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Stability spectroscopy of rotons in a dipolar Bose gas
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We study the stability of a quasi-one-dimensional dipolar Bose-Einstein condensate that is perturbed by a weak
lattice potential along its axis. Our numerical simulations demonstrate that systems exhibiting a roton-maxon
structure destabilize readily when the lattice wavelength equals either half the roton wavelength or a low roton
subharmonic. We apply perturbation theory to the Gross-Pitaevskii and Bogoliubov–de Gennes equations to
illustrate the mechanisms behind the instability threshold. The features of our stability diagram may be used as
a direct measurement of the roton wavelength for quasi-one-dimensional geometries.
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It is widely believed that ultracold, gaseous samples of
bosonic atoms or molecules possessing sufficiently large
dipole moments will exhibit internal structure reminiscent of
the roton in superfluid helium [1]. The basic phenomenology
of the roton, in analogy with helium, is a local minimum
in the quasiparticle dispersion ω(k). The existence of such
a minimum is predicted to lead to a host of attendant
phenomena in these dilute gases, including structured ground-
state density profiles [2–4], reduced and anisotropic critical
superfluid velocity [1,5,6], enhanced sensitivity to external
perturbations [7], abrupt transitions in Faraday patterns [8,9],
short-wavelength immiscibility phases [10], and strongly
oscillatory two-body correlations on the roton length scale
[11]. Signatures of the roton in Bragg spectroscopy of
trapped dipolar Bose-Einstein condensates (DBECs) have
been calculated in Ref. [12]. While these many exciting
predictions are in principle observable in current experiments
with highly magnetic atoms [13–15], or in future experiments
with electrically polar molecules [16–18], rotons remain to be
seen directly in DBECs [19].

In a dipolar condensate, the roton represents a mode of
finite wavelength that has an anomalously low energy—hence
the minimum in ω(k). The location of this minimum is given
by a momentum krot ∼ l−1

t , where lt = √
h̄/mωt denotes the

harmonic oscillator length of the tightest confinement of the
DBEC (usually along the polarization axis). Without this
confinement, a homogeneous DBEC would be energetically
unstable to collapse due to the attraction between dipoles that
are aligned head to tail. In the presence of this confinement, the
collapse is prevented by the zero-point energy introduced by
the confinement, at least up until a critical dipole moment
or density. When this critical parameter is exceeded, the
condensate collapses in localized “clumps” of size λrot ∼ lt ,
that is, via a dynamical instability into the roton mode [20].

A low-energy roton is therefore a mode that is linked in-
trinsically to condensate instability. This link suggests that the
DBEC may respond nontrivially as an object of conventional
spectroscopy in that it would absorb and distribute energy
differently from different wavelengths of an applied probe.
For example, if one imposes on a DBEC a weak potential of
periodicity λL (via a one-dimensional (1D) lattice beam [21],
for example), then one expects to trigger an instability
most easily when λL ≈ λrot. In this Rapid Communication
we verify this conjecture via mean-field simulations of a

quasi-one-dimensional (Q1D) DBEC. Strikingly, we find
structure in addition to this main peak, analogous to nonlinear
spectroscopy of atoms or crystals in strong laser fields.
Namely, we see hastened destabilization by probes with
wavelengths that are integer multiples of λrot, reminiscent of
“multiphoton” scattering. We also observe a similar feature at
the shorter wavelength λL = λrot/2, reminiscent of resonant
Raman coupling. Since the stability of a condensate is easy
to assess experimentally, the observation of such structures
constitutes a direct stability-spectroscopic measurement of
the roton wavelength as well as an alternate signature of roton
physics.

Consider a DBEC that is tightly confined in the ŷ and
ẑ directions by a harmonic trap of frequency ωt , with no
trapping potential in the x̂ direction. The dipole moments of
the constituent atoms or molecules are polarized along ẑ. To
this initially stable system is applied a probe in the form of an
optical lattice potential

U (x)/h̄ωt = s cos2

(
kL

2
x

)
(1)

whose periodicity λL = 2π/kL and (dimensionless) lattice
depth s ≡ −Re{α(ω)}I0/2ε0ch̄ωt (assumed positive, without
loss of generality) are tunable parameters. Such a potential
can be realized using retroreflected or crossed off-resonant
laser beams of peak intensity I0 [21]. We take the single-
mode approximation, assuming that the order parameter is a
Gaussian of width �t = √

h̄/mωt in the directions of tight
confinement [22]. We suppose that there are N = 2Ln1D

atoms spread over the periodic domain x ∈ [−L,L], where
n1D is the one-dimensional integrated density. Expressed in
natural length (lt ) and energy (h̄ωt ) units, the Gross-Pitaevskii
equation for this situation reads

μψ(x) = −1

2
∂2
xψ(x) + U (x)ψ(x)

+N

∫
dx ′ψ∗(x ′)ψ(x ′)V (x − x ′)ψ(x). (2)

The momentum-space form of the Q1D interaction potential is

V (k) = 2as + 4add

[
1 − 3√

2

∫ ∞

0
dwe−w2/2g

(√
w2 + k2

2

)]
,

(3)

051605-11050-2947/2013/87(5)/051605(5) ©2013 American Physical Society

http://dx.doi.org/10.1103/PhysRevA.87.051605


RAPID COMMUNICATIONS

JOHN P. CORSON, RYAN M. WILSON, AND JOHN L. BOHN PHYSICAL REVIEW A 87, 051605(R) (2013)

FIG. 1. (Color online) Stability spectrum for a Q1D DBEC in a
weak lattice. The experimental parameters are for 164Dy trapped at
ωt = 2π × 5 kHz with density n3D ≈ 1015 cm−3 and dipole moment
d = 10μB . In case I (II), the scattering length is tuned to as = −22a0

(as = −24.5a0), yielding a roton wavelength of 900 nm (850 nm).
The vertical dotted lines denote periodicities λrot/2, λrot, and 2λrot,
which identify the spectral features.

where g(q) ≡ q exp(q2)erfc(q). Contact interactions
contribute to V via the scattering length as , and dipole-dipole
interactions contribute via the dipole length add = md2/3h̄2,
where d is the dipole moment of the bosons. We remark that
V (k) decreases monotonically as a function of k. The Q1D
chemical potential μ is related to the three-dimensional (3D)
chemical potential μ3D via μ = μ3D − 1. In the absence of
the probing potential U (x), the chemical potential and order
parameter are easily found to be μ(0) = n1DV (k)|k=0 and
ψ (0) = 1/

√
2L, respectively.

To determine the stability of the DBEC for a given lattice
periodicity λL and intensity s, we solve Eq. (2), and determine
the excitation spectrum within the Bogoliubov approximation.
Dynamical instability is indicated by a complex frequency in
a given mode, which also identifies the mode that triggers
the instability. Numerical results are plotted in Fig. 1, which
shows two sample stability spectra for DBECs consisting of
164Dy atoms. Plotted is the intensity s versus periodicity λL of
the probe. The shaded region below each curve represents the
stable region, since higher intensities perturb the condensate
more strongly and lead to collapse. In one case (I, yellow
region) the scattering length is assumed to be as = −22a0,
while in the other (II, brown), it is as = −24.5a0. These
differences correspond to different roton spectra, as shown by
the blue lines in Fig. 2. Case II has a “softer” roton than case I,
i.e., a lower excitation energy ω(krot); hence, it destabilizes
at much weaker lattice depths despite having a comparable
scattering length. Along the lines of Ref. [23], we have checked
that our quantum and thermal depletions for both case I and
case II, at an assumed temperature of 28 nK [15] and a cutoff
length of 12λrot, remain small compared to the condensate
fraction. Similar results can be found for all other species of
DBECs, although bosons with smaller dipole moments tend to
require higher densities to rotonize.

In both cases, the spectra clearly show three features, which
are more prominent for softer rotons: (i) A weak laser drives the
condensate to instability for probe periodicities near the roton

FIG. 2. (Color online) The green (dotted) and blue (solid) curves
are respectively the Hartree-Fock and Bogoliubov spectra for the
particular cases considered in Fig. 1. The energies and wave numbers
are plotted in units of h̄ωt and �−1

t , respectively.

wavelength, accounting for the lowest dip in Fig. 1. Indeed, the
weakest laser required to destabilize the condensate has period-
icity λL = λrot. We emphasize that at the threshold of stability,
our simulations show that the lattice probe is not chopping the
condensate into smaller, unstable pieces, but rather is weakly
perturbing it. (ii) A secondary dip in stability appears when
the lattice spacing is twice the roton wavelength. In terms of
the analogy to optical absorption in a nonlinear medium, this
situation is reminiscent of the excitation of the resonant state by
absorption of two photons of half the energy required to excite
the state directly. (iii) Finally, a third dip in stability is observed
at half the roton wavelength. We have also observed these
structures in full 3D simulations of horizontal, cigar-shaped
DBECs where the roton “wavelength” is less well defined.

The origin of these features becomes clear within pertur-
bation theory. Rigorous perturbation theory for the Gross-
Pitaevskii equation was worked out in Refs. [7,24–26]. Let
ψ (0) and μ(0) represent the order parameter and chemical
potential in the absence of the probe U (x). Expanding
ψ = ψ (0) + ψ (1), μ = μ(0) + μ(1), one derives the first-order
perturbation equation

μ(1)ψ (0) = −1

2
∂2
xψ (1)(x) + U (x)ψ (0)

+ 2n1D

∫
dx ′ψ (1)(x ′)V (x − x ′). (4)

Given the condition 〈ψ (1)|ψ (0)〉 = 0, the solutions to (4) are
easily found to be μ(1) = s/2 and

ψ (1)(x) = −
(

s

2ε(kL)

)
1√
2L

cos(kLx). (5)

We have introduced the Hartree-Fock energy [27] ε(k) =
k2/2 + 2n1DV (k). Figure 2 compares ε(k) to the Bogoliubov
spectra ω(k) =

√
k2/2[k2/2 + 2n1DV (k)] for the two cases of

DBEC considered in Fig. 1.
The Hartree-Fock spectrum of a soft-roton DBEC possesses

a shallow minimum at k ≈ krot, and this minimal energy
approaches zero as the roton softens. The effect of this low-
lying mode is to strongly perturb the ground state, as suggested
by (5). Indeed, a modest perturbation ∝s becomes amplified in
the density by a factor s/ε(krot). The mth order of perturbation
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theory additionally introduces density modulations of the
general form n

(m)
1D (x) ∼ sm

ε(mkL) cos(mkLx). That is, the roton
can be driven by overtones of the fundamental wave number
of the lattice, when mkL ≈ krot, or λL ≈ mλrot. The stability
minimum corresponding to m = 2 can be seen in Fig. 1.
Even away from one of these resonant conditions, the probe
laser introduces density modulations that manifest themselves
in a mean-field potential Umf(x) = N

∫
dx ′|ψ(x ′)|2V (x − x ′)

which combines with the probe field itself to make a combined
potential

Uc(x) = U (x) − μ + Umf(x)

= s

4

k2
L

ε(kL)
cos(kLx) + O(s2). (6)

Thus again, whatever influence the periodic probe potential
has on propagation of the excited states in the condensate, this
effect is amplified for probes in the vicinity of the roton (or a
subharmonic thereof, as a higher-order effect).

There remains the task of explaining the feature in the
stability spectrum at λL ≈ λrot/2. This cannot be done by
considering the ground state only. Rather, it is necessary to
explore how the spectrum of excited states is modified by
the combined potential energy Uc (6). The Bogoliubov–de
Gennes (BdG) equations describing the excitations can be
written compactly as(

H0 − μ + C + X X

−X −H0 + μ − C − X

)(
u

v

)
=E

(
u

v

)
,

(7)

where H0 = − 1
2∂2

x + U (x) is the free-particle Hamiltonian,
C[χ ](x) = Umf(x)χ (x) describes direct interactions with the
mean field, and X[χ ](x) = N

∫
dx ′χ (x ′)ψ(x ′)V (x − x ′)ψ(x)

is an integral operator describing exchange interactions.
The functions uj (x) and vj (x) define the usual Bogoli-
ubov transformation of the quantum fluctuation field oper-
ator δ
̂ = ∑

j [α̂juj + α̂
†
j v

∗
j ], and they allow one to write

the nontrivial part of the grand canonical Hamiltonian in
approximate diagonal form as Ĥ − μN̂ ∼ ∑

j Ej α̂
†
j α̂j . In

the absence of the perturbation, Eq. (7) is easily solved
using complex exponentials parametrized by momentum k,
yielding the unperturbed energies E

(0)
k = ω(k). The pertur-

bation (1) separates modes of definite parity, so we write
the unperturbed modes in a basis of cosine and sine func-
tions: u

(0)
k,c(x) = uk cos(kx)/

√
L, u

(0)
k,s(x) = uk sin(kx)/

√
L,

v
(0)
k,c(x) = vk cos(kx)/

√
L, and v

(0)
k,s(x) = vk sin(kx)/

√
L. The

amplitudes uk and vk are defined by uk =
√

k2/2+n1DV (k)
2ω(k) + 1

2

and vk = −sgn[V (k)]
√

k2/2+n1DV (k)
2ω(k) − 1

2 , for k > 0 [28]. A
system destabilizes when at least one of the excitation energies
Ej vanishes.

Assuming an initially stable condensate, the influence
of U (x) on the excited states can also be approximated
in perturbation theory. A perturbation theory for the BdG
equations was developed rigorously in Refs. [25,26,29] in the
phase-density representation. Since we are chiefly concerned
with first-order mode destabilization, we develop a tractable
perturbation theory that paints a physical picture of mode
softening and naturally encompasses the degeneracy of the

roton spectrum. After expanding Ek , uk(x), and vk(x) in
perturbation series, and then substituting into Eq (7), we derive
the first-order perturbation equation for the corrections E

(1)
k ,

u
(1)
k (x), and v

(1)
k (x):(

ω(k) + 1
2∂2

x − X(0) −X(0)

−X(0) −ω(k) + 1
2∂2

x − X(0)

)(
u

(1)
k

v
(1)
k

)

=
(

U (1)
c + X(1) X(1)

X(1) U (1)
c + X(1)

)(
u

(0)
k

v
(0)
k

)
− E

(1)
k

(
u

(0)
k

−v
(0)
k

)
,

(8)

where X(0)[χ ] = N
∫

dx ′χ (x ′)ψ (0)2V (x − x ′) is the zeroth-
order exchange integral operator, U (1)

c (x) is the first-
order combined potential given by Eq. (6), and X(1)[χ ] =
N

∫
dx ′χ (x ′)ψ (0)V (x − x ′)[ψ (1)(x ′) + ψ (1)(x)] is the first-

order exchange integral operator. We can isolate the energy
shift E

(1)
k on the right-hand side by taking advantage of the

fact that the left-hand side vanishes whenever it is acted
on by the operator

∫
dx(u(0)

k′ ,v
(0)
k′ ) for any ω(k′) = ω(k).

Degenerate perturbation theory is, in situations exhibiting a
roton-maxon excitation spectrum, generally necessary for a
complete understanding of all first-order effects; however, we
will see that only certain sets of degenerate modes actually mix,
due to selection rules. To simplify our notation, we denote the
hermitian matrix on the right-hand side of (8) by A.

It turns out that the matrix elements of A vanish in most
instances, simplifying our analysis. First, the sine modes
completely decouple from the cosine modes as anticipated.
Moreover, the matrix element of A between any modes
(u(0)

k′ ,v
(0)
k′ ) and (u(0)

k ,v
(0)
k )T vanishes unless the mode-matching

condition |k′ ± k| = kL is satisfied. This follows from reasons
of orthogonality, since all matrix elements are evaluated by
integrating products of three sine or cosine functions. Satis-
fying both the mode-matching condition and the degeneracy
condition ω(k′) = ω(k) severely limits the number of nonzero
matrix elements determining the modes (or degenerate mode
mixtures) that shift at first order.

The significance of the mode matching is illustrated
schematically in Fig. 3. For any given perturbation probe with
wave number kL, a standing matter wave of the associated
wavelength is established, defining the combined potential
Uc(x) (upper panel). Against this backdrop, in the lower
two panels, are shown the density fluctuations 〈δn̂(x,t)〉 =

FIG. 3. (Color online) Depiction of the overlap between the
combined potential Uc(x) and the cosine and sine density fluctuations
for k = kL/2.
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[u(0)2
kL/2(x) + v

(0)2
kL/2(x)] for a single excitation of the cosine and

sine modes of wave vector kL/2. We depict these modes
because they always satisfy both the mode-matching and
degeneracy conditions. The density fluctuations of the cosine
mode accumulate atoms at the maxima of Uc(x), causing
an increase in the mode energy by an amount E

(1)
kL/2,c =

A(c)
kL/2,kL/2. Conversely, the fluctuations of the sine mode collect

atoms at the minima of Uc(x), thereby lowering the mode
energy by the amount E

(1)
kL/2,s = −E

(1)
kL/2,c. Linear combina-

tions of degenerate modes satisfying |k′ ± k| = kL may also
accomplish this spatial appropriation of atoms in an average
sense, as the direct terms in the diagonal elements appear as
Aj,j ∼ ∫

dx[u(0)2
j (x) + v

(0)2
j (x)]Uc(x), where u

(0)
j and v

(0)
j are

linear combinations of matched modes. This is the mechanism
behind the first-order softening of Bogoliubov modes and
degenerate mode mixtures, and it is physically identical to the
energy splitting that occurs at the Brillouin zone edge in single-
particle band theory [30], albeit in a quasiparticle context. The
modes plotted in Fig. 3 are analogous to “staggered modes,”
although the nontrivial degenerate mixtures discussed here
have no analog in the nondegenerate, single-particle band
theory.

Given that the roton mode is a local minimum of the system
dispersion, we expect to observe a lower stability boundary
for all lattice periodicities in which the roton softens to first
order. This occurs when the roton mode-matches to itself
(kL = 2krot) and when it mode-matches to a degenerate phonon
(kL ≈ krot). These two scenarios correspond to the stability
dips observed at λL = λrot/2 and λL ≈ λrot, respectively. Of
course, the latter structure was already expected due to strongly

enhanced, static density modulation, as discussed previously.
The structure at λL = λrot/2, however, occurs in spite of
relatively weak density modulation. Instead of responding to
a strongly amplified mean-field potential, the roton responds
directly to the perturbation in a manner akin to zone-edge
energy splitting.

We note that our discussions of density response and mode
softening remain applicable despite the increase in quantum
and thermal fluctuations for rotonized systems. There exists
a minimum roton energy � below which either thermal
or quantum fluctuations cause a strong reduction in the
condensate fraction [23]. For unperturbed DBECs with roton
energies exceeding �, the perturbing lattice will likely drive
the system towards an uncondensed or thermal state before
reaching dynamic instability. The criterion for the existence
of a stable DBEC would then change from min{ω(k)} > 0 to
min{ω(k)} > �, effectively lowering the boundaries in Fig. 1
without changing the essential structure thereof.

In summary, we have explored the stability features of
quasi-one-dimensional dipolar condensates in a weak lattice.
Rotonized systems destabilize rapidly when the lattice peri-
odicity λL matches either half of the roton wavelength or a
subharmonic of the roton. The observation of these stability
dips is a clear signal of rotonization, as well as a direct
measurement the roton wavelength.

We thank B. Lev for fruitful discussions. J.P.C. ac-
knowledges support from the US DoD through the NDSEG
fellowship program. R.M.W. acknowledges support from an
NRC postdoctoral fellowship. J.L.B acknowledges financial
support from the NSF.

[1] L. Santos, G. V. Shlyapnikov, and M. Lewenstein, Phys. Rev.
Lett. 90, 250403 (2003).

[2] S. Ronen, D. C. E. Bortolotti, and J. L. Bohn, Phys. Rev. Lett.
98, 030406 (2007).

[3] O. Dutta and P. Meystre, Phys. Rev. A 75, 053604 (2007).
[4] H.-Y. Lu, H. Lu, J.-N. Zhang, R.-Z. Qiu, H. Pu, and S. Yi, Phys.

Rev. A 82, 023622 (2010).
[5] R. M. Wilson, S. Ronen, and J. L. Bohn, Phys. Rev. Lett. 104,

094501 (2010).
[6] C. Ticknor, R. M. Wilson, and J. L. Bohn, Phys. Rev. Lett. 106,

065301 (2011).
[7] R. M. Wilson, S. Ronen, J. L. Bohn, and H. Pu, Phys. Rev. Lett.

100, 245302 (2008).
[8] R. Nath and L. Santos, Phys. Rev. A 81, 033626 (2010).
[9] K. Lakomy, R. Nath, and L. Santos, Phys. Rev. A 86, 023620

(2012).
[10] R. M. Wilson, C. Ticknor, J. L. Bohn, and E. Timmermans, Phys.

Rev. A 86, 033606 (2012).
[11] A. G. Sykes and C. Ticknor, arXiv:1206.1350.
[12] P. B. Blakie, D. Baillie, and R. N. Bisset, Phys. Rev. A 86,

021604(R) (2012).
[13] A. Griesmaier, J. Werner, S. Hensler, J. Stuhler, and T. Pfau,

Phys. Rev. Lett. 94, 160401 (2005).
[14] K. Aikawa, A. Frisch, M. Mark, S. Baier, A. Rietzler, R. Grimm,

and F. Ferlaino, Phys. Rev. Lett. 108, 210401 (2012).

[15] M. Lu, N. Q. Burdick, S. H. Youn, and B. L. Lev, Phys. Rev.
Lett. 107, 190401 (2011).

[16] S. Ospelkaus, A. Peér, K.-K. Ni, J. J. Zirbel, B. Neyenhuis,
S. Kotochigova, P. S. Julienne, J. Ye, and D. S. Jin, Nat. Phys. 4,
622 (2008).

[17] J. Deiglmayr, A. Grochola, M. Repp, K. Mörtlbauer, C. Glück,
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