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Dipolar radicals in crossed electric and magnetic fields
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ENS Cachan, Campus d’Orsay, Bâtiment 505, 91405 Orsay, France

(Received 10 January 2013; final version received 5 March 2013)

Paramagnetic, dipolar Hund’s case-a radicals are considered in the presence of arbitrary, non-collinear combinations of
electric and magnetic fields. The field-dependent part of the Hamiltonian is found to exhibit a good quantum number,
consisting of the projection of the molecule’s total angular momentum along a space-fixed axis that is determined by both
the fields and the electric and magnetic dipole moments of the molecule. This quantity remains good even when the fields
are non-collinear. Exploiting this feature identifies a set of quantum numbers for the molecule in crossed fields. We dub this
set a ‘Hund’s case-X’ basis.

Keywords: Hund’s cases; molecules in electric and magnetic fields; ultracold molecules

1. Introduction

The concept of Hund’s angular momentum coupling cases
is useful for naming and organising the energy levels of
molecules. Quite generally, the molecular Hamiltonian can
be written as a sum of several pieces, H = H1 + H2 +
H3 + · · · , which may fail to commute among themselves.
Hence the eigenstates of H cannot be labelled by the quan-
tum numbers appropriate to each Hi simultaneously. How-
ever, often one of the terms, let us say H1, dominates over
the others. It is then worthwhile to express eigenstates of
H in terms of the eigenstates and quantum numbers of H1,
whereby contributions off-diagonal in these states, arising
from H2, H3, . . . are perturbations. In this way, while the
quantum numbers of H1 are not strictly ‘good’ quantum
numbers, they are ‘good enough’: they serve to classify
the states, identify characteristic energy level spacings and
provide approximate line strengths for transitions [1].

For a molecule immersed in either an external electric or
magnetic field, one such quantum number is the projection
m of the molecule’s total angular momentum onto the field
axis. This is in fact a rigorously good quantum number, and
one that describes the joint system of molecule-plus-field.
However, a molecule that is both dipolar and paramagnetic,
such as OH, can respond to both electric and magnetic
fields. If these fields are not collinear, then rotational in-
variance of the Hamiltonian is broken, and neither the m
quantum number referred to the electric field axis, nor the
one referred to the magnetic field axis, remains good.

Our main point here is the following. For a molecule,
like OH, which is represented by Hund’s case-a in the
absence of fields, both the electric �d = dn̂ and magnetic

∗Corresponding author. Email: bohn@murphy.colorado.edu

�μ = μn̂ moments can be regarded, to a good approxima-
tion, as collinear with the molecular axis n̂. In combined
electric �E and magnetic �B fields, the field Hamiltonian con-
sists of Stark and Zeeman terms,

Hfield = HS + HZ = −�d · �E − �μ · �B (1)

= −n̂ ·
(
d �E + μ �B

)
.

Geometrically, this Hamiltonian describes a generalised
‘moment’ n̂ interacting with a ‘combined field’ that is a
weighted linear combination of the electric and magnetic
fields. The combined field determines an axis of symme-
try with respect to which meaningful m quantum numbers
can again be assigned. These are the ‘good enough’ quan-
tum numbers in this situation, and define therefore a kind
of Hund’s case, useful even when other effects such as
�-doubling are considered.

In the following we elaborate on this idea, showing var-
ious examples for the OH molecule and the di-halogen ICl.
Understanding the behaviour of OH in crossed electric and
magnetic fields has suddenly increased in importance, given
recent experiments in which trapped gases of this radical, at
mK temperatures, experience widely varying relative mag-
nitudes and orientations of the fields [2,3].

2. Formulation

We begin with a Hund’s case-a molecule in a field, described
in a given electronic state by the effective Hamiltonian

H = HSO + Hrot + HS + HZ + H� + · · · , (2)

C© 2013 Taylor & Francis
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1932 J.L. Bohn and G. Quéméner

which represent, in order, the spin-orbit, rotational, fields
and �-doubling contributions. We will assume all other
effects are perturbative and can be included as necessary.
Hund’s case-a brings with it not only a set of quantum
numbers, but also a hierarchy of quantum numbers. The
primary ones are those pertinent to HSO, namely, the signed
projections of electronic orbital (λ) and spin (σ ) angular
momenta, and their sum ω = λ + σ . We will assume
throughout that these quantum numbers are well-defined in
the electronic state of interest, e.g. the 2�3/2 ground state
of OH or the A1�1 state of ICl.

Given the value of ω, a secondary quantum number j
describes the rotational eigenstates generated by Hrot. The
value of j cannot be set independently of ω, but is rather
contingent on ω, since it must satisfy j ≥ |ω|. Finally, for a
given value of j, the value of m is contingent on both the
value of j, via the usual restriction −j ≤ m ≤ j, and on the
space-fixed axis used to quantise the angular momentum,
which gives it a concrete meaning. As alluded to above,
this choice of axis is usefully specified by the direction of a
single field. Thus the Hund’s case-a basis set is indexed by
a particular collection of meaningful quantum numbers:

|λσ 〉|ωjm〉, (3)

where the first ket describes the electronic degrees of free-
dom in the body frame, and the second ket describes the
distribution of the molecular orientation in this frame, via

|ωjm〉 =
√

2j + 1

8π2
Dj∗

mω(αβγ ), (4)

where (αβγ ) are the Euler angles relating the molecular
axis n̂ to the laboratory-fixed quantisation axis.

As an aside, we note that this basis can be transformed
so as to diagonalise the �-doublet Hamiltonian H�, by
constructing parity eigenstates that are linear combinations
of the states | + ω〉 and | − ω〉. However, as we are mostly
concerned here with states in large electric fields, it is more
appropriate to use the states with signed values of ω. To this
end, we will denote the magnitude of ω as ω̄ = |ω| where
necessary.

The application of electric and magnetic fields will mix
different values of rotational quantum number j. Neverthe-
less, its projection m remains good in the presence of fields.
To illustrate our definition of m in the crossed field case, we
will explicitly deal at first with the low-field limit, where dE
is sufficiently smaller than the rotational constant Be, and j
is a good quantum number. Note that our primary example,
OH, satisfies this criterion for experimentally relevant field
ranges [2,3]. In Section 3.3, we will relax this assumption
allowing different j values to mix. Nevertheless, the con-
struction of a conserved m quantum number will still hold
in that case.

2.1. Electric fields

The molecule is assumed to be polar, with electric dipole
moment �d = dn̂, where n̂ denotes the molecular axis. In an
electric field �E , the molecule experiences a Stark energy

HS = −�d · �E
= −dE cos(β), (5)

where E cos(β) is the projection of the field on the
molecule’s axis, and β is the angle between field and dipole.
This operator has no explicit dependence on electron co-
ordinates, and so the electronic matrix element is unity.
Moreover, let us consider a field sufficiently weak that the
angular momentum j is nearly conserved. The matrix ele-
ments of the Stark Hamiltonian are then

〈λσ |〈ωjm|HS|ωjm〉|λσ 〉
= −dE〈λσ |λσ 〉〈ωjm| cos(β)|ωjm〉
= −dE〈ωjm| cos(β)|ωjm〉 (6)

The remaining matrix element has a standard form [4]:

〈ω′jm′| cos(β)|ωjm〉
= (−1)m

′−ω′
(2j + 1)

(
j 1 j

−ω′ 0 ω

)(
j 1 j

−m′ 0 m

)
. (7)

This expression is of course diagonal in m, for the quanti-
sation axis Ê . It is also diagonal in ω, reminding us that the
signed value of ω is a good quantum number in the presence
of the field. Indeed, re-writing this matrix element in terms
of the Wigner–Eckart theorem,

〈ωjm|T 1
0 (n̂)|ωjm〉

= (−1)j−m
√

2j + 1〈ωj ||T 1(n̂)||ωj 〉
(

j 1 j

−m 0 m

)
, (8)

identifies the reduced matrix element as

〈ωj ||T 1(n̂)||ωj 〉 = (−1)ω−j
√

2j + 1

(
j 1 j

−ω 0 ω

)
, (9)

where cos (β) is expressed explicitly as the zero-th com-
ponent of a first-rank tensor operator T 1

0 (n̂). Substituting
formulas for the 3-j symbols, the reduced matrix element
becomes [4]

〈ωj ||T 1(n̂)||ωj 〉 = ω√
j (j + 1)

= cos(n̂ · ĵ ). (10)

In this last line, we take the semi-classical approach, and
identify this quantity as the mean angle between the molec-
ular axis and the total angular momentum. The quantum
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Molecular Physics 1933

number ω thus identifies the direction of the dipole mo-
ment relative to the molecule’s total angular momentum.
Doing the same for the electric field factor, we can write
Stark matrix elements in the form

ES(ω,m) = −
(

d
ω√

j (j + 1)

) (
E m√

j (j + 1)

)
. (11)

This expression factors into a part that depends on the
internal workings of the molecule (including the dipole
moment), and a part that depends on its relation with the
external field. This Hamiltonian is diagonal in the m quan-
tum number, provided that m refers to quantisation along
the field axis Ê .

2.2. Magnetic fields

Similarly, a case-a molecule with electronic spin will expe-
rience a Zeeman shift in a magnetic field, given by

HZ = −�μ · �B, (12)

where the magnetic moment is given (in Hund’s case-a) in
the body frame of the molecule as

�μ = −μ0(�λ + 2�σ ), (13)

where μ0 is the Bohr magneton, and �λ and �σ can in principle
point in any direction. However, in a good Hund’s case-
a molecule, these vectors have vanishing (or very small)
contributions in directions orthogonal to the molecular axis.
Therefore, in the |λσ 〉 electronic basis, they are replaced
by their quantum numbers, and the magnetic moment is
assumed to lie parallel to the molecular axis.

As before, the Hamiltonian then depends on the projec-
tion of magnetic field on the molecular axis,B cos(β) where
now β is the angle between the molecular axis and the mag-
netic field. The matrix elements of the Zeeman Hamiltonian
are therefore

〈λσ |〈ωjm|HZ|ωjm〉|λσ 〉
= μ0B〈λσ |(λ + 2σ )|λσ 〉〈ωjm| cos(β)|ωjm〉
= (λ + 2σ )μ0B〈ωjm| cos(β)|ωjm〉. (14)

This has exactly the same form as Equation (6), but with
a dipole moment that depends on the values of λ and σ ,
which modify the reduced matrix element. This is the sense
in which, in case-a, both dipoles are proportional to n̂, with
the proportionality constant being simply a reduced matrix
element that expresses details (e.g. electric or magnetic)
inside the molecule. The act of orienting n̂ with respect to
the external field is one of pure geometry, and described by
the matrix element of cos (β). Proceeding as above, we can

factor the energy into internal and external pieces:

EZ(ω,m) =
(

μ0(λ + 2σ )
ω√

j (j + 1)

)(
B m√

j (j + 1)

)
.

(15)

This Hamiltonian is diagonal in the m quantum number,
provided that m refers to quantisation along the field axis
B̂.

2.3. Crossed fields

Suppose now that the molecule experiences both electric
and magnetic fields, which may point in different directions.
The field part of the Hamiltonian reads

HS + HZ = −�d · �E − �μ · �B. (16)

There is now no obvious quantisation axis – or is there? In
a particular electronic state |λσ 〉, the field Hamiltonian in
the molecular orientation degree of freedom is

〈λσ |(HS + HZ)|λσ 〉 = −d(n̂ · �E) + (λ + 2σ )μ0(n̂ · �B).

(17)

This expression is now conveniently re-written as

〈λσ |(HS + HZ)|λσ 〉 = −n̂ ·
(
d �E − (λ + 2σ )μ0 �B

)
.

(18)

This expression has exactly the form of the dot product be-
tween an effective ‘moment’ n̂ – identifying the orientation
of the molecule – and an effective field that combines the
electric and magnetic fields. There are actually two such
combined fields, according to the sign of the zeroth-order
g-factor, g = λ + 2σ . Thus there are two distinct field
Hamiltonians

Hκ = −n̂ · �Cκ , (19)

where

�Cκ = d �E + κ|g|μ0 �B (20)

with κ = ± 1. This sign convention implies that κ = + 1
stands for an ‘energetically stretched’ state. That is, for par-
allel E and B fields, both fields shift the energy in the same
direction. Thus the electric and magnetic moments align
in the same direction in the body frame of the molecule,
implying in turn that λ + 2σ is negative. This means that
in general κ has the opposite sign to ω. The geometric con-
struction of the combined fields is illustrated in Figure 1.
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1934 J.L. Bohn and G. Quéméner

Figure 1. Construction of the combined fields in Hund’s case-
X. Given an electric field �E and a magnetic field �B, and the
positive electric and magnetic moments d and μ, the weighted
sums �C± = d �E ± μ �B describe appropriate quantisation axes for
states of a paramagnetic, dipolar case-a radical.

An alternative sign convention would give κ the same
sign as ω = λ + σ itself. To make this identification in
all cases would be, however, potentially ambiguous: in a
3�0 state, for instance, ω = 0 and cannot serve as a signed
quantum number (even though g is non-vanishing). Like-
wise, the signed value of g = λ + 2σ is not necessarily
helpful, as it is nominally zero for states such as 2�1/2. The
actual g-factor of course can be non-zero, but its sign can be
difficult to determine without detailed consideration of the
molecule. For these reasons, κ emerges as a new quantum
number, with obvious ties to ω, that is nevertheless distinct
from it.

For a particular internal state identified by λ and σ

(therefore, κ is determined), �Cκ serves as a quantisation
axis. By analogy with the above, the Hamiltonian becomes

〈λσ |〈ωjmκ | (HS + HZ) |ωjmκ〉|λσ 〉
= −Cκ〈ωjmκ | cos(β)|ωjmκ〉, (21)

where this β is the angle between n̂ and �Cκ , and the sub-
script on mκ emphasises the angular momentum projection
onto the Ĉκ axis. From here, the problem is mathemati-
cally equivalent to the results above. In particular, the exact
energy spectrum of the field Hamiltonian is given by

ES+Z(ω,m) = −
(

ω√
j (j + 1)

) (
Cκ

mκ√
j (j + 1)

)
, (22)

where Cκ is the magnitude of the combined field,

Cκ =
√

(dE)2 + (gμ0B)2 + 2κd|g|μ0EB cos(θEB), (23)

and θEB is the angle between the electric and magnetic
fields. Significantly, Equation (22) is diagonal in the mκ

quantum number, provided that mκ refers to quantisation
along the field axis Ĉκ for a particular value of κ . In this

sense κ denotes another quantum number of the combined
field-molecule system, on which others are contingent.

The crossed-field case can therefore be solved exactly,
and quantum numbers can be assigned to the different en-
ergy levels, for electric and magnetic fields of arbitrary
strength and relative orientation. The way to make this pos-
sible is to accept that the quantum numbers are now condi-
tional, that is, mκ cannot be assigned unambiguously until
the internal state ω (and hence κ) are specified. Because
these states identify good quantum numbers in the crossed
field case (suggested by the letter ‘X’), we refer to this ba-
sis as the Hund’s case-X coupling scheme, with basis sets
denoted |ωκjmκ〉.

2.4. Lambda doubling

We have deliberately focused on the situation where the
electric field interaction, dE , is larger than the �-doublet
splitting  in the molecule. This has ensured that the
signed values of ω are good quantum numbers, rather
than the parity quantum number εp in the parity states(|ω̄〉 + εp| − ω̄〉) /

√
2. To complete the picture, we must

construct matrix elements of �-doubling in our basis.
Starting with the case of zero magnetic field, the Hamil-

tonian consists of Stark and �-doubling terms

H = HS + H�. (24)

In the signed basis | ± ω̄jm〉, the Hamiltonian matrix reads

H =
(

−dE mω̄
j (j+1)


2


2 +dE mω̄

j (j+1)

)
, (25)

which gives the familiar eigenvalues

ω

ω̄

√(
dE mω̄

j (j + 1)

)2

+
(



2

)2

, (26)

where  is the zero-field �-doublet splitting. More con-
cisely, non-zero matrix elements of the �-doubling Hamil-
tonian are given by

〈−λ − σ |〈−ωjm′|H�|ωjm〉|λσ 〉 = 

2
δm′m, (27)

provided m′ and m are referred to the same quantisation
axis. This form of the Hamiltonian makes evident that the
�-doubling connects states of +ω̄ to states of −ω̄, that is,
in the case-X picture it mixes the states ± κ that refer to
different axes �Cκ .

To compute matrix elements of H� in the case-X ba-
sis, we therefore have to transform between these two axes.
For concreteness, denote by m± quantum numbers referred
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Molecular Physics 1935

to the C± axes, and let �C = (0, θC, 0) be the set of Eu-
ler angles defining the rotation between these axes, with
cos(θC) = Ĉ+ · Ĉ−. Without loss of generality, the plane of
the two axes defines the laboratory x-z plane, whereby the
other two Euler angles can be set to zero. The rotation
matrix between the two axes is then denoted D, with ma-
trix elements D

j
m−m+ (0, θC, 0) = d

j
m−m+ (θC) in terms of the

Wigner D matrices [4].
Writing the Hamiltonian in block-diagonal form, with

the blocks denoting κ = + 1 and κ = −1 states, the trans-
formation reads(

1 0
0 D†

) (
0 H�

H� 0

)(
1 0
0 D

)
=

(
0 H�D

D†H� 0

)
, (28)

whereby the matrix elements of �-doubling in the case-X
basis read

〈−λ − σ |〈−ωκjmκ |H�|ω − κjm−κ |λσ 〉 = 

2
dj

mκm−κ
(θC).

(29)

Matrix elements between states with the same value of ω

(hence connecting states from the same set m− or m+ )
vanish.

3. Examples and applications

Armed with these analytic results, certain aspects of
molecules in the combined fields can be elucidated. In Sec-
tions 3.1 and 3.2, we consider explicitly the 2�3/2 ground
state of the OH radical, admitting only field values suffi-
ciently small that dE � Be, so that the total angular mo-
mentum j = 3/2 remains a good quantum number. In Section
3.3, we relax this restriction to treat the A3�1 state of the
ICl molecule, in which many j’s are mixed in the field range
considered.

3.1. Magnetic trapping of polar radicals

Cold paramagnetic radicals are amenable to magnetic trap-
ping in mangetostatic traps, just as, say, alkali atoms are.
In principle, this would leave the electric field as an inde-
pendently variable tool to manipulate and study the electric
field response of these dipolar species. However, for case-a
molecules like OH, electric and magnetic field effects are
confounded. Within the case-X formalism, we can identify
the states involved for a particular field configuration.

For example, for collinear fields, θEB = 0, the energies
of the states read

− mω

j (j + 1)
(dE + κ|g|μ0B) . (30)

This formula emphasises the fact that, for κ > 0, the
magnetic dipole moment points anti-parallel to the electric

dipole moment. Thus those states that rise in an electric field
rise further in a magnetic field, and those that decrease in an
electric field decrease further in a magnetic field, an effect
which has long been known [5]. This is shown in the plot
of energies versus B in Figure 2(a), where B is parallel to
an electric field of magnitude E = 5 kV/cm, for the ground
2�3/2(j = 3/2) state of OH. The solid lines denote the κ =
+ 1 states. By contrast, for the κ = −1 states (dashed lines),
the magnetic and electric fields pull in opposite directions;
higher-energy states go lower, and vice versa, leading to a
crossing at ∼1500 Gauss. To finish off the picture of par-
allel fields, Figure 2(b) shows the same energy levels but
including the effect of �-doubling (computed in the case-X
basis as described above), illustrating that, while it breaks
the degeneracy, it is indeed a perturbation.

Figure 2(c) shows the energies of the same OH molecule
in the same 5 kV/cm electric field, but with a magnetic field
tilted at an angle θEB = π /4 relative to it. Again the κ = + 1
states are denoted by solid lines, while the κ = −1 states are
denoted by dashed lines. In this case the combined field �C+
lies somewhere in the acute angle between the directions of
�E and �B (Figure 1). Thus, while the fields do not pull the
molecular axis in quite the same direction, they almost do
so. The effect is that the κ = + 1 states fan out in energy,
just as in Figure 2(a).

More interesting are the κ = −1 states (dashed lines) in
Figure 2(c). The degeneracy that was apparent for parallel
fields in Figure 2(a) is now gone, replaced by avoided cross-
ings. These crossings arise from the magnetic field breaking
rotational symmetry about �E and therefore mixing states of
different m referred to �E . Ordinarily, one would obtain them
by a numerical diagonalisation of the Hamiltonian (1). In
the case-X picture, each of these states is determined exactly
by a unique value of the quantum number m− for any value
of �B. However, the quantisation axis is of course different
for each �B. Therefore, the states do change throughout the
crossing, and there remain non-adiabatic couplings between
the different states.

As before, the effect of including the �-doubling is to
perturb these energies somewhat (Figure 2(d)). Doing so
of course introduces further couplings between the case-
X states. Still, away from the main region of crossings,
the case-X quantum numbers (κ , mκ ) remain useful for
classifying states. Approximate energy eigenvalues for this
situation, for spin-1/2 molecules, were extracted from a
semi-classical model in Ref. [6]. Interestingly, the full
8 × 8 Hamiltonian matrix for this case can be diagonalised
analytically [7].

Finally, consider the case where the electric and mag-
netic fields are perpendicular [Figure 2(e)]. Now the two
combined fields �C± point in opposite directions, but lie
along the same line. As a consequence, they define the
same quantisation axis. From Equations (22) and (23), it
can be seen that, in the absence of �-doubling, each state
(κ = + 1, m+ ) is exactly degenerate with the state (κ = −1,
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1936 J.L. Bohn and G. Quéméner

Figure 2. Zeeman effect for OH molecules in their 2�3/2, j = 3/2 ground state, subject also to an electric field of magnitude E = 5 kV/cm
that makes an angle θEB with respect to the magnetic field. Shown is the approximation without including �-doubling (left column, black),
and including it (right column, red). In each panel on the left, states with κ = + 1 are drawn using solid black lines, while those with κ =
−1 are drawn using dashed black lines.

m− = −m+ ). Including the �-doubling therefore mixes de-
generate states of opposite parity at all values of B, hence
has a comparatively large influence on the spectra even at
large fields [Figure 2(f)].

Incorporating an electric field into the OH magnetic trap
also has implications for Majorana transitions in the trap.
Consider the magnetic field configuration of a quadrupole
trap, �B(�r) = δB(xx̂ + yŷ − 2zẑ), (31)

where δB represents the field gradient. A magnetic moment
�μ that adiabatically tracks this field, and is everywhere

parallel to it, experiences a trapping potential

Utrap(�r) = −�μ · �B(�r) = μδB(x2 + y2 + 4z2)1/2. (32)

The problem, of course, is that the magnetic moment cannot
track the field adiabatically at �r = 0, where the field van-
ishes. This non-adiabaticity leads to the Majorana losses.

In combined fields, however, the situation is different.
Suppose, for example, that the electric field �E = (Ex, Ey, Ez)
is constant in the vicinity of �r = 0. Then the combined
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fields

�C± = (dEx ± |g|μ0δBx)x̂ + (dEy ± |g|μ0δBy)ŷ

+ (dEz ∓ 2|g|μ0δBz)ẑ (33)

do not vanish at �r = 0. Now, assuming that the molecular
orientation n̂ can adiabatically follow the fields, we have
confining potentials

Utrap,±(�r) = [
(dEx ± |g|μ0δBx)2 + (dEy ± |g|μ0δBy)2

+ (dEz ∓ 2|g|μ0δBz)2
]1/2

. (34)

This rounding out of the trap minimum may be expected to
reduce the rate of Majorana losses.

3.2. Electric dipole moments

In some applications, notably cold collisions, the electric
dipole moment and its orientation play a decisive role. In
a case-X state, the dipole moment �d = dn̂ precesses about
the appropriate quantisation axis Ĉ+ or Ĉ− just as it would
about the electric field axis in the absence of a magnetic
field. The semi-classical direction of the mean dipole 〈 �d〉 is
therefore unambiguously defined along one of these axes.
In applications, however, it may also be useful to relate this
direction to the direction of the electric field, to anticipate
the role of a magnetic field in re-orienting 〈 �d〉 in the lab
frame.

To this end, we define the tilt angle, θ tilt, between 〈 �d〉
and �E , given by

cos(θtilt) = (d �E) · �Cκ

|d �E || �Cκ |
, (35)

= dE + κ|g|μ0B cos(θEB)√
(dE)2 + (gμ0B)2 + κd|g|μ0EB cos(θEB)

. (36)

This tilt angle is shown in Figure 3 versus electric field, for
OH in a B = 1000 Gauss magnetic field (and neglecting
�-doubling). The angle between the fields is arbitrarily set
at θEB = π /3. At large electric field, θ tilt goes to zero; a
strong electric field of course polarises the dipole along
itself, regardless of the magnitude and orientation of the
magnetic field. For smaller electric fields, the magnetic field
makes a significant difference in the dipole’s direction. In
the limit of zero electric field, it is rather the magnetic field
that sets the direction of the electric dipole (neglecting the
�-doubling). In this limit the angle between 〈 �d〉 and �E
approaches cos (θ tilt) = κcos (θEB). That is, in this limit θ tilt

= θEB when κ = + 1, and θ tilt = π − θEB when κ = −1.

Figure 3. The tilt angle θ tilt between an applied electric field and
the dipole moment of an OH radical, as a function of electric field.
It is assumed that there is also a magnetic field applied, of strength
B = 1000 Gauss, and making an angle θEB = π /3 with respect
to the electric field, and that there is no �-doubling. Solid and
dashed lines refer to κ = ± 1 states, respectively.

3.3. Higher fields and pendular states

At electric fields sufficiently high that the Stark energy dE
becomes comparable to, or larger than, the rotational con-
stant Be, the energy level spectrum qualitatively changes.
In the extreme limit of dE/Be � 1, the molecule is better
described as a two-dimensional harmonic oscillator, which
description serves as a starting point for perturbatively eval-
uating energies at finite values of dE/Be � 1 [8] (In other
words, the oscillator quantum numbers describe the Hund’s
case appropriate in the high-field limit). These hindered
rotor states, dubbed ‘pendular states’ [9,10], have been ex-
plored experimentally for both the electric field and mag-
netic field [11] versions, as well as in combined fields that
are either parallel or anti-parallel [12].

Here we merely point out that the case-X classification
scheme serves to identify energy levels even in the event
that the fields are non-parallel. To this end, the combined
field Hamiltonian takes its full, j-mixing form

〈ωκj ′mκ |HS + HZ|ωκjmκ〉
= −Cκ〈ωκj ′mκ | cos(β)|ωκjmκ〉
= −Cκ (−1)mκ−ω

√
(2j ′ + 1)(2j + 1)

×
(

j ′ 1 j

−ω 0 ω

) (
j ′ 1 j

−mκ 0 mκ

)
. (37)

Significantly, the definition of the combined fields �Cκ , and
the subsequent conservation of mκ ’s along these axes, is
independent of the fact that j is not conserved in a field.
The quantum numbers κ remain as good as before. To the
field interaction, we add the rotational Hamiltonian

Hrot = ( �j 2 − ω2)Be, (38)
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Figure 4. Stark effect for ICl molecules in their A3�1 state. In
(a) is shown the energies in the absence of a magnetic field (thin
blue lines). In (b), a magnetic field B = 3000 Gauss is applied,
which makes an angle θEB = π /4 with respect to the electric field.
Solid and dashed lines refer to κ = ± 1 states, respectively.

and diagonalise in a suitable basis of j to determine the
energy levels.

This procedure is carried out, with results shown in
Figure 4 for the A3�1 state of the ICl molecule [12]. This
figure displays the low-lying energies, versus electric field,
over a range that shows the transformation between rotor
and pendular states, for the low-lying states. The light, blue
line in Figure 4(a) is the result in zero magnetic field. In the
presence of a magnetic field B = 3000 Gauss, tilted at an
angle π /4 with respect to the electric field, degeneracies are
broken, leading to independent spectra in Figure 4(b) for κ

= + 1 (solid black) and κ = −1 (dashed black) states.

4. Conclusion

In the presence of crossed electric and magnetic fields, nei-
ther field alone serves as a suitable quantisation axis for
eigenstates of a case-a molecule. Interestingly, quantisation
axes can nevertheless be found, and good quantum num-
bers mκ defined for the crossed-field situation. The cost
of being able to do so is that two quantisation axes must
be identified, which naturally divides the eigenstates into
two qualitatively different varieties, according to whether

the electric and magnetic dipole moments are parallel or
anti-parallel. These axes in general also depend upon the
electronic state of the molecule through the quantum num-
bers λ and σ .

Finally, we remark that the combined fields are not nec-
essary for molecules described by Hund’s case-b. For these
molecules, the electronic spin is sufficiently decoupled from
the molecular axis n̂ that the usual laboratory-frame quan-
tum numbers can be used. Specifically, the states |sms〉 of
spin and |nmn〉 of rotation will diagonalise the Hamiltonian
HS + HZ, provided that ms is quantised along the magnetic
field axis, and mn along the electric field axis.
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