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s-wave scattering lengths of the strongly dipolar bosons 162Dy and 164Dy
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We report the measurement of the deca-heptuplet s-partial-wave scattering length a of two bosonic isotopes
of the highly magnetic element dysprosium: a = 112(10)a0 for 162Dy and a = 92(8)a0 for 164Dy, where a0 is
the Bohr radius. The scattering lengths are determined by the cross-dimensional relaxation of ultracold gases
of these Dy isotopes at temperatures above quantum degeneracy. In this temperature regime, the measured
rethermalization dynamics can be compared to simulations of the Boltzmann equation using a direct-simulation
Monte Carlo method employing the anisotropic differential scattering cross section of dipolar particles.
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I. INTRODUCTION

In the study of ultracold atomic collisions, the scatter-
ing length a is a simple parameter that characterizes the
contactlike pseudopotential approximation of the van der
Waals potential [1,2]. By abstracting away microscopic details,
this number encapsulates the essential physics needed to
predict the cross section of atoms whose collision channel
is dominated by an s partial wave. Knowledge of a allows
one to predict the mean-field energy of a Bose-Einstein
condensate (BEC). Manipulating a via a Fano-Feshbach
resonance provides interaction control [5], which can increase
evaporation efficiency for BEC production [6–8] or provide
access to strongly interacting gases and gases that emulate
interesting many-body Hamiltonians [9].

Given the importance of the s-wave scattering length, it
is desirable to know its value for the highly magnetic and
heavy open-shell lanthanide atom dysprosium (Dy), whose
three high-abundance bosonic isotopes have recently been
Bose condensed [8,10]. However, Dy has a highly complex
electronic structure: an open f shell submerged beneath
closed outer s shells. The four unpaired f electrons give
rise to a total electronic angular momentum J = L + S = 8,
with an orbital angular momentum L = 6 and electronic spin
S = 2. (Bosonic Dy has no nuclear spin I = 0 and hence has
no hyperfine structure.) The complexity of Dy’s electronic
structure—possessing 153 Born-Oppenheimer molecular po-
tentials, electrostatic anisotropy, and a large dipole moment
(μ = 9.9326952(80) Bohr magnetons [11])—renders calcu-
lating collisional parameters challenging [12]. Therefore, as
with all but the lightest atoms, determination of the scattering
length must rely on experimental measurements [1].

One well-known technique often used to probe the colli-
sional properties of ultracold atoms is the cross-dimensional
relaxation method [13]. Such experiments usually begin with
a cloud of atoms in thermal equilibrium. Then extra energy is
suddenly added to the cloud along one of the trap axes to create
an energy imbalance. This may be accomplished by diabati-
cally increasing the trap frequency in that direction. One can
then extract the elastic cross section of the colliding particles
by measuring the rate at which this energy redistributes among
all three trap axes.

For bosonic alkali atoms, whose collision interaction is
dominated by s-wave scattering at ultracold temperatures, i.e.,
below the d-wave centrifugal energy barrier, the elastic cross
section is directly related to the scattering length [1]. However,
the scattering in ultracold bosonic Dy gases is strongly affected
by the magnetic dipole-dipole interaction (DDI). In contrast to
the short-ranged, isotropic van der Waals interaction, the DDI
is long ranged and highly anisotropic:

Udd(r) = μ0μ
2

4π

1 − 3 cos2 θ

|r|3 , (1)

where μ0 is the vacuum permeability, r is the relative position
of the dipoles, and θ is the angle between r and the dipole
polarization direction. Scattering due to the DDI has been
calculated to be universal in the ultracold regime, meaning that
it does not depend on the microscopic details of the colliding
particles [14]. Such scattering can be characterized by a single
parameter, the dipole length scale

ad = μ0μ
2m

8π�2
, (2)

where m is the single-particle mass [14,15]. The universal
nature of the DDI has been observed for both elastic [18–21]
and inelastic collisions [22]. The remaining nonuniversal part
of scattering resides in the scattering length, whose value varies
from atom to atom.

The goal of this work is to measure a, which includes
the small dipolar contribution [2], by accounting for the DDI
in the total Dy-Dy elastic cross section. This is achieved by
comparing the measured cross-dimensional relaxation of an
ultracold gas of Dy to numerical simulations in which the
DDI’s contribution to the cross section is well understood [23].
The simulation of the nonequilibrium dynamics of ultracold
dipolar gases in realistic experimental situations is made
possible by a recently developed direct-simulation Monte
Carlo (DSMC) method that solves the Boltzmann equation
with the full dipolar differential scattering cross section [24].
This numerical method has proven successful in describing the
rethermalization of a cloud of fermionic erbium atoms driven
out of equilibrium [25]. Here we apply these simulation tools
to bosonic 162Dy and 164Dy undergoing cross-dimensional
relaxation and extract the deca-heptuplet s-wave scattering
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length a for both isotopes in their maximally stretched ground
state |J = 8,mJ = −8〉.

II. THE CROSS-DIMENSIONAL RELAXATION
EXPERIMENT

Preparation of ultracold Dy gases is discussed in a
previous work [8]. Dysprosium atoms in an atomic beam
generated by a high-temperature effusive cell are loaded into
a magneto-optical trap (MOT) via a Zeeman slower, both
operating at 421 nm. For further cooling, the atoms are
loaded into a blue-detuned, narrow-linewidth MOT at 741 nm.
We typically achieve trap populations of 4 × 107 162Dy or
164Dy atoms at T ≈ 2 μK. The atoms confined within this
narrow-line, blue-detuned MOT are spin polarized in |J = 8,

mJ = +8〉. They are subsequently loaded into a single-beam
1064-nm optical dipole trap (ODT). Once in the ODT, the
atoms are transferred to the absolute electronic ground state
|J = 8,mJ = −8〉 by radio-frequency-induced adiabatic rapid
passage. We then perform forced evaporative cooling in two
differently optimized crossed optical dipole traps (CODTs)
formed by three 1064-nm beams. The first CODT is very
tight for efficient initial evaporation, and the second CODT
is larger to avoid inelastic three-body collisions. The final
trap consists of two beams crossed in the horizontal and the
vertical directions. The horizontal beam is elliptical with a
horizontal waist of 65(2) μm and a vertical waist of 35(2) μm.
The vertical beam has a circular waist of 75(2) μm. These
beam profiles are chosen so that the trap is oblate, with the
tight axis along gravity, −ẑ, to avoid trap instabilities due
to the DDI [16,17]. Throughout the evaporation, the atomic
dipoles are aligned along ẑ by a constant vertical magnetic
field Bz = 1.581(5) G. We verified for both isotopes that there
are no Fano-Feshbach resonances within a range of 100 mG
centered at this field [26]. This ensures that our measurement
of a corresponds to the background value.

The aforementioned CODT configurations are optimized
for BEC production. We utilize the same traps in this work,
but do not evaporatively cool the gas quite to degeneracy. In this
thermal but ultracold temperature regime, the collisional dy-
namics of dipolar particles can be modeled by the Boltzmann
equation. We apply the same evaporative cooling sequence for
162Dy and 164Dy, and we obtain 2.7(1) × 105 (2.6(1) × 105)
atoms for 162Dy (164Dy), both at 550(10) nK and T/Tc ≈ 1.7.

To prepare for the cross-dimensional relaxation experiment,
we first raise the trap depth by adiabatically ramping up the
power of both beams by a factor of 2 in 0.2 s to 1.2(1) W for
the horizontal beam and 1.9(1) W for the vertical. A tighter,
deeper trap prevents evaporation after the cloud is compressed,
and the new trap frequencies are [ωx,ωy,ωz] = 2π×[151(2),
70(5), 393(1)] Hz. We then rotate the magnetic field in the ŷ-ẑ
plane to the desired angle β, where β is the angle between the
field orientation and ẑ. We ensure that the magnitude of the
field remains unchanged after the rotation to within 10 mG
of the initial value through rf-spectroscopy measurements of
Zeeman level splittings. We repeat the experiment at three
different angles β = [0.0(2)◦,44.7(5)◦,90.0(2)◦], as the dipole
alignment angle should affect the thermalization time scale. A
valid theory that accounts for both the anisotropic DDI and the

s-wave interaction should extract consistent scattering lengths
from measurements made at different β.

The last preparatory step involves uniformly increasing the
temperature of the cloud to prevent dipolar mean-field interac-
tion energy from affecting time-of-flight (TOF) thermometry.
While the contact interaction is negligible above Tc, the DDI
energy requires accurate modeling. We find that even a thermal
cloud of Dy in equilibrium expands anisotropically near
degeneracy, indicating that the DDI affects TOF expansion.
However, we observe isotropic expansion after heating the
cloud to about 1.2 μK. We parametrically heat the cloud
by modulating the power of the horizontal ODT for 0.4 s
at 400 Hz, nearly resonant with ωz. After the heating, we hold
the cloud for 0.4 s to ensure thermal equilibrium, which we
verify by observing isotropic expansion at 20 ms TOF. This sets
the initial state of the cross-dimensional relaxation experiment
with a peak atomic density of n0 = 3.7(1) × 1013 cm−3 and
T/Tc = 2.6 for both 162Dy and 164Dy at β = 0◦. The 162Dy
densities at β = 45◦ and β = 90◦ are lowered by 5% and 16%,
respectively. For 164Dy, we observe no decrease in density at
β = 45◦ but a 27% decrease at β = 90◦. These losses are
likely due to Fano-Feshbach resonances encountered during
the magnetic field rotation [27].

To drive the cloud out of equilibrium, we increase the
power of the vertical ODT by a factor of 2 with a 1-ms
linear ramp. The resulting trap frequencies are [ωx,ωy,ωz] =
2π×[175(3), 103(5), 393(1)] Hz. The induced change in the
trapping potential can be considered diabatic since the ramp
time is much shorter than the trap oscillation periods in the
two directions, x̂ and ŷ, that are primarily affected by the
vertical beam. During the compression process, the majority
of the energy is added to the most weakly confined direction
ŷ, which is along the imaging beam. The trap frequency along
x̂ is also slightly increased by the vertical beam. The extra
energy then redistributes among all three dimensions as the
atoms undergo elastic collisions in the trap, and we record the
rethermalization process by measuring Tx and Tz after holding
the cloud for variable durations [28]. To extract the s-wave
scattering length, we compare the measured rethermalization
dynamics to the numerical simulations described in the next
section.

III. NUMERICAL SIMULATION

In nondipolar (or sufficiently weak dipolar) Bose gases,
the scattering length is simply related to the rethermalization
time constant by τ = α/n̄σ v̄rel, where n̄ is the averaged
atom number density, σ = 8πa2 is the elastic collision cross
section, vrel = √

16kBT /πm is the averaged relative velocity,
and α is the mean number of collisions per particle required
for rethermalization [23]. In a strongly dipolar gas, a more
complicated relationship exists between the rethermalization
time constant and the scattering length because α becomes a
function of polarization.

To simulate our experiments, we solve the Boltzmann
equation using the DSMC algorithm outlined in Ref. [24].
The goal of the computation is to simulate the nonequilibrium
dynamics of Dy gas with the single free parameter a. We
expect the results of the DSMC algorithm to be quantitatively
accurate at temperatures well above quantum degeneracy, but
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below the Wigner threshold, which for bosonic Dy corresponds
to the d-wave centrifugal barrier ∼250 μK [12,29].

To briefly summarize, the simulation uses Nt test particles
that undergo classical time dynamics within the trapping po-
tential, where the ith test particle has a phase-space coordinate
(ri ,pi). Interactions are included by binning test particles
into spatial volume elements before evaluating the collision

probability for every pair of test particles in accordance
with Boltzmann’s collision integral [30]. This computational
procedure is capable of including the complete details of the
dynamic trapping potentials relevant to the experiment. The
crucial ingredient in our simulations is the DDI differential
scattering cross section derived analytically in the first-order
Born approximation in Ref. [23]. For bosons this is given by

dσ

d	
(prel,p′

rel) = a2
d

2

[
−2

a

ad

− 2(p̂rel · ε̂)2 + 2(p̂′
rel · ε̂)2 − 4(p̂rel · ε̂)(p̂′

rel · ε̂)(p̂rel · p̂′
rel)

1 − (p̂rel · p̂′
rel)

2
+ 4

3

]2

, (3)

where p̂rel and p̂′
rel denote the relative momenta before and

after the collision [24]. The vector ε̂ denotes the direction
of the magnetic field, to which all dipoles are aligned. The
scattering cross section is a function of two length scales: the
s-wave scattering length a and the dipole length scale ad .

We compute a time-dependent temperature from the
momentum-space widths of the phase-space distribution.
Away from equilibrium, this temperature can be anisotropic:

kBTj =
σ 2

pj

m
, (4)

where σpj
=

√
〈p2

j 〉 for direction j , and angle brackets denote
an average over test particles 〈f (r,p)〉 = 1

Nt

∑
i f (ri,pi); i.e.,

σpj
is the standard deviation of pj . Alternatively, one could

define temperatures from the spatial distribution rather than
the momentum space, but since the experiment measures TOF
expansion images, we focus on the momentum-space images
to enable direct comparison between theory and experiment.

A. Direct comparison between simulation and experiment

We observe qualitative agreement between a direct com-
parison of experiment and simulation, some examples of
which are shown in Fig. 1. The simulations use a variety of
different scattering lengths to provide a visualization of the
rethermalization dependence on scattering length. All curves
in the simulations of Fig. 1 employ the same initial condition
and ODT parameters. They differ only in the value of the
s-wave scattering length.

We believe the temperature oscillations evident in Fig. 1
arise from collective modes excited by the diabatic trap com-
pression. These oscillations are unusual in cross-dimensional
rethermalization experiments, and they are due to the fact
that the dysprosium gas, being highly magnetic, lies closer
to the hydrodynamic collisional regime than ultracold gases of
less magnetic atoms. That is, elastic collisions occur far more
frequently than in weakly dipolar gases due to the presence
of both s-wave and dipolar contributions to the elastic cross
section, where the dipolar contribution is σDDI = 2.234a2

d

and ad ≈ 195a0 [14]. Indeed, our simulations show that the
oscillations arise from the DDI: the oscillations vanish—and
the rethermalization time increases—as the dipolar length is
artificially decreased at fixed trap frequency. The criterion for
the hydrodynamic regime is l 	 R, where l = 1/nσtot is the
mean-free path, σtot is the total elastic collision cross section,
and R ∼ (kT /mω2

y)1/2 is the characteristic size of the gas

along the weakest trap axis [1]. Before compression, l/R ≈
1.5, indicating that the collision and trapping frequencies
are comparable for this highly magnetic gas. Indeed, the
oscillation frequency of Tx is similar to that of 2ωx , while the
oscillation of Tz is similar to 2ωy , the most weakly confined
direction and also the direction most tightly compressed when
the ODT power is abruptly increased.

These temperature oscillations would be eliminated by
bringing the dipolar gas out of the hydrodynamic regime by
reducing the trapping frequencies. However, we cannot reduce
the trap frequencies since large trap depths are required to
avoid plain evaporation of the gas after rethermalization [31].
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FIG. 1. (Color online) A qualitative comparison between the
experimentally measured rethermalization of 162Dy versus results
from the DSMC simulation. We show the rethermalization dynamics
for (a, b) β = 0◦ and (c, d) β = 90◦. In each plot the data points with
error bars correspond to experimental measurements. In addition,
there are multiple solid lines (each with a different color). These
solid lines correspond to simulation results, and the color corresponds
to the value of the scattering length used for simulation. The phase
offset between the data and simulation is likely due to experimental
uncertainty in the trap parameters. We employ a two-step fitting
method to extract estimates of the scattering length in a manner
immune to these phase offsets; see Sec. III B. Uncertainty in these
data and in those of Fig. 2 are given as 1σ standard errors. Statistical
fluctuations dominate systematic uncertainties in these data.
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An analytic understanding of the collective excitations that
give rise to the temperature oscillations in this dipolar thermal
gas are challenging and beyond the scope of the present
work [32].

B. Two-step fitting procedure

We find the frequency of the temperature oscillations to be
reasonably well reproduced by the simulations. However, the
phase and amplitude seem to be highly sensitive to values of
the initial and final trap frequencies as well as to the details
of the ODT power ramp and are not closely replicated in the
simulations. The correspondence between simulation and data
can be improved by varying the simulated trap frequencies,
total atom number, initial temperature, and ODT ramp powers
within experimental errors, but doing so for all data sets is
computationally intensive.

Instead, we use a two-step fitting procedure to efficiently
extract estimates of a from the data sets based on the ob-
servation that simulating the full equilibration evolution from
first principles—oscillations of the temperature in addition to
the exponential increase in temperature—is unnecessary to
achieve the goal of this work. The most direct influence that
a has on the gas is through the scattering rate given by 
 ∼
n̄σ v̄rel, which directly contributes to the rate of equilibration
in the gas. By contrast, the temperature oscillations in the gas
are more closely related to details of the trapping frequencies
than to the precise value of the s-wave scattering length.
We may therefore extract the time constant associated with
the s-wave cross section using a simpler model that is more
robust to uncertainties in trap parameters and then use the full
Boltzmann equation simulation to relate this fit parameter to
the value of a.

We compare simulation and experiment through the func-
tion

T̃x,z(t) = T̃f + (T̃i − T̃f )e−t/τ1x,1z + Ãe−t/τ2x,2z sin[2ω̃t − δ̃],

(5)

where this function is fit to the experimental data (see Fig. 2)
and to the simulation results along the x and the z axes
separately. The fits are restricted to times after the end
of the diabatic compression ramp. The following are free
parameters: T̃i and T̃f are closely related to the initial and
final temperatures, respectively; τ1x,1z is the time constant for
rethermalization; and Ã, τ2x,2z, ω̃, and δ̃ are the parameters of
a damped sinusoid at the first harmonic of ω̃.

Our fitting function reproduces both experimental and sim-
ulation results with a reduced χ2 of order unity. We search for
values of the free parameters which generate a local minimum
in the error function =∑

j [T̃x,z(tj ) − Tx,z(tj )]
2

where Tx,z(tj )
is derived from either the experimental measurement or the
simulation. There exist multiple local minima, but we are
careful to choose the local minimum which lies nearest to
the physically meaningful values of T̃i , ω̃, etc.

We expect, based on physical grounds, that the damping
time scales τ1x,1z and τ2x,2z are the free parameters most
affected by the scattering length (through the cross section).
We now focus our attention on these two parameters. For
concreteness, we continue with a description of our data
analysis for the case of rethermalization along the x axis; an

FIG. 2. (Color online) Fits to 162Dy data with β = 0◦. (a, b) Data
points show the experimental measurements, and the solid line shows
the best fit using Eq. (5). (c, d) Plot showing χ 2 versus fit parameter.
We vary either τ1z [in (c)] or τ1x [in (d)] while allowing all other
parameters to be reoptimized. The blue bar along the bottom axes of
(c) and (d) show the 1σ uncertainties (where χ 2 increases by 1 [34])
in τ1z and τ1x , respectively. Results for other β and for 164Dy are
qualitatively similar.

equivalent procedure applies along the z axis. Once we have
found the parameters that best fit Eq. (5) to our experimental
data, we calculate a χ2 value for that fit and denote it χ2

min. To
obtain the 1σ uncertainty on τ1x and τ2x , we vary them while
allowing all other parameters to be reoptimized until χ2 rises
to χ2

min + 1 [34].
We find that the experimental data tightly constrain the val-

ues of τ1x and τ1z, the parameters that characterize the overall
rethermalization of the gas following the sudden squeezing
of the trap. However, Fig. 1 shows that the experimental
data are insufficient to make precise measurements of τ2x

and τ2z, which characterize the damping of the collective
oscillations. Two distinct difficulties apply to the x axis and z

axis separately: Along the x axis, the 1-ms separation between
the data points is comparable to the period of these oscillations,
and quantitative analysis of the oscillations cannot be made
due to uncertainty from undersampling. In contrast, along the
z axis the oscillation frequency is well captured by the data, but
the amplitude is small compared to statistical errors. Thus, we
rely on our measurements of τ1x,1z for our estimates of a. Note
that while τ2x,2z do not help to constrain the value of a, they
are consistent with the measured values of τ1x,1z: We expect
and observe τ2x,2z to be longer than τ1x,1z by approximately a
factor of 2 as well as both time scales to be of order 1/
 [24].

To assign a scattering length a to each measured τ1x,1z, we
fit the simulated rethermalization to Eq. (5) to extract a τ1x,1z

for each value of a. The set of these τ1x,1z’s are shown as dots
in the panels of Figs. 3 and 4. The Monte Carlo nature of the
simulation leads to an uncertainty in the predicted values for
τ1x,1z. The resulting 1σ uncertainties are shown as the smaller,
darker grey bands in these plots. This band is found by first
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FIG. 3. (Color online) Analyses of 164Dy data. The dots show the value of τ1x,1z extracted by fitting the functional form Eq. (5) to the
simulation results. The dark grey band denotes a 1σ uncertainty on the simulated τ1x,1z, and the larger grey band includes experimental
uncertainty. See text for details. The horizontal dashed lines show the upper and lower bounds at 1σ uncertainty of τ1x,1z found by fitting the
same functional form Eq. (5) to the experimental data. The blue bar along the bottom axis of each figure shows the 1σ estimation of a/ad , i.e.,
where the grey area lies between the 1σ experimental bounds. (a, b) β = 0◦, (c, d) β = 45◦, and (e, f) β = 90◦.

fitting the simulation dots to a functional form

τ1x,1z = c1/[c2 + c3(a/ad ) + (a/ad )2], (6)

which is motivated by the quadratic dependence on a/ad

in the cross section; see Eq. (3). We then use a bootstrap
method to estimate the error on the best fit. This is done by
assigning to each data point a common relative error such that
the χ2 of the fit reaches the 1σ confidence interval value of
the χ2 distribution with the appropriate number of degrees of
freedom [34]. The best-fit curve is then scaled by the estimated
relative error to produce the 1σ uncertainty represented by the

dark grey band. One additional source of error on τ1x,1z arises
from the uncertainties in trap frequencies and atom number.
This error can be determined analytically using the relation
τ ∝ 1/n̄, where the mean density n̄ contains the relevant
experimental parameters. The combined 1σ error is shown
as the larger, light grey band in Figs. 3 and 4. Once the
relation between τ1x,1z and a/ad has been established in Figs. 3
and 4, one can simply project a given measured τ1x,1z, with
its associated 1σ uncertainty, onto the x axis to obtain the
best-fit a/ad value and its 1σ uncertainty, as indicated by the
horizontal and vertical dashed lines in the figures.

FIG. 4. (Color online) Analyses of 162Dy data. The dots show the value of τ1x,1z extracted by fitting the functional form Eq. (5) to the
simulation results. The dark grey band denotes a 1σ uncertainty on the simulated τ1x,1z, and the larger grey band includes experimental
uncertainty. See text for details. The horizontal dashed lines show the upper and lower bounds at 1σ uncertainty of τ1x,1z found by fitting the
same functional form Eq. (5) to the experimental data. The blue bar along the bottom axis of each figure shows the 1σ estimation of a/ad ,
i.e., where the grey area lies between the 1σ experimental bounds. (a, b) β = 0◦, (c, d) β = 45◦, and (e, f) β = 90◦. Data for β = 90◦ fail to
constrain τ1x due to the fast thermalization time scale for Tx and hence do not yield an estimate of a/ad .
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FIG. 5. (Color online) Summaries of the measured scattering
lengths extracted from each individual experiment along with the
weighted average (dashed line) and its 1σ error (grey band). Results
are shown for (a) 162Dy and (b) 164Dy. The weighted averages and 1σ

standard errors are a/ad = 0.63(5) for 162Dy and a/ad = 0.47(4) for
164Dy.

IV. RESULTS

As shown in Figs. 3 and 4, the measured τ1x,1z’s at three
different β angles produce six independent measurements of
the scattering length a for each isotope, except for 162Dy at
β = 90◦. In this case, the data fail to yield a constraint on τ1x .
We believe this is because we fit to data after the 1-ms ODT
ramp time, and 1 ms is comparable to the thermalization time
scale of Tx at this β; see Figs. 1(d) and 4(e). The dependence
of τ1x,1z’s on β directly shows the anisotropic nature of the
DDI: τ1x decreases while τ1z increases as β is rotated from 0◦
to 90◦.

The measured a values are summarized in Fig. 5. The
measured values for each isotope are, in general, consistent
with each other. The dashed line represents the weighted
average of a/ad and the grey band represents 1σ uncertainty
calculated using the procedure described in Ref. [35]. The
weighted average values of a/ad are 0.63(5) for 162Dy
and 0.47(4) for 164Dy. In absolute units, they correspond
to s-wave scattering lengths of a162 = 112(10)a0 for 162Dy
and a164 = 92(8)a0 for 164Dy. As a comparison, the mean
scattering length [36,37] is 73a0, as estimated using the value
of C6 = 1890 (a.u.) for Dy obtained via the calculations of
Ref. [12].

These numbers are consistent with our previous obser-
vations regarding the different behaviors between the two
isotopes. First, the larger scattering length of 162Dy could
explain its higher evaporative cooling efficiency compared
to 164Dy. We were able to achieve BEC of 162Dy with an
order-of-magnitude increase in the atom number compared to
164Dy when using the same evaporation sequence [8]. Second,
the smaller a/ad value of 164Dy suggests it is more susceptible
to trap instabilities due to the DDI. Previous theoretical and
experimental work shows that a dipolar BEC is stable against
collapse in traps with dipoles aligned along the weakest trap
axis only if a/ad � 2/3 [15–17]. The strongly dipolar gas of
164Dy does not meet this condition, and indeed in an earlier

work we found 164Dy does not form a stable BEC in such a
trap [10]. On the other hand, 162Dy’s scattering length is close
to the critical value, and we found 162Dy BECs to be stable in
such traps [8].

We are not able to employ the above cross-dimensional
relaxation procedure and analysis to measure the scattering
length of the lower-abundance isotope 160Dy. This is likely
due to the small trap population of the gas, its small collisional
cross section, or both. The slow elastic collision rate leads
to an unreasonably long rethermalization time scale. Indeed,
we observe that temperatures along x̂ and ẑ do not reach
equilibrium before trap loss is observed, rendering Boltzmann
simulations unreliable due to the violation of equipartition.
Our previous work [8] showed that while we could make
a 160Dy BEC by tuning to a Fano-Feshbach resonance, the
condensate population was only 1 × 103. No BEC could be
made away from a resonance, implying that 160Dy has a
background a insufficient for producing stable condensates,
as would typically be the case for a small and/or negative
value of a. Other techniques for measuring scattering lengths
might prove more effective for 160Dy [1].

V. CONCLUSIONS

We measured the rethermalization process of ultracold
dipolar 162Dy and 164Dy gases driven out of equilibrium.
The observed dynamics of the gases can be described by
DSMC simulations based on a Boltzmann equation that
incorporates the dipolar differential scattering cross section.
The agreement between experiment and theory allows us to
extract the deca-heptuplet s-wave scattering length for both
isotopes in their maximally stretched ground state. Knowledge
of the scattering lengths of 162Dy and 164Dy now allows
researchers to more accurately calculate properties of these
highly magnetic systems. Such calculations are relevant to
engineering and interpreting Dy-based simulations of quantum
many-body physics.

Note added. Using Fano-Feshbach spectroscopy, T. Maier
et al. [38] recently reported a value of a for 164Dy consistent
with ours.
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