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We consider the problem of an atomic beam propagating quantum mechanically through an atom beam
splitter. Casting the problem in an adiabatic representation(in the spirit of the Born-Oppenheimer approxima-
tion in molecular physics) sheds light on explicit effects due to nonadiabatic passage of the atoms through the
splitter region. We are thus able to probe the fully three-dimensional structure of the beam splitter, gathering
quantitative information about mode mixing, splitting ratios, and reflection and transmission probabilities.
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I. INTRODUCTION

Continuing advances in the production and manipulation
of atomic Bose-Einstein condensates(BEC’s) are tending to-
ward applications in interferometry. BEC’s can now be pro-
ducedin situ on surfaces[1–3], making them ready for load-
ing into “interferometer-on-a-chip” microstructures. Being in
close proximity to the chip, the atoms are subject to control
via magnetic fields generated by wires on the chip. Because
of their coherence and greater brightness, Bose-condensed
atoms are expected to improve upon previous accomplish-
ments with thermal atoms, such as neutral atom guiding,
[4,6–9], switching [10], and multimode beamsplitting
[11,12]. Studies of propagation of BEC’s through waveguide
structures are also underway[13].

While the BEC is created in its lowest transverse mode in
the guiding potential, keeping it in this mode as it travels
through the chip remains a significant technical challenge.
For example, it appears that inhomogeneities in the guiding
wires produce field fluctuations that can break up the con-
densate wave function[13,14]. Additionally, the very act of
splitting a condensate into two paths implies a transverse pull
on the condensate that can excite higher modes. Ideally, the
condensate propagates sufficiently slowly that, once in its
lowest mode, it follows adiabatically into the lowest mode of
the split condensate. The criterion for this to happen,
roughly, is that the condensate velocity in the direction of
motion be less thanLv, whereL is a characteristic length
scale over which the beam is split, andv is a characteristic
frequency of transverse oscillation in the guiding potential.
Reference[15] has verified this conclusion numerically, in a
two-dimensional model that varies the transverse potential in
time, at a rate equivalent to the passage of the moving con-
densate through a beam splitter. Populating higher modes can
reduce fringe contrast, thus spoiling the operation of an in-
terferometer. Diffraction has also been pointed out to have
negative effects on guiding in general[16].

Moving too slowly through the beam splitter is, however,
potentially dangerous because of threshold scattering behav-
ior in a varying potential. In one dimension, a wave incident
on a scattering potential is reflected with unit probability in

the limit of zero collision energy[17]. This same kind of
“quantum reflection” will be generically present in beam
splitters as well, where scattering can occur from changes in
the transverse potential as the longitudinal coordinate varies.
Reflection upon entering the beam-splitter region can prove
devastating for potential applications such as a Sagnac inter-
ferometer.

Both aspects of instability in an atom interferometer can
be expressed in terms of quantum-mechanical scattering
theory of the atoms from the guiding potential. Specifically, a
condensate entering a beam splitter in arma and in trans-
verse modem possesses a scattering amplitudeSam,a8m8 for
exiting in arma8 in modem8. In this paper we therefore cast
the general problem of beam splitting in terms of scattering
theory. For the time being we restrict our attention to the
linear scattering problem, and therefore implicitly consider
the regime of weak interatomic interactions. This is suitable,
since the basic question we raise is the effect of wave me-
chanical propagation on the atoms. Note that the weakly in-
teracting atom limit is achieved with small atom number, in
which case number fluctuations may be problematic[18].
Alternatively, this limit is reached at low atom density, which
is achieved for a BEC that has expanded longitudinally for
some time before entering the beam-splitter region.

Restricting our attention to the linear Schrödinger equa-
tion opens up a host of powerful theoretical tools that have
been developed in the context of atomic scattering. In the
present instance, given the dominant role of nonadiabatic
effects, the tool mostly used is the adiabatic representation.
This is analogous to the Born-Oppenheimer approximation
in molecular physics[19]. Specifically, we freeze the value
of the longitudinal coordinatez and solve the remaining two-
dimensional Schrödinger equation inx-y. The resulting
z-dependent energy spectrum represents a set of potential
curves for following the remaining motion inz. This general
approach has been applied previously to a model situation in
which the transverse potential is gently contracted or ex-
panded[16,20]; here we extend it to realistic waveguide ge-
ometries.

This representation has obvious appeal for the problem at
hand, since in this level of approximation it is assumed that
the atoms move infinitely slowly through the beam splitter. It
is, however, an exact representation of scattering theory, and
the leftover nonadiabatic corrections, arising from finite
propagation velocity, can be explicitly incorporated. We will*Electronic address: bohn@murphy.colorado.edu
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see that nonadiabatic effects have a strong influence on beam
splitters based on experimentally realistic parameters. The
effects of excitation of higher transverse modes and of re-
flection from the beam splitter therefore have a fairly simple
interpretation in these explicit nonadiabaticities. In addition,
the successive solution of a set of two-dimensional problems
in transverse coordinatesx-y, followed by a coupled-channel
calculation inz, is less numerically intensive than determin-
ing the full three-dimensional solution all at once. Indeed,
this is why adiabatic representations have found widespread
use in chemical physics. Larger problems, more closely re-
sembling experimental beam splitters, can therefore be
handled. This paper is organized as follows. In Sec. II we
introduce the model, describing how the beam splitter works
in general terms and outlining the theoretical methods used
in the paper, introducing the main ideas about the adiabatic
formalism. In Sec. III we present the results obtained from
our study, with a focus on the description of the theory itself,
and how its different components relate to the physics of the
problem.

We construct scattering amplitudesSsEd in the energy do-
main, as is traditional for experiments involving continuous
monoenergetic beams of particles. Therefore in the present
work we model a continuously fed guide, or a condensate
which has been allowed to expand in the longitudinal direc-
tion; if the size of the cloud is of the order of the splitting
potential, it is not unreasonable to consider it beamlike, and
use the language of stationary state physics.

A more precise account of the wave-packet behavior
could be performed by a fully time-dependent analysis of the
problem, which would lead to a potentially unmanageable
computing effort given by the truly three-dimensional nature
of the problem. Alternatively, an analysis of the scattering
wave functions obtained via the scattering problem could
also unveil the time-dependent features of the problem. In
particular, one would invoke the principle of superposition
and allow waves of different energies to interfere via a Fou-
rier integral, generating wave packets. Given the relatively
smooth energy dependence of the transmission probabilities,
we expect that the general conclusions regarding beam split-
ting will still hold. A separate analysis will uncover aspects
of the problem particular to the time domain.

II. MODEL

The salient characteristics of a two-wire atomic beam
splitter can be realized in the following way: a guiding po-
tential is generated by the magnetic field due to two parallel
current carrying wires and an additional bias field perpen-
dicular to them. By suitably decreasing the bias field or the
distance between the wires, it is possible to decrease the
separation between two minima, and thus increase the prob-
ability for the atoms to tunnel from one to another.

A. The beam-splitting potential

We start by considering the magnetic field generated by
two infinitely long parallel wires lying on a substrate, each
carrying a currentI in the ẑ direction. Defining the plane of

the substrate as thex-z plane, we let thez axis lie exactly
between the wires, and lety axis point to the region above
the substrate[21].

We then proceed with the addition of two bias fields, one
in the ẑ directionBbz and one in thex̂ directionBbx. The first
of the two is put in place in order to avoid regions of exactly
zero field, where Majorana transitions would cause arbitrary
spin flips, and therefore loss of atoms from the guide. The
second of the two fields, when added vectorially to the field
generated by the wires, generates regions of minimum poten-
tial in the x-z plane. In particular, forBbx

0 =m0I /2pd, where
m0 is the permeability of free space andd is the separation
between the wires, there exists a single potential minimum
located on they axis a distancey0=d above the wires.

Furthermore, forBbx,Bbx
0 two minima are generated on

the y axis, one above and one belowy0, and forBbx.Bbx
0 ,

two minima are again generated above the substrate, but this
time they are displaced symmetrically to the left and the
right of the y-z plane. It is this latter regime that we use to
generate a beam splitter, letting the wires be fixed, and
changing the transverse bias fieldBbx as a function ofz from
Bmax to Bmin and back, such thatBmax.Bmin.Bbx

0 .
The magnetic field produced by such configuration is

therefore[18,21]

Bx =
m0I

2p
F − y

sx − dd2 + y2 +
− y

sx + dd2 + y2G + Bbxszd,

By =
m0I

2p
F x − d

sx − dd2 + y2 +
x + d

sx + dd2 + y2G ,

Bz = Bbz, s1d

and the consequent potential experienced by the atoms is

V = gFmBmFuBu, s2d

wheremB is the Bohr magneton,gF is the Landé factor,mF is
the total angular-momentum projection quantum number,
and the atoms’ spin is aligned with the field at every point
in space. An example of a guiding potential is illustrated in
Fig. 1.

The adjustable experimental parameters are therefore the
current in the wiresI, the values of the bias fieldsBmax, Bmin,
and Bbz, and the distanced between the wires. Throughout
this work we choose, for concreteness,d=0.1 mm, Bmin
=21.3 G,Bmax=22.5 G,Bbz=1.0 G, L=20 mm, and we let
Bbxszd be a fourth-order polynomial inz, such that it has zero
derivative at the centersz=0d and edgessz= ±Ld of the beam
splitter. Also we will only consider cases in whichBbxszd
reaches its minimum value atz=0 only, avoiding the charac-
terization of the trivial evolution of the wave function at a
constant field. In particular, we will consider the following
form for the variation of the transverse bias field:

Bbxszd = Bmin + sBmin − Bmaxdf2sx/Ld2 − sx/Ld4g. s3d

Varying L will therefore adjust the adiabaticity of the beam
splitter, whose effects will be studied in Sec. III B.
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B. Waveguides as a scattering problem

Because we are going to treat the beam splitter as a scat-
tering problem, we will begin by offering a quick review of
scattering theory; in particular, we will reproduce the basic
formulation of the adiabatic treatment of the scattering
problem.

Scattering theory is fundamentally based on the superpo-
sition principle, which constrains us to the solution of the
linear Schrödinger equation. This limit is nonetheless justifi-
able in light of the known problems caused by the interaction
between atoms, such as the wave function recombination in-
stabilities described in Ref.[22].

The separation between the guides at the input and output
ports of the beam splitter is sufficiently great that no tunnel-
ing is possible between the guides within the time frame of
the experiment. The problem is thus divided into two sepa-
rate regions. We will refer to the regionuzu ,L as the scat-
tering region. This is the inner region containing the active
part of the beam splitter, where all the coupling between the
modes takes place. In the outer region, defined byuzu .L, the
potential has translational symmetry inz. Solutions to the
Schrödinger equation in the outer region are therefore trivi-
ally found to be products of transverse modes and longitudi-
nal plane-wave solutions. The problem is thus reduced to
finding solutions inside the scattering region, and match
them to the solutions outside to find solutions to the global
problem. Once these solutions are found it is then possible to
generate theS matrix for the system.

Moreover, since we are matching at the boundary of the
scattering region the only information we need is the value
of the wave function and its derivative at the boundary, and
nowhere else. In particular, we need to compute the quantity

b = −
1

Csr d
U ] Csr d

] n
U

S

, s4d

defined as the logarithmic derivative, whereS is the bound-
ary of the scattering region,n is the outward normal to the

surfaceS, and C is the wave function in the inner region.
Because the wave function must vanish in the limit of large
uxu or uyu, the surfaceS consists, for us, of the two planesz
= ±L. To find solutions inside the box we used theR-matrix
method, formulated in the adiabatic representation. A deriva-
tion of this method follows.

C. The adiabatic representation

We start by writing the Schrödinger equation

−
"2

2m

]2

] z2Csx,y,zd + F−
"2

2m
¹x,y

2 + Vsx,y,zdGCsx,y,zd

= ECsx,y,zd, s5d

with Vsx,y,zd as defined in Eq.s2d. If atoms in the guide
were moving infinitely slowly, i.e., adiabatically, then the
wave function would be well represented by the basis set
fisx,y;zd with eigenvaluesUiszd, defined as solutions to the
equation

F−
"2

2m
¹x,y

2 + Vsx,y;zdGfisx,y;zd = Uszdfisx,y;zd. s6d

As in the Born-Oppenheimer approximation, the quantities
Uiszd serve as effective potentials for the subsequent motion
in z. To recover the effect of finite velocity inz, it would be
appropriate to expand the wave function in terms of the adia-
batic basis in the following way:

Csx,y,zd = o
j

Fjszdf jsx,y;zd, s7d

where thez dependence of the coefficientFiszd is necessary
in order to restore the motion in thez coordinate. We should
note that the above defined basis functions depend only para-
metrically on z, and they are normalized in the following
way:

E fisx,y;zdf jsx,y;zddxdy= di,j . s8d

This normalization implies that all transverse functions must
vanish asx,y→`, and therefore defines the effective bound-
ary of the scattering region asz= ±L.

Having defined the basis set we proceed to insert Eq.(7)
into Eq. (5), and subsequently project the resulting equation
onto fisx,y;zd, to obtain the set of coupled equations

−
"2

2mF ]2

] z2Fiszd + 2o
j

Pij
]

] z
Fjszd + o

j

QijFjszdG
+ UiszdFiszd = EFiszd, s9d

where we have defined, as conventional,

FIG. 1. Constant energy surface representing the potential in Eq.
(2). The parameters chosen for this plot ared=0.1 mm, Bmin

=21.3 G, Bmax=22.5 G, Bbz=1.0 G, L=20 mm. The surface con-
tour is drawn at the energy of the lowest mode of the input arm of
the beam splitter, and we define “left” and “right” arms for labeling
convenience.
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Pij =Kfisx,y;zdU ]

] z
f jsx,y;zdUL , s10d

Qij =Kfisx,y;zdU ]2

] z2f jsx,y;zdUL . s11d

P andQ are operators of momentumlike and kinetic energy-
like quantities, and thus reflect the influence of finite propa-
gation velocity inz. Note thatP andQ vanish by construc-
tion in the outer region.

We have thus cast the original three-dimensional problem
into a collection of two-dimensional problems to find
fisx,y;zd andUiszd, and a one-dimensional coupled-channel
problem to findFiszd. The advantages of this shift in para-
digm are twofold: on one hand, a very complicated and com-
putationally lengthy problem is turned into a simpler and
computationally manageable problem; on the other hand,
the adiabatic approach lends itself very naturally to approxi-
mations and qualitative understanding of the underlying
physics.

D. The R-matrix method

As mentioned earlier, solving the scattering problem im-
plies finding the logarithmic derivativeb as defined in Eq.
(4). To do so, we will exploit a variational “R-matrix” tech-
nique familiar from atomic structure theory.

The usual procedure to solve the Schrodinger equation in
a bounded region(like our inner region) is to specify bound-
ary conditions on the surface of the region, and then find the
resulting energy eigenvalues. For a scattering problem, in-
stead the energyE is specified, and the boundary conditions
follow. In the R-matrix method, we seek solutions whose
logarithmic derivativesb are constanton the surface of the
inner region. This simplifies matching the inner-region solu-
tions to the outer-region solutions, see below. For a given
energy, we then find a spectrum ofb values, corresponding to
a linearly independent set of inner-region wave functions.

Just as there is a variational principle for finding energy
eigenvalues in the usual procedure, there is also a variational
principle for determining the spectrum of logarithmic deriva-
tives. The variational expression forb follows rather simply
from the Schrödinger equation[23]

b =

E
V
F¹W C* ·¹W C +

2m

"2 C*sV − EdCG
E

S

C*C

, s12d

whereeV denotes an integral over the volume of the scatter-
ing region, whileV is the scattering potential, andeS is a
surface integral over the surface bounding the scattering re-
gion.

The typical approach to the problem, at this point is to
expand the wave function in a complete set of basis func-
tions Yk, to get Csx,y,zd=okCkYksx,y,zd, and take matrix
elements of the operators in Eq.(12) with respect to such
basis, to obtain the following generalized eigenvalue prob-
lem [23]:

ĜCW = bL̂CW , s13d

where

Gi j =E
V
F¹W Yi

* ·¹W Yj +
2m

"2 Yi
*sV − EdYjG , s14d

Li j =E
S

Yi
*Yj . s15d

This is the form that the eigenchannelR matrix takes in a
diabatic representation.

The solutions of the eigenvalue problem consists of a set
of eigenvectorsCs and a set of eigenvaluesbs, representing
the logarithmic derivatives of the functionsCs=okCk

sYk.
The newly introduced indexs refers to the different possible
internal states of the system, calledR-matrix eigenchannels.
The concept of eigenchannel in scattering theory can be un-
derstood by analogy with the concept of eigenstate in bound-
state problems. In fact, just like the energy variational prin-
ciple leads to an eigenvalue problem for bound-state
eigenfunction and corresponding energies, the variational
principle in Eq. (12) leads to a set of eigenchannels, with
corresponding eigen-logarithmic derivatives.

As we mentioned earlier, we plan to work using the adia-
batic basis defined in Eq.(7), so we expand Eq.(12) in terms
of this set, and obtain the following variational principle:

b =

o
i j
E dzFH ]

] z
Fi

* ]

] z
Fj +

2m

"2 Fi
*
„Uiszd − E…FjJdi j + 2Fi

*Pij
]

] z
Fj + Fi

*QijFjG
uFisSdu2

. s16d

Since the adiabatic basis only defines motion in the trans-
verse coordinates, it remains to expand the longitudinal func-
tions Fiszd with an arbitrary set ofz-dependent functions, in
our particular case we chose basis splines, in the form
Fiszd=okcikyk

i szd. We can now write the adiabatic equivalent
to Eq. s13d.

In order to simplify the notation, we combine the indices
i ,k into the indexa, so thatca becomes a vector, and we
write

ĜacW = bL̂acW , s17d

where
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Gab
a =E dzFH ]

] z
ya

* ]

] z
yb +

2m

"2 ya
*
„Uiszd − E…ybJdi j

+ ya
* Pij

]

] z
yb +

]

] z
ya

* Pjiyb + ya
* QijybG ,

Lab
a = ya

* sSdybsSddi j . s18d

In the above equations we have written theP-matrix portion
of Eq. s16d in an Hermitian form by integrating by parts, and
setting the resulting surface integral to zero, using the fact
that by definition all couplingsP,Q must vanish outside the
scattering region.

E. The outer region: Matching and physical consideration

Having solved Eq.(17), one obtains a set of eigenvalues
bs, and a set of eigenvectorscWs. It therefore follows that on
the boundariesS of the scattering region we can connect the
inner and outer solutions by

Cssx,y,Sd = o
j

Fj
ssSdf jsx,y,Sd = o

a

ca
syasSdf jsx,y,Sd

= o
a

f jsx,y,Sd * SAj
s e−ikjS

Î2ukiu
+ Bj

s eikjS

Î2ukiu
D , s19d

whereki =Î2mfE−UisSdg is real forE.UisSd, and imagi-
nary for E,UisSd, and S= ±L. At a particular incoming
energy, we define a channel with realki to be “open”
smeaning energetically availabled an channel with imagi-
nary ki to be “closed.” If a channeli is closed we setAj

s

=0, to avoid unphysical divergences. A similar argument
is valid for the derivative of the wave function,

]

] S
Cssx,y,Sd = − bsCssx,y,Sd. s20d

Equationss19d ands20d, together with the orthonormality of
the setfi and the assumption of unit incoming flux imply
thatFj

ssSd and its derivatives can be written as a linear com-
bination of the form

Fi
ssSd = Fdi j

e−ikiS

Î2ukiu
− Sij

eikiS

Î2ukiu
GNj

s,

bsFi
ssSd = − Fdi j

ike−ikiS

Î2ukiu
− Sij

− ikeikiS

Î2ukiu
GNj

s. s21d

The quantityNi
s is a factor which serves to connect the nor-

malizations of the two equations. On the other hand,Sij is the
scattering matrix of the system(often referred to asS ma-
trix), and it represents the probability amplitude to enter the
beam splitter in channelj , and exit it in channeli, or vice
versa, sinceS is Hermitian due to time-reversal symmetry.

Moreover, since the equation is true on the whole of the
boundary, the channel index describes the probability ampli-
tude for the atom to be found at either end of the beam
splitter (in fact at any particular arm of the beam splitter), in
some particular mode. This allows us to calculate mode mix-

ing, as well as reflection and transmission amplitudes. The
above system of equations can be solved for the unknowns
Sij andNj

s.

F. Solving the equations: Considerations on numerical
and mathematical details

The numerical problem consists of two main parts. The
first is to find the transverse eigenmodesfisx,y;zd. This is
accomplished by solving Eq.(6) at various values ofz in
such a way that the adiabatic curvesUiszd may be interpo-
lated easily. We accomplish this task by generating a Hamil-
tonian matrix, again usingb splines as a basis set, and diago-
nalizing it at various values ofz.

Furthermore one needs to evaluate theP andQ matrices
in Eqs. (10) and (11). To do this, one may exploit the
Hellmann-Feynman theorem to obtain the following expres-
sions:[24]

Pijszd = 5 − Mij

Uiszd − Ujszd
, i Þ j

0, i = j

s22d

and

Qii = − o
kÞi

MikMki

Uiszd − Ukszd
, s23d

where

Mij =E fi
*sx,y,zdH ]

] z
Vsx,y,zdJf jsx,y,zddxdy. s24d

We adopt a common approximation wherebyQij =0 for j
Þ i. The second part consists of a scattering problem on the
adiabatic curves, by choosing a basis setyiszd. For our cal-
culations we useb splinesf25,26g.

The guiding potentialVsx,y,zd in Fig. 1 exhibits a reflec-
tion symmetry about thex-y plane. Such a symmetry implies
that there is no coupling between even and odd transverse
modes of the beam splitter. This in turn implies that by de-
scribing the problem in a basis of even-odd modes it is pos-
sible to solve two smaller problems, significantly reducing
the computational effort. At the end of the calculation it is
then possible to perform a change of basis to a “left-right”
set describing the left and right arms of the beam splitter,
where right=even-odd and left=even+odd.

III. RESULTS

Having described the general formalism, we proceed to
report some quantitative results. In particular, we use the
parameters described in the caption of Fig. 1 and study the
behavior of the system as we vary the lengthL over which
the beam is split. We focus especially on the nonadiabatic
characteristics of the beam splitter, namely, reflection and
higher mode excitation.

The parameters that generate the guiding potential in our
model are consistent with those in recent chip-based experi-
ments[13,14]. The major difference is that our model guides
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lie close to the substrate, thus tightly confining the atoms in
the transverse direction. At reasonable atom velocities of
several cm/sec, only two modes are then energetically open,
simplifying the calculations and interpretation in this pilot
study. More realistic beam splitters can be handled by includ-
ing the appropriate number of modes in the calculation.

A. The adiabatic curves

The simplest level of approximation for the problem is to
consider only the first even and odd modes of the structure,
and, analogously to the Born-Oppenheimer approximation,
ignore all higher modes and couplings. Within the frame-
work of such an approximation we see that the Born-
Oppenheimer potential depends only on the transverse fre-
quency of the guide, which is highest at the entrance and exit
of the beam splitter and lowest in the center, giving rise to
curves resembling smoothed square wells. As it turns out the
predictions of this simple model prove to be grossly inad-
equate when compared to full coupled-channel calculation.
The reason for this is that the Born-Oppenheimer channels
are strongly coupled by nonadiabatic effects.

To suggest how big a correction nonadiabatic effects are,
we compare the lowest-lying Born-Oppenheimer potential
U0sRd (dashed line in Fig. 2) to the so-called “adiabatic”
potential, defined byU0

ef fszd=U0szd+Q00szd (solid line). The
Q00szd term represents an effect of the transverse momentum
on the longitudinal motion. As the guiding potential varies as
a function ofz, the paths of the atoms follow the centers of
the guides. This causes the atoms to acquire transverse mo-
mentum, which removes kinetic energy from the longitudinal
motion. ThusQ00 is a positive correction.

In chemical physics applications, the adiabatic curve is
sometimes, but not always, a better single-channel represen-
tation of the problem[27]. In our case, it usefully incorpo-
rates a primary effect arising from nonadiabaticity. Namely,
U0

ef f possesses a barrier at the input of the splitter. This bar-
rier reflects the fact that kinetic energy spent in transverse
motion halts motion in the longitudinal direction. Effects of
this barrier are evident in the fully converged scattering cal-
culations below.

A more complete set of effective adiabatic curves for the
first few even and odd modes is shown in Fig. 3. For kinetic
energies greater than,2 mK, excited-state potentials are en-
ergetically allowed in the scattering region. The correspond-
ing mode mixing can be thought of as the “sloshing” of the
condensate as it is pulled side to side in the potential. Even if
these excited channels are not energetically allowed, they
may (and do) still perturb propagation in the lowest mode.
Since the lengthL of the beam splitter is, in our model,
thousands of times larger than the longitudinal de Broglie
wavelength of the atoms, even a small coupling between
channels can cause a drastic change in phase shift. This im-
plies that we need a fully coupled-channel calculation to
solve the problem quantitatively.

Channel coupling is achieved through off-diagonal ele-
ments of theP matrix, several of which are shown in Fig. 4.
As expected, the couplingsP0i between the lowest channel 0
and higher channelsi diminishes asi gets larger. Also, as
implied by Eq.(22) the coupling is strongest where the po-
tential is steepest in the longitudinal direction(i.e., z= ±1 in
the figure).

FIG. 2. Comparison of lowest-lying Born-OppenheimersU0d
and adiabaticsU0

ef fd curves, for the beam splitter in Fig. 1.
FIG. 3. Effective adiabatic potentials for the configuration in

Fig. 1. Each curve corresponds to a different transverse mode of the
beam splitter. Because of the intrinsic symmetry of the potential,
even and odd modes can be treated separately. The first six even and
odd modes of the structure are depicted here.

FIG. 4. P-matrix elements coupling the first transverse even and
odd modes in Fig. 3 to selected higher ones.
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B. General features of scattering

Having defined the terms of the problem and calculated
the adiabatic curves and couplings, we solve the scattering
equations and extract theS matrices of the system. All fig-
ures shown to this point refer to a beam splitter withL
=2 mm, which is one in which most of the typical features
are present. Figure 5 shows the absolute values of selected
S-matrix elements for this configuration, which represent the
probabilities for various outcomes. In particular, we show the
probabilities to exit in the various arm of the beam splitter,
assuming unit input flux from the left arm of the splitter, as
defined in Fig. 1. At the incident energies shown in Fig. 5,
only the lowest mode in each arm is energetically accessible.
This typical case is illustrative of the basic elements of the
beam splitter.

In this beam splitter the largest probabilities(dashed and
short-dashed lines in Fig. 5) correspond to transmission, with
the probability alternating between left and right arms. Thus
<50-50 beam splitting is possible at atom energies where
these two curves cross. Moreover, the sum of the left and
right transmission probabilities is almost, but not quite, equal
to unity. This can be seen in the slowly decreasing reflection
probabilities(solid and dotted lines) in the figure. The gen-
eral features of beam splitting are preserved under a convo-
lution in energy, as exhibited in Fig. 5(b). Here and in what
follows, convolution is used to simplify the appearance of
the calculations.

The reflection probabilities also exhibit a similar left-right
oscillation as a function of energy. In addition, they exhibit a
much faster oscillation. This faster oscillation is familiar
from one-dimensional scattering from a potential, with one
oscillation being added each time the energy increases
enough to introduce a new de Broglie wavelength into the
scattering region[28]. Here the oscillations are numerous,
since the guiding potential is thousands of de Broglie wave-
lengths long.(These oscillations are of course also present in
the transmission probabilities, but are too small to be seen on
the scale of the figure.)

For smaller values ofL, the beam splitter is badly nona-
diabatic, and even qualitative features of beam splitting fade.
Figure 6 shows such a nonadiabatic case, withL=1 mm. The
effect of the input barrier described in Fig. 2 is now much
larger, suppressing all transmission up to input velocities of
about 5 cm/s. As the kinetic energy reaches the energy of the
barrier, the probability exhibits resonant behavior by the
presence of spikes in theS matrices. Though mostly washed
out by convolution, these features would, in principle, cause
transparency of the barrier at extremely well-defined veloci-
ties, where the kinetic energy equals the energy of a meta-
stable bound state. At higher atom velocities, above the input
barrier, reflection remains extremely likely, and even the ba-
sic action of the beam splitter is destroyed.

C. Towards adiabaticity

Figure 7 shows reflection probabilities versus atom veloc-
ity, for various values of the beam splitter lengthsL. These
results are convolved over an energy width of 16mK to em-
phasize the overall probability rather than the oscillatory

FIG. 5. Probability for exit in the various arms of the beam
splitter depicted in Fig. 1, vs incident atom velocity. This figure
assumes that the atoms have entered in the lowest mode of the left
arm. The velocities shown correspond to atom energies below the
second threshold, thus suppressing higher mode excitations. The
bottom panel is a 26mK Gaussian convolution of the one above.

FIG. 6. Scattering probabilities as in Fig. 5, but for the ex-
tremely nonadiabatic caseL=1 mm. Only the convolved plot is
shown, with a width of 26mK.

FIG. 7. Total reflection probabilities for multimode beam splitter
of different lengths. From top to bottomL=1,2,5,7,15,30mm.
The cusps around 12.5 and 13 cm/s are the effects of the second
and third thresholds becoming energetically available. The plot rep-
resents a 16mK width Gaussian convolution.
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structure. ForL.2 mm, reflection decreases nearly linearly
on this semilog plot, suggesting an exponential decrease of
reflection probability with velocity. Reflection also decreases
with increasingL, as expected for an increasingly adiabatic
beam splitter. The features noticeable around 12.5 cm/s and
13.5 cm/s represent cusps at the thresholds for the second
and third modes to become energetically available, smoothed
out by convolution.

Finally, in Fig. 8 we plot the total transmission to modes
higher than the first, for input velocities higher than the sec-
ond mode threshold. As might be expected, the probability to

generate higher modes grows as a function of atom velocity.
Countering this trend, the probability again diminishes as the
lengthL becomes longer.

IV. CONCLUSIONS

We have developed a different approach to the analysis of
noninteracting atomic beams traveling through waveguides,
based on the adiabatic representation of scattering theory.
This method, originally developed for the study of molecular
collision theory, is known to be very flexible and could be
applied to many other guiding geometries. We applied this
approach to the study of a two-wire atomic beam splitter,
both to illustrate the method and to explore a particular guid-
ing geometry. We have found that the nonadiabatic couplings
play a significant role. Because we have deliberately focused
on a tightly confining geometry, it is likely that nonadiabaic
effects are even more significant in realistic beam splitters.
This will be a topic of future study.

Also a topic of future study will be the analysis of time-
dependent propagation of wavepackets through the potential,
via the Fourier analysis of the scattering wave functions.
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FIG. 8. Total transmission to higher modes for different lengths
beam splitter from top to bottomL=1,2,5,7,15,30mm. The plot
represents a 3.25mK width Gaussian convolution.
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