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We investigate the wave-packet dynamics of a pair of particles that undergoes a rapid change of scattering
length. The short-range interactions are modeled in the zero-range limit, where the quench is accomplished
by switching the boundary condition of the wave function at vanishing particle separation. This generates a
correlation wave that propagates rapidly to nonzero particle separations. We have derived universal, analytic
results for this process that lead to a simple phase-space picture of the quench-induced scattering. Intuitively, the
strength of the correlation wave relates to the initial contact of the system. We find that, in one spatial dimension,
the k~* tail of the momentum distribution contains a ballistic contribution that does not originate from short-range

pair correlations, and a similar conclusion can hold in other dimensionalities depending on the quench protocol.
We examine the resultant quench-induced transport in an optical lattice in one dimension, and a semiclassical
treatment is found to give quantitatively accurate estimates for the transport probabilities.
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I. INTRODUCTION

It is a generic property of wave mechanics that an abrupt
change in a system’s boundary condition generates waves that
propagate outward from the boundary. The tap of a mallet
excites phonons in a percussive chime; with a flick of the
wrist, a lion tamer snaps his whip; electric pulses in an
antenna generate a radio broadcast. A similar phenomenon
can occur in ultracold quantum gases, where short-range
interactions create an effective boundary condition for the
wave function [1]. The “boundary” occurs at vanishing particle
separation, and in the ultracold regime, it is determined by a
single parameter called the scattering length a. The scattering
length, and hence the boundary condition, can be dynamically
tuned by magnetic-field ramps [2,3] or optical switching
[4] in the vicinity of a broad Feshbach resonance [5-9]. In
quasireduced dimensionalities, where motion is frozen out by
tight trapping in one or two dimensions, one can also exploit
confinement-induced resonances [10,11].

The response of ultracold atoms to a rapid change of scatter-
ing length, or “quench,” is a topic of growing interest in the field
of atomic, molecular, and optical physics. Long-wavelength
waves were observed to propagate in the density-density
correlation function of a quenched two-dimensional (2D) Bose
condensate [12]. In the case of a 3D condensate quenched to
resonance, universal dynamics were observed as the system
eventually reached an exotic state in which the three-body
loss was unexpectedly low [13]. The super-Tonks-Girardeau
state [14] was created in a 1D Bose gas whose interactions
were quenched from strong repulsion to strong attraction [15].
There has been a thrust of theory work to accompany these
exciting experimental advances, both for bosons [16-34] and
for fermions [35-38].

Dynamical waves that propagate in the pair correlation
function in response to an interaction quench, hereafter
referred to as “quench-induced correlation waves,” have been
discussed at length in the context of several many-body
models. For the case of 2D and 3D quenched Bose condensates,
these correlations have been calculated in the Bogoliubov
approximation [12,18,19] and with quantum kinetic theory
[26]. Numerical results were presented for quenched 1D
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Bose gases in Refs. [28-30], with analytical results for the
Tonks-Girardeau regime given in Ref. [27]. Other studies
have calculated the spreading of correlations in quenched
single-band Hubbard models using matrix-product-state [39]
and variational-Monte-Carlo [40] algorithms, accompanying
recent experimental progress in that realm [41].

Our work takes a different, but complementary, approach
to correlation waves. We consider the question: What does
an interaction quench (alternatively, a quenched boundary
condition) do to the relative wave function for a pair of
particles? This question lies at the root of the many-body
quench problem, where interactions are pairwise and three-
body correlations are often negligible. Two-body models
offer the advantage that they can be solved exactly and give
direct access to the wave function [42]. Moreover, they are
immediately relevant to few-body systems in optical tweezers
[43—45] and deep optical lattices [46]. In many instances,
they have given insight into understanding nonequilibrium
many-body phenomena [47-51]. They have also been shown
to give a quantitative description of short-time short-range
pair correlations in certain nonequilibrium many-body systems
[16,17], a result that is extended in the present study.

In this paper, we show that two-body models give an
intuitive description of the physics behind quench-induced
correlation waves. Section II reviews ballistic expansion from
the standpoint of a quench. Our phase-space analysis shows
that the correlation waves propagate ballistically, i.e., as if they
were free particles. We demonstrate that these waves, which
are inherently nonlocal, can contribute to the k=4 tail of a
dynamical momentum distribution. This result is unexpected
considering that the ideas surrounding Tan’s contact relate the
k= tail exclusively to local correlations [52-54]. In Sec. I,
we discuss the leading-order behavior of the momentum
distribution for arbitrary interaction quenches. We find that
there is generally a competition between short-range and
ballistic physics in the large-momentum limit, an effect that
is absent in equilibrium scenarios. Additionally, we find that
the amplitude of the correlation wave is determined chiefly
by the initial and final scattering lengths, and also by the
initial amplitude of the wave function at vanishing particle
separation. Section IV outlines our solution of the two-body
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quench problem in the presence of an external lattice potential.
We show that ballistic correlation waves can propagate even in
deep lattices, and we present a simple semiclassical model that
yields accurate estimates for the transport that occurs. Section
V concludes our study.

II. BALLISTIC WAVES

It is instructive to begin with the simplest case in which
quench-induced correlation waves occur: a measurement of
the momentum distribution of a strongly interacting ultracold
gas. The general method is to rapidly turn off the external trap
and interactions, thereby freezing the momentum distribution
of the gas, and then to allow the sample to expand freely before
imaging. After expansion, the image represents the column-
integrated momentum distribution of the gas. Correlation
waves are generated by this simple protocol, as we now
demonstrate.

The above-described procedure constitutes an interaction
quench in the sense that, trap effects aside, the scattering length
is rapidly changed from some initial value (a;) to some final
value (ay). The effect on the wave function can be seen in the
ballistic expansion of a bound pair of interacting particles in
1D. In terms of the particle separation x and coupling constant
g1p, the short-range interaction potential is

Vini(x) = g1pd(x). ey

One can define a 1D scattering length via a = —h?/ugp,
where u is the reduced mass for the pair. The interactions are
attractive (repulsive) for a > 0 (a < 0), and they vanish for
a = Fo0. For an initially bound pair of atoms, the relative
wave function is

Y(x,t =0)= %e—lx/af_ )

1

The time-dependent solution, upon turning off interactions
(ay — £00), is most compactly written in momentum space.
We define the Fourier transform as

Fo) = / dxe % £(x), 3)

and the dynamical wave function is given by

N

v @

)

Vk,t) =

where E; = h?k?/2u is the relative kinetic energy. The
short-time dynamics of the position-space wave function is
shown in Fig. 1. At t = 0, the wave function has a kink at
vanishing particle separation. This kink is absent for ¢t > 0,
where we see a correlation wave that propagates to larger
particle separations.

The ballistic expansion dynamics can be easily visualized
with a phase-space representation. The Wigner function [55]

W(x.k,t) = /dyeikyw*<x + %,t)l//(x — %,t) (5)

gives an approximate sense of the phase-space distribution
of the instantaneous quantum state ¥ (x,t). The position and
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FIG. 1. Ballistic expansion of a bound-state wave function. The
black (thin) line represents the initial wave function. The blue (thick,
solid) line represents the wave function at it /2pua? = 0.008, and the
magenta (dashed) line is the wave function at Az /2ua? = 0.015.

momentum distributions can be found by integrating,

WGP = / 9K ek,
2
(6)
| (k,0))* = /de(x,k,t).

Figure 2(a) shows the Wigner function of the bound state
at t = 0. Initially, the k= tail of the momentum-space wave
function is responsible for the kink in the position-space wave
functionat x = 0 (see Fig. 1). This s typical for wave functions
of 1D systems with short-range interactions. It is generally
understood that any state that behaves as W(x) ~ W(0)(1 —
|x|/a) in the short range should have a contribution,

o 290 1
Bk ~ ak(z)+0<ﬁ)’ ™

to the large-momentum limit of the momentum-space wave
function [56]. This connection between short-range correla-
tions and large-momentum asymptotics led to the development
of universal “contact” relations for one-dimensional systems
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FIG. 2. The Wigner distribution given by Eq. (5) for the ballistic
expansion of a 1D bound-state wave function at (a) t = 0 and (b)
Rt /2pa? = 0.4. The dashed white line in (b) represents the formula
x = 2hkt/m, which corresponds to the separation of two classical
particles that start out on top of each other (x = 0) and then fly apart
with momenta +hk.
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[56,57], which were subsequently generalized to three dimen-
sions [52-54,58,59] and two dimensions [60—64].

Figure 2(b) shows that, after the interactions are turned
off, the large-momentum components of the wave function
propagate outwards to larger particle separations. Although the
momentum distribution does not change during the dynamics
[see Eq. (4)], the momentum components eventually separate
spatially in a semiclassical sense, with the fastest modes
moving the farthest. (In the figure, we see that the spatial
wings of the phase-space distribution agree very well with
the classical problem in which a pair of particles flies apart
with momentum =+hk (white dashed line), similar to the
suggestion of Ref. [65].) This mechanism leads to the usual
correspondence between the expanded spatial distribution
and the initial momentum distribution, as probed by ballistic
expansion measurements of interacting systems. We point out
that such a mapping would not occur if the interactions were
turned off adiabatically or if they were left unchanged; it was
necessary to quench the system.

Itis interesting that ballistic expansion leads to a momentum
distribution whose k* tail does not correspond to a kink in
the short-range wave function. Rather, this tail is responsible
for the correlation wave that propagates from the short range
to the long range, as evidenced in Fig. 2. One can alternatively
view this correlation wave, and hence the k—* tail in the
dynamical momentum distribution, to be the result of a
rapidly disturbed boundary condition. It can be shown that
the interaction potential in Eq. (1) enforces a log-derivative
boundary condition,

oy _ _1’ ®)

w x—0*t a

for symmetrized wave functions. The quench from a; > 0 to
ay = Foo changes this boundary condition discontinuously,
thereby generating a correlation wave. We expect intuitively
that such a wave should be generated whenever the quench
is diabatic and ay # a;. The strength of the wave should
depend on the mismatch between the initial and final boundary
conditions. For example, the generated wave should be weak
when ay ~ a;, and it should be strong when a~' changes
drastically. We expect also that the large-momentum behavior
of the wave function should contain both short-range and
ballistic contributions, generalizing Eq. (7).

III. ARBITRARY QUENCHES

Reference [17] demonstrated that it is possible to find
closed-form solutions to the two-body quench problem in
3D for a broad class of initial wave functions. It was also
shown that the short-time, zero-range dynamics depend on
only three parameters: the initial scattering length a;, the final
scattering length ay, and the initial zero-range behavior of
the wave function r(r,0)|,_ (. It is natural to suppose that
a similar universality should persist in the large-momentum
content of the quench-induced ballistic wave, as this wave
originates in the short range and is a direct response to the
change in boundary condition. We indeed find this to be the
case in each dimensionality.

The derivation of the large-momentum limit of the 1D
dynamical wave function is given in the Appendix. In short,
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FIG. 3. The Wigner distribution given by Eq. (5) for a 1D bound-
state wave function quenched to a; = 2a;. The Wigner function
is evaluated at the same time as in Fig. 2(b), and for the same
initial scattering length ;. The dashed white line represents the same
classical model as shown previously.

one must project the initial wave function onto the complete
basis of energy eigenstates satisfying the appropriate log-
derivative boundary condition, given by Eq. (8), and then
propagate in time. We find that the large-momentum limit
of the wave function is

_ (e 290,00 g

ykn = (ai 1) K2ay — ilk])
20/(0,1) 1
Sgrro(g) oo

for t+ > 0. The second term shown here comes from the
dynamical kink that appears in the short-range wave function
for finite values of ay, as in Eq. (7) and in accordance with
our intuition about the contact [56]. The first term represents
the ballistic wave that is generated by the quench, similar
to Eq. (4). As a consistency check, it is easy to verify that
Eq. (9) agrees with Eq. (4) in the ay — oo limit. It is also
immediately obvious that the ballistic contribution vanishes in
the limit that no quench occurs (i.e., ay — a;).

It is significant that, after the quench, the large-momentum
limit of the wave function has two distinct components that are
both O(k~2). This occurs whenever the final scattering length
is finite. Figure 3 shows this behavior for the case in which
an initial bound state at a scattering length a; > 0 is quenched
to a final scattering length a; = 2a;. Similar to Fig. 2(a), we
see large-momentum content in the short range that is due to
the residual kink in the wave function. Similar to Fig. 2(b),
we see that the quench generates a ballistic correlation wave
that rapidly propagates to large particle separations. This is
in strong contrast to equilibrium problems, where only the
short-range correlations contribute to the large-momentum
asymptotics [56]. For this 1D quench problem, the k= tail
of the one-body momentum distribution (~ | (k,t)|?) does
not correspond perfectly with the zero-range pair probability,
indicating that one must exercise care when interpreting the
1D contact in a nonequilibrium context.
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FIG. 4. Quenching a bound state to a; = —a; /2. The black (thin)
line represents the initial wave function. The blue (thick, solid) line
represents the wave function at ht/2ua? = 0.008, and the magenta
(dashed) line is the wave function at /it / 2;La,.2 = 0.015. Compare with
Fig. 1, which depicts a quench to ay = foo.

The amplitude of the ballistic correlation wave shown in
Eq. (9) can be adjusted by changing the final scattering length
ay. Figure 4 shows the short-time position-space wave function
for a bound state that is quenched to ay = —a;/2, evaluated
at the same times as in Fig. 1. One can see that the quench
from attraction (a; > 0) to repulsion (a; < 0) has increased
the amplitude of the correlation wave when compared to the
ballistic expansion case (ay = £00). Equation (9) indicates
that this enhancement is by approximately a factor of 3.

One may observe from Eq. (9) that quenches to the Tonks-
Girardeau regime (ay — 07) generate especially strong bal-
listic waves. In this limit, the wave function behaves as

S 290.0) g <i)
w(k,t)_—”k' e +0( 5 (10)

for large k and ¢ > 0, with the ballistic component dominating
the short range. One can intuit the k' tail by observing
that the final energy of the system is determined by the
expectation value of the postquench Hamiltonian in the initial
state; this energy must diverge as gy ~ —1/ay — oo. For
t > 0, the interaction energy must vanish because (0,7) =
0. Conservation of energy therefore requires that, after the
quench, the kinetic energy diverge,

dk | - k2
/Eh//(k,z)yzI — 0. (11)

This was first pointed out by the authors of Ref. [27], who
calculated analytically the dynamical density correlations for
a many-body system of density n that is quenched from
noninteracting to the Tonks-Girardeau regime. Our results
connect smoothly with theirs in the short-time (hn’t/m < 1),
short-range (nx < 1) limit. In this limit, their dynamical pair
correlations take the form of a relative wave function that
behaves exactly as in Eq. (10) except that ¥(0,0) — /n. If
we were to simulate the many-body problem with a two-body
model, as in Ref. [17], we would use this same prescription.
This prescription also leads to quantitative agreement (at
short times) with the numerical calculations of g®(0,7) in
Ref. [30], which considered a broad range of ay < 0. This
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reinforces the idea that properly calibrated few-body models
can quantitatively describe short-time short-range correlation
phenomena for quenched many-body systems [17].

The derivation given in the Appendix for quenched one-
dimensional systems can be straightforwardly generalized to
two and three dimensions. In direct analogy with Eq. (9), the
results for r > 0 are

o [ww,m]‘
/D) Jlpmot _igasm

~ a;
9060 =0 (0 ety 51

o [x/z(p,z)

3 1n<p/b)]‘p_,0+ 4 0( 1 )

K2 K3
where b > 0 is an arbitrary length scale that makes the
argument of the logarithm dimensionless, and

B (a4 Ol o _igam
‘”(k’”—<1 ) K21+ ikay) ©

n 4 [r (r,O1l, o+ n 0( 1 )

(2D) (12)

’ (3D) (13)
K2 K

For the two-dimensional case, we define the scattering length
with the convention that the bound state has energy Ep =
—712/2;La2 [66,67]. Both in 2D and in 3D, we see that the
ballistic contribution (first term) vanishes whenay = g;. It can
also be verified that both formulas reduce to the free-particle
result when interactions are turned off (ay = oo in 2D, and
ay = 0in 3D).

The ballistic contribution in Egs. (12) and (13) is subleading
to the short range in the large-k limit, but it is nevertheless
large compared to what one expects in equilibrium. The
subleading terms of all equilibrium states are O (k=) for both
dimensionalities. In contrast, we see that the quench induces a
new subleading structure, which is O[k 2 ln’l(k)] in 2D and
O(k—3)in 3D. This subleading behavior in 3D was first pointed
out in Ref. [16] for the case of a quench from noninteracting
to unitarity, which is a specific instance of Eq. (13). It
was also observed in Hartree-Fock-Bogoliubov simulations
of quenched Bose-Einstein condensates [17], although the
nonlocal and ballistic origin of the effect was not obvious
in that context.

Despite the subleading nature of the ballistic terms in
Eqs. (12) and (13) for finite a s, one can generate leading-order
O(k™?) behavior by turning off interactions. This is along
the lines of the ballistic-expansion arguments presented in
Sec. II. If we then turn on interactions before the wave spreads
appreciably, the wave function will develop a short-range
singularity that will separately contribute a term of O(k~2)
to ¥ (k,t). As was found for a single quench in 1D [Eq. (9)],
the short-range and ballistic components can therefore occur at
the same order in the large-k limit of the wave function. Again,
we conclude that the considerations that relate the momentum
tail exclusively to short-range correlations in equilibrium do
not always hold outside of equilibrium.

We conclude this section by remarking on the limitations of
our ballistic analysis. The zero-range approximation, wherein
interactions are represented with boundary conditions at
vanishing particle separation, has been enormously successful
in describing ultracold quantum gases near broad Feshbach
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resonances [9]. This approximation is only valid for momenta
satisfying kro < 1, where ry is the range of the interaction.
In experiments that use tight optical trapping to create quasi-
low-dimensional geometries, the oscillator length of the tight
trap represents another scale that bounds the “range” of the
interaction in the reduced dimensionality. The immediate
result is that the momentum tails discussed in the context
of zero-range models do not extend out indefinitely to large &,
although the point of breakdown (kry ~ 1) might not be easily
observable in typical signal to noise by a broad resonance (see
Ref. [68]).

Our analysis also invoked the sudden approximation,
wherein the scattering length (alternatively, the boundary con-
dition) is assumed to change instantaneously. The consequence
is that ballistic modes of arbitrarily large energy are generated
by the quench, as shown in Egs. (9)—(13). Any experimental
realization of the quench protocol will occur over a finite
time scale [2,12,13], and this will lead to an energy cutoff in
the ballistic modes that can be generated. However, optical
switching of interactions was demonstrated to be possible
on time scales that are short compared to those set by the
interaction range [4]. It follows that experimentally feasible
quench times do not introduce any intrinsic constraint on the
quench protocol beyond that already introduced by the range of
interactions. We do expect, however, that slower quenches will
produce weaker correlation waves; in the limit that interactions
are changed adiabatically, no correlation waves are generated.

IV. LATTICE TRANSPORT

It makes sense to suppose that the ballistic nature of
quench-induced correlation waves should allow for transport
over potential-energy barriers. Semiclassically speaking, some
part of the k=2 ballistic tail in Eq. (9) always has enough
energy to cross a barrier of finite height, as suggested in
Ref. [69]. We expect that the amount of transport can be
tuned by adjusting the amplitude of the wave and, therefore,
the strength of the quench. In this section, we investigate the
quench-induced dynamics that occurs for a pair of particles in
a single site of a 1D optical lattice. We find that a semiclassical
adaptation of our quantum description gives a good measure
of the quench-induced transport.

Interaction-quench effects in an optical lattice were recently
discussed in the numerical results of Refs. [70,71]. There, the
authors used the multilayer multiconfiguration time-dependent
Hartree method for bosons (ML-MCTDHB) to investigate
the dynamics of several interacting bosons in a few lattice
sites. They found that a quench can trigger rapid transport
between wells, as well as breathing and cradle modes within
a given well. Such higher-band effects are ignored in typical
Hubbard models that only include the lowest Wannier state
in the formalism. Bound states, strong interactions, and/or
strong quenches may distort the wave function considerably
from the Wannier description, thereby necessitating models
that encompass higher bands. The inclusion of higher bands,
either in the ML-MCTDHB sense or in the spirit of a
multiband Hubbard model [72], makes it difficult to obtain
numerically converged results for many-body systems on a
lattice with strong interactions and strong quenches. Our
two-body calculation should provide a useful benchmark in
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quantitatively understanding the rapid transport that takes
place after an interaction quench.

The relative and center-of-mass coordinates do not separate
for the case of an interacting pair of atoms in an optical
lattice, and we therefore resort to numerics to investigate
the exact quantum dynamics. Without loss of generality, we
consider identical bosons of mass m. We simplify expressions
by scaling lengths by the lattice spacing ¢; we similarly scale
energies by h?/me?> = 2E g /m?, where E is the recoil energy
of the lattice. The time-dependent Schrodinger equation for
this system can then be written as

0w 1320 13%w

— = - — ——

Jat 2 8x12 2 8x§
FVa(x)V¥ + Vig(x) ¥ + Vin(x1 — x2)¥, (14)

where the interaction potential is given by Eq. (1), and the
optical lattice potential is given by

Via(x;) = Vo sin®(x;), (15)

and V} is the depth of the lattice. Inasmuch as the interaction
quench directly excites relative momenta, it is convenient
to work with the relative coordinate x = x; — x, and the
center-of-mass coordinate X = (x; + x»)/2. After changing
variables, one finds that

ov 92w 192w
j— = ——— — ——
ot 0x2  409X2

+ Vo[l — cos Rm X) cos (wx)]¥ + Vi(x)¥. (16)

The energy eigenstates corresponding to Eqs. (14)—(16) were
found numerically in Ref. [73] (see also Ref. [74] for the 3D
analog). Here, we instead solve for the dynamical wave
function by time evolving an initial condition using the
split-operator method [75]. We exploit bosonic symmetry
[W(x,X) = ¥(—x,X)] by discretizing the wave function only
for x > 0; spectral transforms are taken along x using the
discrete cosine transform, and they are taken along X using
the fast Fourier transform. We model short-range interactions
on the spatial grid by employing a potential that has support
only at the x = 0 grid point. We have found that representing
—%5()6) — —%(Sx,o/Ax, where Ax is the grid spacing along
the x direction, leads to the correct log-derivative boundary
condition given by Eq. (8) in the limit that Ax < |a| [76].

Our numerical study focuses on quenched systems for
which the induced transport is expected to be the most
significant. As indicated in Eq. (9) and alluded to in Ref. [69],
the amplitude of the ballistic wave is proportional to the initial
probability amplitude that the atoms are in the same position,
¥(0,0). This quantity is largest, in equilibrium, when the
system is in a bound state. We therefore choose the initial
condition for the transport problem given by Eq. (16) to
be a bound state in a single lattice site. This configuration
represents a subsystem of the state described by Ref. [77],
which reported observing a single molecule per lattice site.
For a deep lattice, the bottom of the well can be approximated
as a harmonic-oscillator potential of frequency w = w/2V}
and width ap, = 1/4/w. One can write the approximate initial
condition as

W(x, X) = Yo(x)go(X), a7
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FIG. 5. Quenching a bound state from a; = 0.2¢ to ay = —a; on
a single lattice site. The lattice is assumed to have a depth of 10Eg.
(a) The initial two-body probability density | ¥ (x;,x;)|* for a bound
state on a lattice site ( = 0). (b) The same quantity calculated at
ht/m€* = 0.01. Note the logarithmic color scale, whose lower limit
is a cutoff.

where ¢o(X) = (2/mak,)"/*e=*"/%, describes the center-of-
mass degree of freedom, and ¥(x) is the molecular state
dressed by the oscillator [42]. For a < ap,, one can show
that v approaches the ordinary bound state given by Eq. (2).
For our simulations, we will consider an initial bound state
of scattering length @; = 0.2 in a lattice of depth V) = 10Eg.
The two-body probability density associated with this initial
condition is shown in separate-particle coordinates in Fig. 5(a).

As discussed previously, we expect that an interaction
quench will generate an energetic correlation wave that
propagates over the potential barriers that separate individual
lattice sites. This transport is shown in Fig. 5(b) a short time
after quenching to a; = —a;. The wave has the same general
structure as in Fig. 4, with spatially decaying oscillations and a
cusp of reduced probability when both particles come together.
Even after such a short time, we see that the wave already
extends a couple of lattice sites in each direction.

It is instructive to quantify the amount of quench-induced
transport that takes place. We can define a dynamical proba-
bility for the likelihood that both atoms remain in the central
well,

Peewy = [ dn [ awiveamol. as)
[x1]<3 [x2l<3

In like manner, we also define the probability that both atoms
have tunneled,

Prr(7) =/ dxl/ dxo|W(xy.x2.0) %, 19)
lxi]> 3% [x2|> 3
and the probability that a single atom has tunneled,
Pe=2[ an [ danwemor. Qo)
lxi]> 3 lx2l<3

Here, we have exploited the symmetry of the bosonic wave
function. The complementarity of the integration regions
results in the identity Pcc + Prr+ Prc = 1 at all times.
These probabilities are plotted foray = oo anday = —a; in
Figs. 6(a) and 6(b), respectively. In both cases, the atoms begin
in the central well [ Pcc(0) ~ 1]. After the quench, the transport
probabilities smoothly saturate to values that depend on a;.
We note that the transport is substantial even though the lattice

PHYSICAL REVIEW A 94, 023604 (2016)

]
08 f -
Pcc
0.6
0.4}
Prc Prr
02} //
A
0= . ’ 2
0 0.1 ht/mt 0.2
(a)
; .
Pce
0.8} ;
0.6
P
04} TC Prr
02t N
T
ok - >
0 0.1 ht/ml 0.2
(b)

FIG. 6. Lattice transport for a bound state that is quenched from
a; =0.2¢ to (a) ay = oo and (b) ay = —a;. The solid blue line
denotes the dynamical probability of both atoms occupying the central
well of the lattice, Pcc(?); the solid cyan line is the probability of a
single atom occupying the central well, Prc(¢); and the solid red line
is the probability that no atoms occupy the central lattice site, Prr(z).
The horizontal dashed lines correspond to the semiclassical estimates
for these probabilities.

depth is of the order required for a typical Mott-insulating state
in 1D [78,79].

The ballistic description of the previous section leads to an
intuitive, semiclassical model of transport. We can estimate
the saturated values of Pcc, Prr, and Prc by considering
the following question: What fraction of the momentum
distribution describes ballistic atoms that are energetic enough
to make it over the barrier?

The simplest analysis can be made for the case in which the
interactions are turned off (a; = £00). Short-range physics
then does not contribute to the momentum distribution, and
we can consider ballistic effects to stem entirely from the
momentum-space version of the initial condition given by
Eq. (17), similar to our analysis in Sec. II. One can find the
initial two-body wave function W (k;,k»,0) from Eq. (17) via

W (k1,k2,0) = Po(k)bo(K)

_ - [k k
=wo(k1—k2>¢o< = 2), 1)

where we have changed to separate-particle momentum
coordinates k; and k, from the relative and center-of-mass
coordinates k and K. In a semiclassical sense, we expect that
atoms with kinetic energy k?/2 < Vj do not make it over the
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barrier. Hence, we estimate that the probability for both atoms
to stay in the central lattice site is given by

dk dk, .
— 2| W (ky,kp, 0.

(22)
©22<v, 27 Ji2pey, 27

PCC —

Similarly, we estimate the other transport probabilities to be

dk dky -
— 21Uk k2, O,
22>V 270 Jiz sy, 27

dk; dky

Prc — 2/ — P (k1.k2,0)]%.
K2svy 27 Ji2pev, 27

These probabilities are plotted as the horizontal dashed lines
in Fig. 6(a), and they agree reasonably well with the saturation
observed in the dynamics.

When ay is finite, the transport estimates should include
only the ballistic contribution to the momentum distribution.
This much is clear from the fact that, in the absence of a
quench, the k~* tail of the momentum distribution contributes
to the short range instead of to transport. More generally,
the momentum distribution has a mixture of short-range and
ballistic effects, as shown in Eq. (9) to leading order. We have
found that, in most cases, an accurate estimate of transport
probabilities requires going beyond leading order so as to
suitably include momenta k ~ +/2Vj. In using Egs. (21) and
(23), we replace Wo(k) with the full ballistic wave function
1},551) (k,t) derived in the Appendix and given by Eq. (A9) [80].
The resulting estimates for the case of a; = —a; are plotted as
dashed lines in Fig. 6(b). The increased transport that occurs
for this quench is well described by the semiclassical estimate.
This agreement owes itself to the fact that a wave of energy
E} incident on a potential barrier of height V, has near unity
transmission for Ey >> V. These waves dominate the integrals
in Eq. (23) when the quench is strong.

It is interesting that the saturation time scale in Figs. 6(a)
and 6(b) does not appear to depend on the final scattering
length of the quench. We have found that the saturation time is
well approximated by the time it takes an atom of momentum
k = /2Vj to travel one lattice spacing. This supports our
semiclassical description of quench-induced transport. For the
lattice depth used in our simulations, the saturation time scale
is smaller than the lowest-band tunneling time by more than
two orders of magnitude. The higher-band physics at play in
this transport process comes from our use of strong interactions
[81,82] as well as from the quench itself [70,71,83].

PTT e
(23)

V. CONCLUSION

To summarize, we have taken a wave-function-based
approach to describe the correlation waves induced by an in-
teraction quench. Our calculations made use of the zero-range
approximation for particle-particle interactions, represented
here with a scattering-length-dependent boundary condition at
vanishing particle separation. Within this approximation, the
interaction quench disturbs the boundary and generates a wave
that propagates ballistically to nonzero particle separations.
We have derived the leading-order behavior of this wave in
momentum space for one, two, and three spatial dimensions.
These results are intuitive in that the amplitude of the
correlation wave depends only on the initial amplitude at
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the boundary and the scattering length before and after the
quench. In each dimensionality, the ballistic contribution to the
wave function dominates the next-to-leading-order terms that
occur in equilibrium systems. Particularly interesting is the fact
that, in one dimension, the k=2 tail of the momentum-space
wave function is generally determined by both short-range
and ballistic effects. Similar results can occur in two and
three dimensions, depending on the quench sequence. It is
significant that a protocol as simple as a quench can surprise
the intuition that usually associates large-momentum behavior
exclusively with short-range physics. On this account, our
two-body calculations indicate that one must exercise care
when interpreting the contact out of equilibrium.

Our simulations reveal that quench-induced correlation
waves can cause considerable transport in a 1D optical lattice.
The amount of transport that takes place is readily tunable
by altering the initial short-range pair probability of the state,
as well as the strength of the quench. Our analytic two-body
calculation makes possible a semiclassical framework within
which both the transport and the saturation time can be
estimated with surprising accuracy. We expect that similar
results hold for optical-lattice systems in higher dimension-
alities whose numerical calculations are more challenging. It
would be interesting to see what role these ballistic dynamics
might play in a quenched many-body system. For example, the
system described in Ref. [77], which was essentially a Mott
insulator of molecules in a lattice, might have phase coherence
partially restored by the colliding ballistic waves that a quench
might generate. One can expect generally that ballistic waves
should be damped by collisions in a many-body system.
This damping is difficult to model quantitatively without
introducing a certain amount of arbitrariness to the theory
[22-26]. At the same time, it is the crux of the question of
how isolated quantum many-body systems equilibrate despite
the high level of excitation provided by a quench. It may
be possible to shed light on the matter by investigating how
ballistic waves collide even at the few-body level. This remains
for future work.
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APPENDIX: TWO-BODY SOLUTION IN 1D

In this Appendix, we focus on the two-body solution for
interacting particles in one dimension. The solutions for other
dimensionalities can be found in essentially the same manner.
We simplify expressions by scaling distances by an arbitrary
length scale £ and energies by h?/2u£%. In free space, the
time-dependent Schrodinger equation for the relative wave
function yr(x,t) is

Y)Yy 2
l 9t - - 8)(2 - Zg(x)w(xvt)»

(AL)

where a is the 1D scattering length after the quench. Without
loss of generality, we will consider the particles to be identical
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bosons. Symmetrization then requires that the relative wave
function satisfy (x,t) = ¥ (—x,t). The overall effect of the
interaction is to enforce the log-derivative boundary condition
shown in Eq. (8).

We can propagate a given initial condition 1 (x,0) in time by
expanding in the energy eigenstates that satisfy the postquench
log-derivative boundary condition. The scattering states are

P (x) = Aulsin(k'[x]) — K'as cos(k'x)], Ep = k2, (A2)

where
1

27k (1 + k2a2)

Ay =

(A3)

is a constant that enforces energy normalization. These states
are uniquely defined for &’ > 0. For a; > 0, the bound-state
solution is given by Eq. (2), with a¢; — ay, and its energy
is Ep = —1/a2f. As we are focusing on quench-induced
scattering, it will be helpful to decompose the time-dependent
wave function onto its scattering and bound contributions [84]:

Yt =S 0,0 + B, (A4)

where
YO (x,0) = f N dEpe By D0y ()| w(x',0)) (AS5)
0

and

Y P (x,t) = Oap)e F (0| Y ()| (x',0)),

and where (-|-) denotes a projection integral. The Heaviside
function ®(ays) determines whether or not the bound state
should be included in the dynamics. We will assume that
¥ (x,0) is normalizable and smooth everywhere except pos-
sibly for a nontrivial log-derivative at x = 0.

It is most convenient to solve for the momentum-space
wave function, as in Eq. (4). This requires taking the Fourier
transform of the energy eigenstates. For ay > 0, the Fourier
transform of the bound state can be inferred from Eq. (4),

2 /af
1+k2a]2c'

(A6)

Vpk) = (A7)

The Fourier transform of the scattering states takes a more
complicated form, but it can be written as

I (k)
= Ak,[-Zk’n(i + Kap)sk* — k) + L}
k? — k% —ie
(AB)

where we use the convention € — 01, Written in this way,
there are two parts that compose the scattering contribution
¥ ®(x,t) in Eq. (AS5). The first part can be evaluated trivially
in momentum space by exploiting the é function in Eq. (A8).
We write it as follows:

Jes(k.1) = =2 k| Ay + [Klas)
(W @[ (e )"

We call this the “ballistic” contribution to the wave function
due to its free-particle-like f(k)e "+ behavior, similar to

(A9)
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Im{k'}

%X Re{k']

FIG. 7. Integration contour in the complex k' plane. The crosses
denote the poles of the second term in Eq. (A8). The final leg of the
integral is along arg[k'] = —m /4.

Eq. (4). The second contribution can be written as

~ e o 2k Ap
() _ —ik" k
Vi (k1) = /0 2kdk'e [m}

x (Y ()| (', 0)), (A10)
and we will see that it generally contributes to the short-range
part of the wave function. In sum, we can write

Pikt) = Pl kD) + TP G+ § Pty (ALD
for the full momentum-space wave function.

One can make progress with Eq. (A10) by exploiting the
residue theorem. The integration, as written, is along the
positive real k' axis. If we close the contour as shown in
Fig. 7, the contribution from the |k’'| — oo arc vanishes. The
only poles that can contribute residues must come from the
analytic continuation of the scattering projection inside the
integration loop. We have found empirically that, if ¥ (x,0)
decays smoothly and without oscillation (such as for a bound
state or a ground-state Busch wave function [42]), the integrand
is analytic inside the closed contour and the integral vanishes
[85]. The two straight legs of the integral then cancel, and we
can rewrite Eq. (A10) as an integral along k' = ze ™7 for real,
non-negative z:

_,-Zz_kz

<wl§;g)(x/) | 1'D(X,’O)Xlk’»—ﬂe” T

o] 2
~ 4 —2 Z
VS (k,t) = —4ie™"5 / dze %!

0

X[Ak
_dieTis /wd et
e ), vzt

<[A{p O 0,1 (A12)

2
2

where the factor in brackets has been analytically continued.
This quantity can be evaluated in closed form for several
interesting cases, including where ¥ (x,0) is an arbitrary
bound-state wave function, although the expressions are
generally too lengthy to usefully write down.
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The physical significance of V{5 (k,t) can be seen if one
compares it with the zero-range contribution to the scattered
wave function, ¥(0,¢). Using Eq. (A2), we can write the
result as

¥ 90.1) = / OodEk/e"'Ek”wif)(m(wif)(x/)|w<x€0)>

0

o0
=—a; / dEpe B Ap (g (D] (x',0))
0
.4 o 2
= Ziafe_’T/ dze 17
0

<[Ae (@O O

where we have again exploited the integration contour in Fig. 7.
A direct comparison of Eq. (A12) and Eq. (A13) indicates that

298(0,1) 1
_r ~’7 ol —
afk2 + <k4>

for large k satisfying k%t >> 1. This verifies our claim that (>
generally encodes the short-range behavior of the scattered
wave. The Gaussian suppression in Egs. (A12) and (A13)
indicates that this contribution to the wave function vanishes
in the t — oo limit. This is as expected for an unconfined
wave packet composed entirely of scattering states, which must
spread out in space as time passes. With significantly less work,

(A13)

T k,t) = (Al4)
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one can also show that
- 248 (0,1) 1
Yk, 1) e +0( 3

for the bound-state contribution to the dynamical wave
function.

We now examine the large-momentum behavior of the
ballistic contribution to the wave function, given by Eq. (A9).
It can be shown that

(A15)

/ ~ dx[sin(k'|x]) — K'a s cos(k'x)]¥(x,0)

o0

24(0,0) ay 1

=—->I1-—]4+0|—=

k' a; k2
for a wave function whose short range behaves as ¥ (x,0) =~
¥(0,0)(1 — |x|/a;), and whose long range is regular and
smooth. This leading-order behavior of the projection encodes

the mismatch between the initial and final boundary condi-
tions. Inserting this result into Eq. (A9), we find that

o (@ 200.0) (1)
b‘”‘l(k’t)_<ai 1)(k2af—i|k|)e o\e)
(A17)

after some algebra. Combining Eqs. (A14), (A15), and (A17),
we arrive at Eq. (9).
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