-body collisions. Two particles
(coinciding at point r) collide with momenta p and p; and
emerge from the collision with momenta p" and p/. Net energy
and momentum are conserved in the collision, meaning that

P=P, (3a)
IPrei| = [Prel (3b)
where P¥ = (p* + p(l/)) /2 and p(/) =p" — p(l/) denote the

rel
center-of-mass and the relative momentum, respectively. The
differential cross section
do do ,
_Q (prel ) prel) (4)

aQ d
contains information regarding the likelihood of two particles
colliding (given an incident relative momentum P;) and the
likelihood of a postcollision relative momentum given by p,.
Intriguingly, cross sections which exhibit time-reversal sym-
metry, that is, g—g(prel,p;el) = dd—g(p;el,pre]), yield irreversible
dynamics in the Boltzmann equation as demonstrated by
Boltzmann’s famous H theorem [49]. The relevant differential
cross section for dipolar particles has been derived and
discussed in detail in a recent article [14], and we briefly
summarize the necessary results in Sec. III C.

Analytic solutions to the Boltzmann equation are difficult to
come by [49,50]. An important exception are the well-known
equilibrium solutions, the Maxwell-Boltzmann distribution,

20m+U
p/f:;; (r)]’ 5)

where kg is Boltzmann’s constant, 7 is the temper-
ature, N 1is the total number of particles, and Z =

N
f(@r,p;t) = fms(r,p) = — CXP |:—

f d’rd’p exp[—%] gives the correct normalization.
Using the conservation laws in Eq. (3), it is straightforward
to see that C[ fyg] = 0, and fyp is a stationary solution to
Eq. (1).

We wish to solve the Boltzmann equation, (1), under the
following dynamical scenario: Starting from an equilibrium
initial distribution, Eq. (5), we change the trapping potential
U(r,t) = im[w?x? + wy(1)*y* + ?z?], where

(0)
wy”, t <0,

o) = 1 14500 0<i<tam. (O

V145 C!)g;o), I > Iframp,

such that, over the ramp time fmp, the trap frequency in
the y direction is changed by a factor +/1 4 s. The choice
of square-root dependence on time corresponds to linearly
increasing the laser power in an optical dipole trap. The
spatial anisotropy, created by the dipole-alignment direction,
creates a bias for scattering into particular momentum states.
This has implications for the rate of rethermalization, which
becomes dependent on the angle between the y axis and the
dipole alignment direction. We investigate the rethermalization
dynamics as a function of this angle and compare it to the
experimental work in Ref. [15].
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Attempting to solve the Boltzmann equation by discretizing
the temporal axis and the phase-space dimensions is a futile ex-
ercise, as (for all but the most trivial cases) one will always run
out of computational resources before numerical convergence
is achieved. Viable alternatives to find an approximate solution
in a close-to-equilibrium scenario do exist, however. For
instance, the so-called method of moments approach was used
in Ref. [36] to study collective excitations of two-dimensional
(2D) dipolar fermions in a perturbative limit. In Ref. [51]
a variational method was employed to predict relaxation
behavior in s-wave interacting gases. Our method is more
generally applicable to a wider variety of far-from-equilibrium
scenarios, although it is more numerically intense than other
methods.

B. The DSMC method

The starting point for the DSMC approximates the distri-
bution function f, by Nt test particles, each with position
and momenta [r;,p;] which are found by randomly sampling
f(,p;t =0). That is,

Nr
fEP;0)~ED 8 —r)8(p — o), (7)

i=1

where & = N /N is the ratio of real particles to test particles.
The goal is to force the test particles to evolve in time
[r;(¢),p;(¢)] such that their relationship to f, shown in Eq. (7),
remains true at all times. The computational complexity thus
increases with Nr.

On time scales, A, much shorter than the mean collision
time, the evolution of each test particle is given by its classical
trajectory in the potential. Assuming that Ar is also much
shorter than the trap period, this is well approximated using a
predictor-corrector (symplectic integrator) method,

At
q; =r;(1)+ 2—pi(t), (8a)
m
pi(t + At) = p;(t) + F; At, (8b)
At
ri(t + At) = q; + —pi(t + A1), (8¢)
2m
where F; = —V, U(q;,t) is the external force acting on the

ith test particle. This is often referred to as the free-streaming
dynamics. Note that, if the classical trajectory of a single
particle in the trap can be solved analytically (which is
obviously straightforward in the case of a harmonic potential),
then Egs. (8) can be replaced with this analytic solution. This
provides an advantage in that Az need not be small compared
to the trap period (but still must remain small compared to
the mean collision time). In effect, Eqs. (8) account for the
left-hand side of the Boltzmann equation as shown in Eq. (1).

In order to include the effects of the collision integral [on
the right-hand side of Eq. (1)], a spatial grid is introduced, and
the test particles are binned into the volume elements AV of
this grid. This grid needs to be chosen carefully. The size of
the volume element effectively represents the finite resolution
of the § function in our numerics. For this reason it needs to be
small since all physical quantities will be coarse-grained over
this volume element. However, we use the population of test
particles within each volume element to stochastically check
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for collisions, and therefore, the volume element must be large
enough to contain multiple test particles (in order to obtain
reliable statistics). Being certain that one has the necessary
combination of large enough Nt and small enough AV is an
important numerical convergence test.

Once the spatial grid has been established, we check
N, (N, — 1)/2 pairs of particles within the vth volume element
(N, is the population of the vth volume element). In this step,
the computational complexity acquires a N2 dependence, and
simulations will become unfeasible if individual volume ele-
ments contain too many test particles. The collision probability
is given by

At
ij = sm|prel|a(prel)s (9)

where pr; = p;(¢) — p;(¢) and

do
O'(prel) = / Pl FTe) (prehprel) (10)

is the total cross section (as a function of the relative momen-
tum between particle i and particle j), found by integrating
the differential cross section over all solid angles of the
scattered relative momentum. Computational parameters must
be chosen such that P;; « 1. The collision proceeds if R <

P;;, where R is a randomly generated number, with a uniform
distribution between O and 1. If the collision proceeds, we
establish the postcollision relative momentum p;,, by treating

the differential cross section dg as a probability distribution

J

1 4(prel €)(Pre| €)

2[(prel 3)2 + (pre] €)2](prel Prel)
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for p/,, and stochastically sample it using a rejection-sampling
algorithm (see the Appendix for more details). The center-
of-mass momentum is conserved during the collision. In
this way, at each time step in our simulation, collisions
are stochastically implemented, in correct accordance with
the total cross section, the local density, the local velocity
distribution, and the differential scattering.

Our numerical algorithm described here has some subtle
inferiorities compared to certain other algorithms described
in the literature. Deficiencies include the absence of locally
adaptive spatial grids (to efficiently account for dramatic
variations in spatial density), scaled collision probabilities
(without which the number of operations in the algorithm
scales as ~NZ, rather than a potential ~ N scaling), and locally
adaptive time steps [41,52]. However, the cold-atomic vapors
under current consideration have relatively small numbers
of particles, and we have thoroughly tested for, and found,
excellent numerical convergence in all of our simulations. For
this reason, we do not implement the complete set of modern
sophistications within the DSMC.

C. Differential scattering in dipolar gases

The cross-section formulas used in this work were derived
in Ref. [14] using the Born approximation for the scattering
amplitude between two dipolar particles, with dipole moments
aligned along the alignment direction & (we use the hat
to denote a unit vector). The formulas are d“l’%(pm], Pl =

a3|8F.B(Prel, Pley) |, Where

8r(Prels prel) =

(11a)

1 - (prel prel)

8B (prel 5 p;e] ) =

&IH&

ad

ag is the dipole length scale given by a; = mug w? /(8w B2), o
is the vacuum permeability, p is the atomic magnetic dipole
moment (4 = 7up in the case of erbium), and a is the s-
wave scattering length. The subscripts F and B, respectively,
correspond to fermionic and bosonic symmetry constraints
(*7Er, which was used in the experiment [15], is fermionic).

The total cross section, which we use to evaluate the colli-
sion probability in Eq. (9), can also be evaluated analytically
[14],

2 T 2 4
Or(Pret) = g 313 + 18 cos’() — 13 cos* ()] (122)
on(Pe) = a; (72" — 24all = 3cos’()]
+ 11 —30cos’(n) + 27 cos*(n)},  (12b)

where 1 = cos™ ' (pre.8) is the angle between the dipole
alignment direction and the incoming relative momentum.
Equation (12) [12(a) or 12(b), depending on whether the
collision pair is identical fermions or bosons] is used in Eq. (9)
to evaluate the likelihood of a collision.

|:_Zi _ 2(ﬁrel~€) + 2(prel 6)2

4(prel 3)(Prel 3)(prel prel)
3 i| , (11b)

— (Pret. Prel)

Once it has been established that the collision does or
does not occur, the postcollision relative velocity is found by
sampling the distribution function,

1 dU]:B
OF, B(prel) dQ

Note that we only need to sample 6, and ¢y Since 1 is given
to us by the (already known) incoming relative momentum of
the collision pair. The collision reference frame (x.¢, Yet,Zcr) 18
defined such that the z.¢ axis points along the direction of pyj,
and the dipole-alignment direction & lies in the x.¢-z¢¢ plane.
The purpose of defining and operating within the collision
reference frame is to make the analytic formulas Egs. (11a)
and (11b) as wieldy as possible. The coordinates 6 and ¢
in Eq. (13) are the polar and azimuthal angles, respectively,
of pl, in the collision reference frame. We (arbitrarily)
decide to include the factor siné in the definition of the
probability distribution function (rather than the metric) such
that fOZ”d¢> Jo d6 Ppp(6.¢;n) = 1. Sampling the probability
distribution in Eq. (13) is not simple, so we use a rejection
sampling algorithm which we describe in the Appendix.

PF,B(Qrel, Pre1s 1) = (prel: Prd) SinB. (13)
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To convert between the laboratory reference frame and the
collision reference frame, we find

€’ = [cos(y) cos(¢rel) cOS(Brel) — sin(y) sin(grer)] €
+ [cos(y) sin(rer) cOS(Brer) — sin(y) cos(¢rer)] €5

— cos(y) sin(Brpel, (14)
5" = [— sin(y) cos(rer) cO8(Bre) — cOS(y) sin(¢re)] €

+ [cos(y) cos(¢re) — sin(y) sin(grer) cos(Brer)] €5

+ sin(y) sin(fre) e} , (15)

5" = cos(rer) sin(Brer)e} + sin(grer) sin(Brer)€s + cos(frer)e}
(16)
where the angle

Yy = acot{cos(brer) cot(Ps — Prel)
— cot(fe )esc(Pe — Prer) SIN(Grer)} (17)

and

ﬁre] = Sin(fre1) COS(¢rel)e11f + sin(Byer) Sin(qﬁrel)elzf Cos(erel)e;f,
(18)

& = sin(6,) c:os(qﬁg)ellf + sin(6;) sin(<}55)el2f + cos(Gg)egf. (19)

We have used the common notation where ellf;Q denote the
standard (unit) basis vectors of Euclidean space in either the
laboratory (If) or the collision (cf) frame. The symbols 6, and
¢, refer to the azimuthal and polar angles, respectively, of the
dipole alignment direction in the laboratory frame, as shown
in Eq. (19).

IV. DISCUSSION OF THE MEAN-FIELD INTERACTION

In a more general situation the inclusion of a mean-field
interaction may be desirable [53,54]. This requires an alter-
ation of the Boltzmann equation, (1), such thatF = —VU(r,?)
now consists of two parts, U(r,t) = Uex(r,t) + Une(r,2), an
external potential Uy and a mean-field potential Uy,¢. Such
an approach may be dubbed a dipolar Vlasov equation, in
recognition of its similarity to the Vlasov equation used in
plasma physics [55]. The mean-field potential is a dynamical
variable (away from equilibrium) found from the convolution

Univ) = [ en Vs —x), 20
where n(r,t) = fd3p f(xr,p;?) is the spatial number density

and Vgyq(r) is the dipolar interaction between two particles
separated by r. This is given by

Caa 1 = 3(F - 8)?
Vaa(r) = 4—7‘*;‘r—3 Q1)

In general it is certainly true that the physics associated with
the mean-field interaction can have a strong influence.

Upon including the mean-field potential, the effects of in-
teractions manifest within two distinct terms of the Boltzmann
equation. The natural question arises whether or not there is
some error akin to double-counting due to the presence of both
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these terms. The collision term describes an instantaneous
collision between exactly two particles within the gas, such
that momentum is exchanged between these two particles.
This effect is entirely local and occurs irrespective of the
other particles in the gas. On the other hand, the mean field
consists of a collective effect due to every single particle
in the gas. In this sense the two terms are conceptually
distinct. Serious problems begin to occur when the mean-field
interaction energy becomes particularly significant (taking up
a large fraction of the total energy in the gas). In this situation,
the collisions can begin to occur, on the background not of
a translationally invariant potential energy landscape (as is
generally assumed [14]) but, rather, of an appreciably varying
potential energy landscape, caused by the mean field of nearby
particles. These problems arise when typical values of na3
approach or exceed unity. As we show below, this is not the
case in our current realm of interest.

In order to ascertain the relevance of the mean field in
Eq. (20) for our current simulation, we wish to consider the
total mean-field energy per particle ey in the gas and compare
this to the temperature. That is, we calculate

1
ent = 50 fd3r n(r,0)Uny(r,1). (22)

We are only interested in placing an approximate upper bound
on the value of ey, so we simplify the situation at hand by
assuming that the density of the gas (at any given time) is given
by a Gaussian distribution with cylindrical symmetry about the
dipole-alignment direction, which (solely for the purpose of
this discussion) we assume to be along the z axis:

x2+y2 Z2 i|

2 2
207 20

n(r) (23)

= @nylol, P [

One could perform a more realistic calculation in the absence
of cylindrical symmetry, but analytic calculations are difficult
in this case. Although a numerical solution is not difficult,
it changes the result only by a factor of order unity and is,
therefore, not of interest to us at this stage. The wonderfully
elegant Fourier transform of Vy4(r) allows for the analytic

calculation of ey [10],
N Cy oL
=————h{—, 24

et 48/ 13 Uioz ( o; ) &9
where

B 1 +2x2  3x?arctanhv/1 — x2
x) = -
1 —x2 (1 — x2)3/2

is a function generally of order unity [although /(1) = 0 since
the angular average of Vg4 is 0]. In an attempt to draw some
broad conclusions, we simply consider the prefactor in ey,¢ and
compare it to the temperature:

1 N Cu
K= ———=—5—.
kBT 48~/ 73 UJZ_UZ
In the experiment in Ref. [15] which we are currently interested
in, the quantity « is never more than « < 0.02, indicating
that physics associated with the mean field is likely to be
insignificant, at least to the first level of approximation.

In other situations (involving higher densities or larger
dipole length scales), where x« becomes appreciably large,

(25)

(26)

013625-5



A. G.SYKES AND J. L. BOHN

PHYSICAL REVIEW A 91, 013625 (2015)

550 550 550
. 500 500 500
£ B =420
l_N

450 450 450

L]
(@) (b) ,1." ©
400 400 40
0 01 02 03 04 05 0 01 02 03 04 05 0 01 02 03 04 05

t(s)

t(s) t(s)

FIG. 2. (Color online) A comparison between the experimentally measured rethermalization process and the results from the DSMC
simulation. (a—c) The solid (red) line shows the result of the DSMC simulation, calculated analagously to Eq. (28), but along the z axis.
Experimental data points are shown by (blue) squares with error bars. The agreement is reasonable, especially considering that there was no
postprocessing of the experimental data or any adjustments to the theory in order to produce these fits (no free parameters).

incorporating the mean field into the simulation may be
necessary. The computational issues of doing so are, to a
certain extent, manageable (see, for example, the vast literature
on particle-in-cell methods used to solve the ordinary Vlasov
equation in the field of plasma physics [56]). Briefly, the
process involves binning the particles in position space to find
the density n(r,t), smoothing the density via convolution with
a suitably chosen Gaussian kernel, and then calculating the
potential, using Eq. (20), and, ultimately, the force F [56]. For
issues relating to clarity, we currently wish to relegate further
details of this procedure to a future publication.

V. RESULTS FOR FERMIONS

The physical parameters chosen in our simulation are taken
directly from Ref. [15]. These are as follows.

N = 8 x 10*

T =426 nK

m =277 x 1075 kg
ag; = 5.25 nm

w, =21 x 393 Hz
o =27 x 38 Hz
w, =27 x 418 Hz
tamp = 14 ms
s=1.8

Total atom number
Initial temperature

167Er mass

167Er dipole length scale

Initial trap

Ramp time
Final trap, y axis [see Eq. (6)]

We vary the computational parameters Nt and AV until
numerical convergence is achieved. This typically occurred
when Nt ~ N, although we perform our simulations right
through to Nt = 4 x N to thoroughly check the convergence.
We find that these simulations converge rather rapidly with
AV [57], however, we perform simulations right through to
nAV =0.35 (where 71 is the initial trap-averaged density),
with Nt = 4 x N, to be certain of convergence.

A. Anisotropic pseudotemperature

To evaluate the rate of rethermalization, we find the standard
deviations of the test-particle distributions; for instance,

and equally for the y and z directions. We note that a Gaussian
distribution provides a reasonably accurate approximation to
the instantaneous empirical distribution of test particles in the
simulation. However, the moments above are well defined,
regardless of whether or not this is the case. From these stan-
dard deviations, we can define a time-dependent, anisotropic
pseudotemperature, related to the widths of the test-particle
distribution function in each direction, relative to the instanta-
neous value of the trapping parameters; for instance,

2.2 o2
7. = ma)_xox’ Tpx — i’ (27)
kB ka

and equally for the y and z axes. This definition makes
particular sense in the case of a Gaussian distribution. The two
quantities 7, and 7, , above, can be combined into a single
pseudotemperature in the x direction (or in any direction)
given by the mean,

E=Z+ﬂ.

2

The results of this analysis for the temperature along the z axis
are shown in Fig. 2, along with the experimental data from
Ref. [15]. A more complete set of results, for the temperatures
in all three directions, is shown in Fig. 3. An interesting obser-
vation we make is the apparent nonmonotonic rethermalization
behavior of T, near 8 = 45° (this behavior seems to exist right
through 30° < B8 < 60°). This behavior was not observed in
the experiment, likely due to the fact that it is a subtle effect
which may be difficult to measure. Indeed we note in Fig. 2(a)
that the scatter and error bars for the experimental data points
appear to be of a similar size to, or even larger than, the
magnitude of the nonmonotonic Aump in the theoretical result.

(28)

B. Analyzing the rate of rethermalization as a function of 8

In order to define the rate of rethermalization it is customary
to fit an exponential decay curve to the equilibration dynamics
shown in Figs. 2 and 3. For example, in the z direction,
one would write 7,(¢) = Tz(eq) + ATze”/ %, where Tz(eq) (a fit
parameter) is the equilibrated temperature, and Tz(eq) + AT is
the initial temperature (426 nK in our case). The time constant
of this exponential decay curve, 7, is then written as

(29)
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FIG. 3. (Color online) Pseudotemperatures along the x axis [dashed (red) line], y axis [dot-dashed (blue) line], and z axis [solid (green)
line] defined analogously to Eq. (28). In the first 14 ms (the ramp time), the temperature along the y axis increases as a result of the rapid
change in the trap frequency along this direction. After 14 ms, the system relaxes down towards the new equilibrium state. The rate at which T,
Ty, and T, return to an equilibrium value displays a strong dependence on 8, which we explore further in Sec. V B. An unexpected feature we
observe is the nonmonotonic path by which 7, returns to equilibrium near 8 = 45°. The effect is shown in greater detail in (1) by zooming in on
the relevant part of (f). This is certainly an interesting consequence of the anisotropic dipole differential scattering, but note that the behavior
only occurs along one of the coordinate axes (the z axis in this case), and overall there is no violation of Boltzmann’s H theorem.

where v = \/16kpT /rm is the mean velocity in the gas,
and o p is the total cross section of Eq. (12) averaged over
all solid angles of the incoming relative momentum P,
such that 6 = (327/15)a} and &g = 87wa® + (327/45)a3.
In this way, the quantity 7i6p v represents the mean col-
lision frequency in the gas, and the quantity o can be
conceptually thought of as the number of collisions re-
quired for rethermalization. The exact same procedure can
be applied to the x and y axes. In our current situation
ay y,. will be a function of the angle 8 between the dipole-
alignment direction and the y axis. The results, which agree
well with experimental data from Ref. [15], are shown
in Fig. 4.

It should be noted that Refs. [14,15] compute «, in a simpler
way, by approximating the short-time behavior of the dynamics
via the Enskog equation [58]. This has also shown adequate
agreement with the data but gives considerably less detail than
the present DSMC simulations.

C. Trap oscillations and covariances in position
and momentum space

The sudden change in the trap frequency along the y axis
givesrise to a breathing mode along this direction (see Ref. [59]

0 45 90 135 180 00 45 90 135 180
B (degrees) B (degrees)

FIG. 4. (Color online) « (number of collisions required for
rethermalization) as a function of the angle 8 along (a) the x direction
[dashed (red) line] and y direction [solid (blue) line] and (b) the z
direction. Data in (b) were taken from the experiment in Ref. [15]
(data not taken in the x and y directions).

013625-7



A. G.SYKES AND J. L. BOHN

800 ~— 800 .
B=0 B =20
2 700 700
Z 600} 600
N 500 - 500 )
a b
400005 01 012% 005 01 015
800 =800 .
B =40 B =60
2 700 700
£ 600} 600
=500 © 500 (d)
C
4
% 005 01 0i2% 005 01 o015
800 =800 .
B =80 B =90
2 700 700
£ 600} 600}
=500 © 500 0
e
4
% 005 01 0i2% 005 01 015

t(s) t(s)

FIG. 5. (Color online) The rapid change in trapping frequency
along the y axis generates a large breathing mode along this direction.
This is here in plots of 7, versus time for a variety of values of 8. These
breathing modes exist also in the momentum distribution, pr and
look identical to these plots except that the oscillations are exactly 7
radians out of phase (leading to the monotonic behavior in T, shown
in Fig. 3). The dashed (red) line in each of the figures represents
T,. We use Eq. (30) as a fit to the decay of this breathing mode. The
breathing mode dynamics along the x and z axes are barely noticeable
in our simulations.

for a discussion of this subject in the case of a classical gas
with hard-sphere interactions). The oscillations are apparent
in either the position variable 7, or the momentum variable
7,,, but not in the sum T, which is plotted in Fig. 3 (since
7, and 7, oscillate exactly out of phase with each other). This
behavior is shown in Fig. 5. The experiment in Ref. [ 15] neither
reported nor searched for any evidence of these oscillations or
their damping periods (data were only analyzed along the z
axis). The frequency of the breathing mode is 2wy (t > tamp)
[39,50]. Collisions will eventually cause this mode to damp
out (intriguingly, though, monopole modes are undamped in
spherically symmetric harmonic traps). In order to quantify
this, we subtract the pseudotemperature [shown by the dashed
(red) line in Fig. 5] and fit a decaying sinusoid to the data:

T,(t) — Ty(t) ~ Ae™"/™ sin[wt + §]. (30)

In the current experimental scenario the erbium gas lies firmly
within the collisionless limit (the trap frequency is significantly
higher than the mean collision frequency), and therefore the
oscillation frequency is w = 2/1 + s 0, i.e., twice the final
trap frequency. Of course, if, instead, the experiment were in
the hydrodynamic regime, rather than the collisionless regime,
this would not be the case [59,60]. We only fit to the region
t > tamp When the trap is no longer changing. The parameters
A, Tosc, and § are all fitting parameters. We then scale the time
constant Ty by the collision frequency to give us

Qosc
Tosc = —Z > 3D
nog v

PHYSICAL REVIEW A 91, 013625 (2015)

0 45 90 135 180
B (degrees)

FIG. 6. (Color online) The breathing mode along the y axis is
damped over a time scale Tos found from Egs. (30) and (31). The
dependence on S is shown. Note the qualitative similarity of oos.
(shown above) to «,, in the solid (blue) line in Fig. 4(a). However, the
oscillations take considerably longer to damp than the envelope, as
Uose > .

such that we can loosely interpret oo, as the number of
collisions required for the breathing mode to damp out.
Naively one might expect this to be the same as the « in
Sec. VB, and indeed we find distinct similarities, however,
the breathing mode takes considerably longer to damp out (a
factor of 2 or more). The results for how «,s. depends on
are shown in Fig. 6; note the qualitative similarity between
Fig. 6 and the solid (blue) line in Fig. 4(a). We do not find
that the other fitting parameters, A and 8, have any significant
dependence on B. However, A does depend on the size of
the perturbation to the trap, and § depends on the ramp time
framp (this is apparent in the instantaneous quench, for which
analytic formulas are straightforward).

In contrast, breathing modes along the x and z axis are
considerably less pronounced [61]. This is simply due to the
fact that the perturbing force on the system in this situation is
entirely along the y axis (see Fig. 1).

If the quench were performed instantaneously, a simple
analytic solution is available in the extreme-collisionless limit,

F@,p.1) =) [(6,2),(prs p2)]

1
x Mexp [—5@ pye@)™! (;)] (32)

where fl\(,[z]]; ) is the 2D Maxwell-Boltzmann distribution (along
the x and z axes), M is a normalization constant, and the

covariance matrix
_ (¢ n
¢ = (77 9) (33)

is such that ¢ = (y*) — (y)%, n = (yp,) — (¥)(p,), and 6 =
(p}) — (p,)*. Note that ¢ and 6 are proportional to the
pseudotemperatures 7, and 7, , respectively, whereas 7 is the
covariance between position and momentum space. Ignoring
collisions in the system, these variances evolve according to
[61]

¢ = % [14+T +(1—T)cos (Zwiﬁt)] ) (34a)

= _V;zoeo[rl/z — I 2]sin (2a)§f)t) , (34b)
0

0 = ?0 [1+T7'+ (@1 =T "cos (Zwif)t)] , (340)
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FIG. 7. (Color online) Comparison between the DSMC simu-
lation for an instantaneous quench and the analytic formulas in
Egs. (34). (a) Covariance between position and momentum space;
(b) variance in position space (proportional to 7). These particular
data are for the dipole alignment direction of 8 = 0. The DSMC
simulation is shown by the solid (blue) line; the analytic formulas,
by the dashed (red) line. The analytic formulas do an excellent job
of correctly predicting the amplitude and phase of the oscillations.
For this ratio of collision-to-trap frequency, the damping becomes
appreciable, of the order of several trap periods.

where ¢y = kBT/[m(wg)))Q] and 6y = kgTm are the initial
spatial and momentum variances, respectively, and I' =
(wgp)/wfvf))z is the ratio of initial-to-final trap frequencies
(squared).

We have performed simulations of the cross-dimensional
relaxation procedure in the case of an instantaneous quench.
The results are shown in Fig. 7, where we compare the
simulation data to the analytic formulas, Eqs. (34). The
simulations reveal the increasing importance of collision-
induced damping for times beyond several trap periods. The
decay rate of the covariance n depends on the dipole angle
B. To within the numerical accuracy of these simulations, we
find that the rate at which 1 decays, and the dependence this
decay has on g, is extremely close to that for ¢ and 6 (the
pseudotemperatures) shown in Fig. 6.

D. Quantum many-body effects

The Boltzmann equation, as written in Eq. (1), treats
the many-body dynamics of the system entirely in terms of
classical mechanics. For our comparison with the experiment
in Ref. [15], this may conceivably be a source of error. In 1928,
Nordheim made adjustments to the Boltzmann equation to
account for the quantum-mechanical effects of Fermi blocking
and Bose enhancement [62]. The net result of Nordheim’s work
was an alteration to the collision integral,

d3p1 dO’ ! rr 3 3
Cxlf] =f— fdsz—m LS £ R £ 1)
m dQQ
- FAAERHAL£R)), (35)

where £ is Planck’s constant, and the plus sign applies to iden-
tical bosons (Bose enhancement) while the minus sign applies
to identical fermions (Fermi blocking). From this point of view,
the quantum many-body effects in the system are determined
by the phase-space density (see Ref. [63] for a discussion
of, and recent results on, a fermionic gas), specifically how
many particles occupy a volume of phase space equal to /7.
If this number is much less than 1, quantum effects should be
small; if this number is comparable to 1, quantum effects will

PHYSICAL REVIEW A 91, 013625 (2015)
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FIG. 8. (Color online) The (maximum) number of particles in a
volume element of phase space equal to 4 as a function of time for
two separate dipole-alignment angles: (a) 8 = 0 and (b) 8 = 45. The
phase-space density decreases as the system equilibrates to a higher
final temperature. From this, we estimate that quantum many-body
effects are indeed small enough to be neglected (at least as a first
approximation).

be important. The maximum phase-space density is plotted
in Fig. 8 as a function of time for two values of B. From
this, we conclude that quantum many-body effects will have
a negligible effect on the dynamics at this temperature. This
goes some way in explaining the reasonably good agreement
between our theory and the experiment in this case. We
do not expect our theory to provide quantitative accuracy
at significantly lower temperatures, although modifying our
algorithm to account for the mechanism of Bose enhancement
or Fermi blocking is a future goal of this project. Speculating
further on this, we note that the Boltzmann-Nordheim equation
will have not only a (potentially) different path to equilibrium,
but also (at lower temperatures) a different equilibrium state
(the famous Bose-Einstein and Fermi-Dirac distributions).
How this would affect the dependence of a, , . on B is an
interesting and open question.

VI. RESULTS FOR BOSONS

It is very straightforward to repeat these simulations for
a system of bosons simply by replacing gr with gg in

700 700
= \\_ =0° N =30
£ 600] P 600f .. P
N '\s\'\""'-’—-—;:»- \\\t::':':';-;::L—,
25000 " {500} ="
- / /
400, @) ] 400 (b)
0 025 05 075 0 025 05 0.75
700 700
A\ o v °
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£ 600] P 600f \\_ P
N \::: i s ] :, i)
2500 500|
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400 400

0O 025 05 075 0 025 05 0.75
t(s) t(s)

FIG. 9. (Color online) Pseudotemperatures along the x axis
[dashed (red) line], y axis [dot-dashed (blue) line], and z axis [solid
(green) line] as a function of time for the bosonic dipole scattering
cross section. Experimental data were not taken for this case, but we
observe that the rethermalization rates show a strong dependence on
B (particularly along the x axis).
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FIG. 10. (Color online) (a) oy, (b) o, and (c) a, (number of
collisions required for rethermalization) as a function of § in the
case of bosons. (d) Maximum phase-space density as a function of
time for 8 = 30°.

the differential scattering cross section and op — op [see
Egs. (11a), (11b), and (12)]. We choose to keep the geometry
of the trap, the atomic species, and the number of particles
the same as that was used in Sec. V for fermions. We
set the s-wave scattering length a = 0, to emphasize the
peculiarities of the anisotropic dipolar differential scattering.
The distinctions between bosonic and fermionic scattering
behavior naturally alters details of the rejection sampling
algorithm (see Appendix) and changes the results, but there
is no conceptual change in what we are doing, so we provide
less detail than we did for fermions. In addition, experimental
data do not yet exist for bosons, so we cannot make the same
comparisons in that respect.

Figure 9 shows the rethermalization of the pseudotem-
peratures for bosons (analagous to Fig. 3 for fermions).
Somewhat ironically, in the context of low-energy scattering,
the rethermalization procedure takes approximately three
times longer for bosons than for fermions with the same
density and dipole moment. This is due to the factor-of-3
difference (for a = 0) between the angularly averaged total
cross sections 6y and 6 [14]. Increasing the s-wave scattering
length @ would naturally change this situation. The nature of
the differential cross sections is such that a nonmonotonic
rethermalization process is not observed for bosons [as it is in
Fig. 3(1)]. Figures 10(a)-10(c) shows the number of collisions
required for rethermalization as a function of 8. In Fig. 10(d)

0 45 90 135 180
B (degrees)
FIG. 11. (Color online) Decay of the breathing mode along the
y axis in the case of bosons. Again, there is a strong qualitative
similarity between this curve and the curve in Fig. 10(b), but an

important quantitative difference is that o, is larger by a factor of
2.

PHYSICAL REVIEW A 91, 013625 (2015)

we show the maximum phase-space density as a function
of time for the case f = 30°. Again, this indicates that the
Boltzmann equation should provide an approximately accurate
theoretical description at these densities and temperatures.
Figure 11 shows the number of collisions required to damp out
the breathing mode. Note the qualitative similarity between
Qosc in Fig. 11 and «, in Fig. 10(b), but with a quantitative
difference of approximately a factor of 2.

VII. CONCLUSIONS AND DISCUSSION

In this article we have developed a DSMC numerical
algorithm to solve the Boltzmann equation for an ultracold
dipolar gas. We have used this method to study the cross-
dimensional relaxation dynamics of a dipolar gas via a full
simulation of the phase-space dynamics. Where applicable,
we have compared our numerical results with the experimental
data in Ref. [15] and found favourable agreement. This
suggests that the DSMC algorithm provides a quantitative
method for understanding the normal component in a dipolar
gas. This is a promising result. The method is suitable for both
fermions and bosons, although experimental data currently
exist only for fermions. The method and results direct our
interest toward a new regime where interactions in the gas
manifest from collisions rather than the mean field.

More specifically, we have studied the damping of trap
breathing modes in the system and quantified the pronounced
dependence of rethermalization on the dipole-alignment di-
rection. We find that the breathing mode takes significantly
longer (approximately a factor of 2) to decay than the
envelope for rethermalization, which is found by averaging
over momentum-space and real-space dynamics.

Our current work is entirely focused on the thermal
gas, above quantum degeneracy. There are several reasons
why understanding this normal component of an ultracold
dipolar gas is important. For instance, attractive interactions
along the dipole alignment direction (due to the mean
field) can destabilize the system [2,4,64,65]. Thermal energy
can counteract this instability [5,66], therefore we expect
the normal component to have a qualitative, as well as a
quantitative, role in the dynamics. Our method presented
here, if combined or coupled with one of the many low-
temperature theories (e.g., [67,68]), would constitute a com-
plete finite-temperature description of dipolar gases (in the
same vein as the Zaremba-Nikuni-Griffin formalism of regular
Bose condensates [43,69,70]). This remains as work in
progress.

The method used in this paper (DSMC) is a remarkably
versatile tool, potentially capable of simulating a multitude of
out-of-equilibrium scenarios. Extending it into a regime where
many-body quantum mechanical behavior becomes prevalent
(beyond the simple two-body scattering level, which plays
such a vital role in our current work) is the direction in which
we intend to take this research. Possible avenues for doing
so include incorporating the effects of Bose stimulation and
Pauli blocking into the differential scattering cross sections,
as prescribed by Nordheim (see Eq. (35) in Ref. [62]). This
requires modifications to the DSMC algorithm, which were
originally introduced in the context of nuclear equations of
state, particularly during heavy-ion collisions [48,71]. The
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basic ideas have seen application in ultracold-atomic systems to an equation describing the superfluid component in the
of fermions (see Refs. [72,73]). Another possibility, perhaps system. For example, one could consider using the well-known
more relevant for bosonic systems, involves coupling the Gross-Pitaevskii equation [70] or the more sophisticated c-
Boltzmann equation (the purely classical version may suffice) field techniques [67].

J
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APPENDIX: REJECTION SAMPLING ALGORITHM

The procedure of rejection sampling is not new [74], but for completeness, we provide a brief description of the details specific
to our situation. A more thorough description of the algorithm in general can be found in Ref. [75].

1. Fermions

To sample from Pg(0,¢; ) defined in Eq. (13), the strategy is to start from a simpler distribution (which is easy to sample)—call
it g(9,¢) = 1/(2m*)—and (appropriately) reject those samples which were unlikely [recall that we only need to sample 6 and ¢
since 7 is given to us by the (already known) incoming relative momentum of the collision pair]. The algorithm goes as follows:

(i) Sample (8,¢) from g(6,¢), and sample u from 2/(0,1) (the uniform distribution over the unit interval).

(ii) Check whether u < Pr(8,¢;n)/[Mg(@,$)], where M is an upper bound such that M > Pr(6,¢;n)/g(8,¢) for all 6
and ¢.

(iii) If step ii holds true, accept (@,¢) as a realization of Pg. If it does not hold true, reject (8,¢), and start over at step i.

In order to find the upper bound M (n) we transform to the collision reference frame, where

6 sin(0)[cos(0)(cos?(n) — cos2(¢) sin’(n)) + cos(¢) sin(0) sin(2n)]?

Pe(0,¢;1n) = Al
w(0.¢:m) 73 + 18cos2(n) — 13 cos*(n)) (Ab
Using standard optimization methods, we find that the maximum value of Pr(0,¢; ) occurs at ¢, = 0, and
\/7+C0S(4?7)—4 /2 sin2(n)(17—cos(41))
acos( ) n<m/4 or mw/2<n<3n/4
P = \/7+ (4n) «2[/23 in2(i)(17 (4n)) (A2)
acos(— 23; T, mlAd<n<m/2 or 3m/4 <.
From this, we define M = 2712P}§max)(77), where
. 6 c08%(Omax — 21) sin(6
P]gmdx)(n) _ €0S”(Omax _ 1) sin( mix) ' (A3)
(3 + 18cos®n — 13 cos* i)
2. Bosons
The procedure for bosons is essentially equivalent, except with
25in(0)[—2 + 3 cos?(n) + 3 cos? (Pmax) sin®(n)]>
Py(8,9;m) = 5 - , (A4)
(11 — 30cos?(n) + 27 cos*(n))
emax = 77/2,
# 0, n < atan(v/2) or n>mT— atan(~/2), (A5)
e /2, atan(ﬁ) <n<m-— atan(ﬁ),
and
(max) 2[—2 + 3 cos? 17 + 3 cos? Ppax sin’ 11>
P, B (n) = (A6)

(11 — 30 cos? n + 27 cos* i)

Note that Pg in Eq. (A4) factorizes into a product of two functions involving only # and only ¢. This was not the case for the
fermionic cross section; see Eq. (A1). This allows for the sampling algorithm to be more efficient in the case of bosons than it is
for fermions, since 6 can be sampled directly.
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