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Wave mechanics of a two-wire atomic beam splitter
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We consider the problem of an atomic beam propagating quantum mechanically through an atom beam
splitter. Casting the problem in an adiabatic representdiiothe spirit of the Born-Oppenheimer approxima-
tion in molecular physigssheds light on explicit effects due to nonadiabatic passage of the atoms through the
splitter region. We are thus able to probe the fully three-dimensional structure of the beam splitter, gathering
guantitative information about mode mixing, splitting ratios, and reflection and transmission probabilities.
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I. INTRODUCTION the limit of zero collision energy17]. This same kind of
o ) ) ) _ “quantum reflection” will be generically present in beam
Continuing advances in the production and manipulatiorspiitters as well, where scattering can occur from changes in
of atomic Bose-Einstein condensat&&C’s) are tending to-  the transverse potential as the longitudinal coordinate varies.
ward applications in interferometry. BEC’s can now be pro-Reflection upon entering the beam-splitter region can prove
ducedin situ on surface$1-3], making them ready for load- devastating for potential applications such as a Sagnac inter-
ing into “interferometer-on-a-chip” microstructures. Being in ferometer.
close proximity to the chip, the atoms are subject to control Both aspects of instability in an atom interferometer can
via magnetic fields generated by wires on the chip. Becauske expressed in terms of quantum-mechanical scattering
of their coherence and greater brightness, Bose-condens#éteory of the atoms from the guiding potential. Specifically, a
atoms are expected to improve upon previous accomplishtondensate entering a beam splitter in a@rmand in trans-
ments with thermal atoms, such as neutral atom guidingverse modem possesses a scattering amplituglg, .. for
[4,6—%, Switching [10], and multimode beamsphttmg eXiting in arma’ in modem'. In this paper we therefore cast

[11,12. Studies of propagation of BEC'’s through waveguidethe general probl_em of I_Jeam splittin_g in terms of_scattering
structures are also underwgia). theory. For the time being we restrict our attention to the

While the BEC is created in its lowest transverse mode iffin€ar scattering problem, and therefore implicitly consider

the guiding potential, keeping it in this mode as it travelsthe regime of weak interatomic interactions. This is suitable,

. : P . since the basic question we raise is the effect of wave me-
through the chip remains a significant technical Cha“enge'hanical propagation on the atoms. Note that the weakly in-

For example, it appears that inhomogeneities in the guidin ; A : . .
) X . eracting atom limit is achieved with small atom number, in
wires produce field fluctuations that can break up the con-

. " which case number fluctuations may be problem#tig].
de'?s_ate wave funcUoﬁl&lAj. Add't'ona”y: the very act of [ternatively, this limit is reached at low atom density, which
splitting & condensate into two p‘?“hs .|mpI|es a transverse pull o chieved for a BEC that has expanded longitudinally for
on the condensate that can excite higher modes. Ideally, tl‘éeome time before entering the beam-splitter region
condensate propagates sufficiently slowly that, once in its :

. i ; . Restricting our attention to the linear Schrédinger equa-
lowest mode, it follows adiabatically into the lowest mode oftion opens up a host of powerful theoretical tools that have

the Sp"t. condensate. The criterion _for_ this to happenbeen developed in the context of atomic scattering. In the
roughly, is that the condensate _velocrcy n thg q|rect|on Ofpresent instance, given the dominant role of nonadiabatic
motllon be Iers]_s rt]hfr‘]m“g whe_reL 'ﬁt a gg_aract?]rlstmtle_n%th effects, the tool mostly used is the adiabatic representation.
scale over which the béam IS Spiil, ands a Characteristic ;g g analogous to the Born-Oppenheimer approximation

frequency of transvers_e oscillation in Fhe guiding potehtial.in molecular physicg19]. Specifically, we freeze the value
Refer_ence[l_ﬂ has verified this (_:onclu5|on numerically, Na of the longitudinal coordinate and solve the remaining two-
two-dimensional model that varies the transverse potential Nimensional Schrodinger equation Bey. The resulting

time, at a rate equivalent to the passage of t_he moving CorE—dependent energy spectrum represents a set of potential
densate through a beam splitter. Populating higher modes_c%r&rveS for following the remaining motion i This general

reduce fringe contrast, thus spoiling the operation of an in- : ; T
) > ) approach has been applied previously to a model situation in
terferometer. Diffraction has also been pointed out to hav Ly bpied p y

§vhich the transverse potential is gently contracted or ex-
negative effects on guiding in genefalo]. P genty

Moving too slowly through the beam splitter is, however, g;ne(iﬁg[sl_&zq’ here we extend it to realistic waveguide ge
potfantially d_angerous.because of_threshold scatteriljg behav- This representation has obvious appeal for the problem at
lorin a varying potenUaI. ]n one d|men§|on, awave 'n.c.'de.mhand, since in this level of approximation it is assumed that
on a scattering potential is reflected with unit probability iN e atoms move infinitely slowly through the beam splitter. It
is, however, an exact representation of scattering theory, and
the leftover nonadiabatic corrections, arising from finite
*Electronic address: bohn@murphy.colorado.edu propagation velocity, can be explicitly incorporated. We will
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see that nonadiabatic effects have a strong influence on bedime substrate as thez plane, we let thez axis lie exactly
splitters based on experimentally realistic parameters. Thbetween the wires, and lgtaxis point to the region above
effects of excitation of higher transverse modes and of rethe substrat¢21].
flection from the beam splitter therefore have a fairly simple We then proceed with the addition of two bias fields, one
interpretation in these explicit nonadiabaticities. In addition,in the Z directionB,,, and one in the& directionBy,. The first
the successive solution of a set of two-dimensional problemsf the two is put in place in order to avoid regions of exactly
in transverse coordinatesy, followed by a coupled-channel zero field, where Majorana transitions would cause arbitrary
calculation inz, is less numerically intensive than determin- spin flips, and therefore loss of atoms from the guide. The
ing the full three-dimensional solution all at once. Indeed,second of the two fields, when added vectorially to the field
this is why adiabatic representations have found widespreagenerated by the wires, generates regions of minimum poten-
use in chemical physics. Larger problems, more closely retial in the x-z plane. In particular, fongz,LLOI/de, where
sembling experimental beam splitters, can therefore bg., is the permeability of free space adds the separation
handled. This paper is organized as follows. In Sec. Il webetween the wires, there exists a single potential minimum
introduce the model, describing how the beam splitter workdocated on they axis a distance,=d above the wires.
in general terms and outlining the theoretical methods used Furthermore, foBy,< ng two minima are generated on
in the paper, introducing the main ideas about the adiabatithe y axis, one above and one belgw, and forBy,>Bp,,
formalism. In Sec. Ill we present the results obtained fromtwo minima are again generated above the substrate, but this
our study, with a focus on the description of the theory itselftime they are displaced symmetrically to the left and the
and how its different components relate to the physics of theight of they-z plane. It is this latter regime that we use to
problem. generate a beam splitter, letting the wires be fixed, and
We construct scattering amplitud8&E) in the energy do- changing the transverse bias fi@g, as a function of from
main, as is traditional for experiments involving continuousB,,,,, t0 Byin @nd back, such thd@,,,> Bin> ng.
monoenergetic beams of particles. Therefore in the present The magnetic field produced by such configuration is
work we model a continuously fed guide, or a condensateherefore[18,21]
which has been allowed to expand in the longitudinal direc-

tion; if the size of the cloud is of the order of the splitting _ M_o'{ -y + -y } +By(2)
potential, it is not unreasonable to consider it beamlike, and 2w (x=d)2+y?  (x+d)2+y? e
use the language of stationary state physics.
A more precise account of the wave-packet behavior | x—d x+d
could be performed by a fully time-dependent analysis of the Y= ’“—0[ >+ 5 2] ,
problem, which would lead to a potentially unmanageable 2m [ (x=d)*+y°  (x+d)+y
computing effort given by the truly three-dimensional nature
of the problem. Alternatively, an analysis of the scattering B,= By, (1)

wave functions obtained via the scattering problem could

also unveil the time-dependent features of the problem. I@nd the consequent potential experienced by the atoms is
particular, one would invoke the principle of superposition

and allow waves of different energies to interfere via a Fou- V= grugme(BJ, (2)

rier integral, generating wave packets. Givep the relat!\(e.IXNhereMB is the Bohr magnetorye is the Landé factomg is
smooth energy dependence of the transmission probabllme_ e total angular-momentum projection quantum number,
we expect that the general conclusions regarding beam spllg

) i1 still hold. A vsis will A nd the atoms’ spin is aligned with the field at every point
ting will still hold. A separate analysis will uncover aspects;, space. An example of a guiding potential is illustrated in

of the problem particular to the time domain. Fig. 1
The adjustable experimental parameters are therefore the
Il. MODEL current in the wired, the values of the bias field&,,.,, Bmin:

and By, and the distance between the wires. Throughout
The salient characteristics of a two-wire atomic beamthis work we choose, for concretenest=0.1 um, By

splitter can be realized in the following way: a guiding po- =213 G,B,,,,=22.5 G,B,,=1.0 G, L=20 um, and we let
tential is generated by the magnetic field due to two paralleg,_(z) be a fourth-order polynomial im such that it has zero
current carrying wires and an additional bias field perpenyerivative at the centdz=0) and edges$z= +L) of the beam
dicular to them. By suitably decreasing the bias field or thesplitter. Also we will only consider cases in whid,(2)
distance between the wires, it is possible to decrease th@,ches jts minimum value at 0 only, avoiding the charac-
separation between two minima, and thus increase the probsization of the trivial evolution of the wave function at a
ability for the atoms to tunnel from one to another. constant field. In particular, we will consider the following

form for the variation of the transverse bias field:

A. The beam-splitting potential

. . . Bbx(z) = Bmin"’ (Bmin - Bmax)[Z(X/L)z - (X/L)A]- (3)
We start by considering the magnetic field generated by

two infinitely long parallel wires lying on a substrate, eachVarying L will therefore adjust the adiabaticity of the beam

carrying a current in the z direction. Defining the plane of splitter, whose effects will be studied in Sec. Il B.
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surfaceX, and WV is the wave function in the inner region.
Because the wave function must vanish in the limit of large
x| or |y, the surface consists, for us, of the two planes
=zxL. To find solutions inside the box we used tRematrix
method, formulated in the adiabatic representation. A deriva-
tion of this method follows.

C. The adiabatic representation

We start by writing the Schroédinger equation

- ﬁ—zi‘lf(x 2)+|- ﬁ—sz +V(x,Y,2) |P(x,y,2)
omazz Y 2m XY Y, a4
=EVY(Xx,y,2), (5)

FIG. 1. Constant energy surface representing the potential in Eq.
(2). The parameters chosen for this plot ate0.1um, Bnin
=21.3 G,B,,5,=22.5 G, B,,=1.0 G, L=20 um. The surface con- With V(x,y,z) as defined in Eq(2). If atoms in the guide
tour is drawn at the energy of the lowest mode of the input arm ofwere moving infinitely slowly, i.e., adiabatically, then the
the beam splitter, and we define “left” and “right” arms for labeling wave function would be well represented by the basis set
convenience. ¢i(x,y;2) with eigenvaluedJ;(z), defined as solutions to the

equation
B. Waveguides as a scattering problem

Because we are going to treat the beam splitter as a scat-
tering problem, we will begin by offering a quick review of
scattering theory; in particular, we will reproduce the basic

formulation of the adiabatic treatment of the scatteringag iy the Born-Oppenheimer approximation, the quantities
problem. _ Ui(2) serve as effective potentials for the subsequent motion
Scattering theory is fundamentally based on the SUPerpGy, , 1 yecover the effect of finite velocity g it would be

sition principlg, which cqnstrains us to the solution c.)f tr.".eappropriate to expand the wave function in terms of the adia-
linear Schrddinger equation. This limit is nonetheless J“St'f"batic basis in the following way:

able in light of the known problems caused by the interaction
between atoms, such as the wave function recombination in-
stabilities described in Ref22]. V(xy,2) = 2 Fi(2dj(x.y;2), (7)

The separation between the guides at the input and output j
ports of the beam splitter is sufficiently great that no tunnel-
ing is possible between the guides within the time frame ofwhere thez dependence of the coefficieR{(z) is necessary
the experiment. The problem is thus divided into two sepain order to restore the motion in ttzecoordinate. We should
rate regions. We will refer to the regidm| <L as the scat- note that the above defined basis functions depend only para-
tering region. This is the inner region containing the activemetrically onz, and they are normalized in the following
part of the beam splitter, where all the coupling between thevay:
modes takes place. In the outer region, definetzpy L, the
potential has translational symmetry m Solutions to the
Schrodinger equation in the outer region are therefore trivi- f i(X,¥:2) j(x,y;2)dxdy= 6, ;. (8)
ally found to be products of transverse modes and longitudi-
nal plane-wave solutions. The problem is thus reduced to . o )
finding solutions inside the scattering region, and matchTh'S_ normalization implies that all transverse func_:tlons must
them to the solutions outside to find solutions to the globalVanish a,y—c, and therefore defines the effective bound-

problem. Once these solutions are found it is then possible t8"Y ©f the scattering region & +L. ,
generate thé matrix for the system. Having defined the basis set we proceed to insert(Eq.

Moreover, since we are matching at the boundary of thdnto Ed.(5), and subsequently project the resulting equation
scattering region the only information we need is the value®Nto ¢i(x,y;2), to obtain the set of coupled equations
of the wave function and its derivative at the boundary, and

h2
= o Vit VYi2) | 4i(xy:D = U@ i (x Y. (6)

nowhere else. In particular, we need to compute the quantity h2| P d
- —| —SFi@+2> P, —F(2) + 2, Q;iF;
1 aw) @ am| 72712 23 PigFE T 2 QR
W) on |y +U,(2F (2 =EF(2), 9)

defined as the logarithmic derivative, wheXds the bound-
ary of the scattering regiom is the outward normal to the where we have defined, as conventional,
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7 xy:2) > (10 | [W -W+—2T\If*<v—E)«1f}
Jz ) fi
b= . @

p *
= by > (11 Lw v

P andQ are operators of momentumlike and kinetic energy-where [, denotes an integral over the volume of the scatter-
like quantities, and thus reflect the influence of finite propa-ing region, whileV is the scattering potential, ank is a
gation velocity inz. Note thatP andQ vanish by construc-  surface integral over the surface bounding the scattering re-
tion in the outer region. gion.

We have thus cast the original three-dimensional problem The typical approach to the problem, at this point is to
into a collection of two-dimensional problems to find expand the wave function in a complete set of basis func-
#i(x,y;2) andU;(2), and a one-dimensional coupled-channeltions Y,, to getW(x,y,2) =3,C,Y«(X,Y,2), and take matrix
problem to findF;(z). The advantages of this shift in para- elements of the operators in E(L2) with respect to such
digm are twofold: on one hand, a very complicated and compasis, to obtain the following generalized eigenvalue prob-
putationally lengthy problem is turned into a simpler andlem [23]:
computationally manageable problem; on the other hand, I'C=DbAC, (13)
the adiabatic approach lends itself very naturally to approxi-
mations and qualitative understanding of the underlyingvhere

i > 2 2 *
physics. Ty :f [VYi -VYj+h—TYi (V—E)Y'], (14)
Q

D. The R-matrix method

P = <¢i(X,y;Z)

Q= <¢i(X,y;Z)

As mentioned earlier, solving the scattering problem im- _ «

plies finding the logarithmic derivative as defined in Eq. Ajj = EYi Yj- 19

(4). To do so, we will exploit a variationalR-matrix” tech-

nique familiar from atomic structure theory. This is the form that the eigenchanrfelmatrix takes in a
The usual procedure to solve the Schrodinger equation idiabatic representation.

a bounded regiodike our inner regiois to specify bound- The solutions of the eigenvalue problem consists of a set

ary conditions on the surface of the region, and then find thef eigenvectorsC” and a set of eigenvaluds, representing
resulting energy eigenvalues. For a scattering problem, inthe logarithmic derivatives of the function®?==,C/Y,.
stead the energk is specified, and the boundary conditions The newly introduced indeu refers to the different possible
follow. In the R-matrix method, we seek solutions whose internal states of the system, callRematrix eigenchannels.
logarithmic derivativesd are constanton the surface of the The concept of eigenchannel in scattering theory can be un-
inner region. This simplifies matching the inner-region solu-derstood by analogy with the concept of eigenstate in bound-
tions to the outer-region solutions, see below. For a giverstate problems. In fact, just like the energy variational prin-
energy, we then find a spectrumiofalues, corresponding to ciple leads to an eigenvalue problem for bound-state
a linearly independent set of inner-region wave functions. eigenfunction and corresponding energies, the variational
Just as there is a variational principle for finding energyprinciple in Eq.(12) leads to a set of eigenchannels, with
eigenvalues in the usual procedure, there is also a variationabrresponding eigen-logarithmic derivatives.
principle for determining the spectrum of logarithmic deriva- As we mentioned earlier, we plan to work using the adia-
tives. The variational expression fbrfollows rather simply  batic basis defined in Eq7), so we expand Eq12) in terms
from the Schrédinger equatid23] of this set, and obtain the following variational principle:

gz ) K2

d .0 2m_, « 0 .
EfdzHa_zFi_Fj+ F (Ui(Z)—E)Fj}@ﬁZFi Pija_ZFJ'"'Fi QijF;
i
b=

ESE (16

Since the adiabatic basis only defines motion in the trans- In order to simplify the notation, we combine the indices
verse coordinates, it remains to expand the longitudinal funck,k into the index«, so thatc, becomes a vector, and we
tions F;(2) with an arbitrary set of-dependent functions, in  write
our particular case we chose basis splines, in the form
Fi(2=Zciyi(2). We can now write the adiabatic equivalent

to Eq.(13). where

'3 = bA%G, (17)
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above system of equations can be solved for the unknowns

d .0 2m . ing, as well as reflection and transmission amplitudes. The
= f dz | 2 Ve, Yt 52YaUi@ ~B)yp( 4
S; and N]f’.

+ ya ij 9z yﬁ 97 ya leﬁ+ yanlyB:| . . . . .
F. Solving the equations: Considerations on numerical

and mathematical details

a _
Aap=Yal2)Yp(2) 9y (18) The numerical problem consists of two main parts. The
In the above equations we have written fenatrix portion  first is to find the transverse eigenmodgs$x,y;z). This is
of Eq. (16) in an Hermitian form by integrating by parts, and accomplished by solving Eq6) at various values of in
setting the resulting surface integral to zero, using the facsuch a way that the adiabatic curndegz) may be interpo-
that by definition all coupling®,Q must vanish outside the lated easily. We accomplish this task by generating a Hamil-
scattering region. tonian matrix, again usinlg splines as a basis set, and diago-
nalizing it at various values of.
_ _ _ ) _ Furthermore one needs to evaluate thand Q matrices
E. The outer region: Matching and physical consideration in Egs. (10) and (11). To do this, one may exploit the
Having solved Eq(17), one obtains a set of eigenvalues Hellmann-Feynman theorem to obtain the following expres-
b, and a set of eigenvectods. It therefore follows that on  Sions:[24]
the boundarie& of the scattering region we can connect the

inner and outer solutions by My i #]
Pi(2 =1 Ui(2 -U;(2) (22
xy,3) = 2 F(E)(xy.2) = 2 CoYal(2) (%Y. 3) 0, =
] a
-ik; S ik and
=3 ¢00y.3)* ( A— B-",:), (19) .
| | 2|k| V2K Qi=-> _ MM , (23

A — ‘' Ui(2-U
wherek;=2m[E-U;(X)] is real forE>U;(Z), and imagi- i Ui(2 - U(2)

nary for E<U;(2), and>=+*L. At a particular incoming where

energy, we define a channel with relgl to be “open”

(meaning energetically availablan channel with imagi- M. =f & (Xy z){iv(x y Z)}(;’J'(X y,2)dxdy. (24)
1 ” HE o 1] I 10 1 J\ ™ ) .

nary k; to be “closed.” If a channel is closed we se&; Jaz

=0, to avoid unphysical divergences. A similar argumen

. . A . t\N t mmon roximation wher =0 for j
is valid for the derivative of the wave function, e adopt a co on approximatio ereQy =0 for j

#1i. The second part consists of a scattering problem on the
9 adiabatic curves, by choosing a basis wét). For our cal-
E‘I"’(x,y,i) =-b7V(xy,2). (200 culations we us® splines[25,26].
The guiding potentiaV/(x,y,2) in Fig. 1 exhibits a reflec-
Equations(19) and(20), together with the orthonormality of tion symmetry about the-y plane. Such a symmetry implies
the set¢; and the assumption of unit incoming flux imply that there is no coupling between even and odd transverse
thatF{’(X) and its derivatives can be written as a linear com-modes of the beam splitter. This in turn implies that by de-

bination of the form scribing the problem in a basis of even-odd modes it is pos-
ks s sible to solve two smaller problems, significantly reducing
FO(3) _{ s e -S € } o the computational effort. At the end of the calculation it is
' '2|K| ' ’2|k,| then possible to perform a change of basis to a “left-right”
set describing the left and right arms of the beam splitter,

ikekix — jkeki= where right=even-odd and left=even+odd.

bF(2) =~ [ -§i—F—— }Nj’ (21)
V2l v2lki

. . IIl. RESULTS
The quantityN; is a factor which serves to connect the nor-

malizations of the two equations. On the other h&ds the Having described the general formalism, we proceed to
scattering matrix of the systeloften referred to a& ma-  report some quantitative results. In particular, we use the
trix), and it represents the probability amplitude to enter theparameters described in the caption of Fig. 1 and study the
beam splitter in channgl, and exit it in channel, or vice  behavior of the system as we vary the lengtlover which
versa, sinces is Hermitian due to time-reversal symmetry. the beam is split. We focus especially on the nonadiabatic
Moreover, since the equation is true on the whole of thecharacteristics of the beam splitter, namely, reflection and
boundary, the channel index describes the probability amplihigher mode excitation.
tude for the atom to be found at either end of the beam The parameters that generate the guiding potential in our
splitter (in fact at any particular arm of the beam splijtén model are consistent with those in recent chip-based experi-
some particular mode. This allows us to calculate mode mixments[13,14]. The major difference is that our model guides
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Or= = -
g — Odd Modes | .~
sk | -~ Even Modes| /4
-10+ i
Q L ~
=15k = é
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20+ .
25 i
-30F | o | _
2 - 0 1 2
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FIG. 2. Comparison of lowest-lying Born-Oppenheiniét) FIG. 3. Effective adiabatic potentials for the configuration in
and adiabatic(Uﬁ”) curves, for the beam splitter in Fig. 1. Fig. 1. Each curve corresponds to a different transverse mode of the

beam splitter. Because of the intrinsic symmetry of the potential,

lie close to the substrate, thus tightly confining the atoms irfVen and odd modes can be treated'separately. The first six even and

the transverse direction. At reasonable atom velocities ofdd modes of the structure are depicted here.

several cm/sec, only two modes are then energetically open,

simplifying the calculations and interpretation in this pilot A more complete set of effective adiabatic curves for the

study. More realistic beam splitters can be handled by includfirst few even and odd modes is shown in Fig. 3. For kinetic

ing the appropriate number of modes in the calculation.  energies greater than2 uK, excited-state potentials are en-
ergetically allowed in the scattering region. The correspond-
ing mode mixing can be thought of as the “sloshing” of the

A. The adiabatic curves condensate as it is pulled side to side in the potential. Even if
these excited channels are not energetically allowed, they

The simplest Iev_el of approximation for the problem is to may (and do still perturb propagation in the lowest mode
consider only the first even and odd modes of the structureSince the lengthL of the beam splitter is, in our model '

and, analog_ously to the Born—Oppgnhelmer "’.‘ppmx'matlonthousands of times larger than the longitudinal de Broglie

ignore all higher modes and couplings. Within the frame- :

work of such an approximation we see that the Bom_wavelength of the atoms, ceven a S"?a” couplmg bet"_ve?”
. ' channels can cause a drastic change in phase shift. This im-

Oppenheimer potential depends only on the transverse fre-

quency of the guide, which is highest at the entrance and exRIIes that we need a f‘!"y. coupled-channel calculation to
solve the problem quantitatively.

of the beam splitter and lowest in the center, giving rise to Channel coupling is achieved through off-diagonal ele-

curves resembling smoothed square wells. As it turns out the fth : | of which h i Fig. 4

redictions of this simple model prove to be grossly inad-ments of theP matrix, severa’ ol which are shown In =ig. .
P -~ As expected, the couplindg®; between the lowest channel 0
equate when compared to full coupled-channel calculation

The reason for this is that the Born-Oppenheimer channel‘%md higher channels diminishes as gets larger. Also, as

are strongly coupled by nonadiabatic effects. 'mpl.ield. by Eq.(22). thi ccl)upling di.s sltr;nge_s'g whe£e+th(_a po-

To suggest how big a correction nonadiabatic effects ar t,ﬁnt"f" Is steepest in the longitudinal directiore., z=+1 in

. . ._the figure.

we compare the lowest-lying Born-Oppenheimer potentia
Uy(R) (dashed line in Fig. Rto the so-called “adiabatic”
potential, defined by$"(2)=Uq(2) +Quo(2) (solid ling). The '
Qoo(2) term represents an effect of the transverse momentum 4or
on the longitudinal motion. As the guiding potential varies as
a function ofz, the paths of the atoms follow the centers of 20
the guides. This causes the atoms to acquire transverse mo- ~
mentum, which removes kinetic energy from the longitudinal E o —
motion. ThusQqg is a positive correction. &

In chemical physics applications, the adiabatic curve is
sometimes, but not always, a better single-channel represen-
tation of the problenf27]. In our case, it usefully incorpo-
rates a primary effect arising from nonadiabaticity. Namely, -40

¢ possesses a barrier at the input of the splitter. This bar-
rier reflects the fact that kinetic energy spent in transverse
motion halts motion in the longitudinal direction. Effects of
this barrier are evident in the fully converged scattering cal- FIG. 4. P-matrix elements coupling the first transverse even and
culations below. odd modes in Fig. 3 to selected higher ones.

- P13 .
- P14 Even Modes
} 0Odd Modes

20

0
z (m)
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1
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10 - Reflection Right [|-- Reflection Right s}
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FIG. 5. Probability for exit in the various arms of the beam  FIG. 6. Scattering probabilities as in Fig. 5, but for the ex-
splitter depicted in Fig. 1, vs incident atom velocity. This figure tremely nonadiabatic case=1 um. Only the convolved plot is
assumes that the atoms have entered in the lowest mode of the l&fiown, with a width of 26uK.
arm. The velocities shown correspond to atom energies below the
second threshold, thus suppressing higher mode excitations. The For smaller values of, the beam splitter is badly nona-
bottom panel is a 26K Gaussian convolution of the one above.  giabatic, and even qualitative features of beam splitting fade.
Figure 6 shows such a nonadiabatic case, Wit um. The
) ] effect of the input barrier described in Fig. 2 is now much

Having defined the terms of the problem and calculateqyrger, suppressing all transmission up to input velocities of
the adiabatic curves and couplings, we solve the scatteringyout 5 cm/s. As the kinetic energy reaches the energy of the
equations and extract tf@matrices of the system. All fig- parrier, the probability exhibits resonant behavior by the
ures shown to this point refer to a beam splitter With  yresence of spikes in tf@matrices. Though mostly washed
=2 pm, which is one in which most of the typical features oyt py convolution, these features would, in principle, cause
are present. Figure 5 shows the absolute values of selectggnsparency of the barrier at extremely well-defined veloci-
S-matrix elements for this configuration, which represent thecies, where the kinetic energy equals the energy of a meta-
probabilities for various outcomes. In particular, we show thestaple bound state. At higher atom velocities, above the input
probabilities to exit in the various arm of the beam splitter,payrier, reflection remains extremely likely, and even the ba-
assuming unit input flux from the left arm of the splitter, asgjc action of the beam splitter is destroyed.
defined in Fig. 1. At the incident energies shown in Fig. 5,
only the lowest mode in each arm is energetically accessible.
This typical case is illustrative of the basic elements of the
beam splitter. Figure 7 shows reflection probabilities versus atom veloc-

In this beam splitter the largest probabilitietashed and ity, for various values of the beam splitter lengthsThese
short-dashed lines in Fig) Sorrespond to transmission, with results are convolved over an energy width ofdl6 to em-
the probability alternating between left and right arms. Thugphasize the overall probability rather than the oscillatory
~50-50 beam splitting is possible at atom energies where
these two curves cross. Moreover, the sum of the left and 1
right transmission probabilities is almost, but not quite, equal
to unity. This can be seen in the slowly decreasing reflection
probabilities(solid and dotted linesin the figure. The gen-
eral features of beam splitting are preserved under a convo-
lution in energy, as exhibited in Fig(ly. Here and in what
follows, convolution is used to simplify the appearance of
the calculations.

The reflection probabilities also exhibit a similar left-right
oscillation as a function of energy. In addition, they exhibit a T
much faster oscillation. This faster oscillation is familiar
from one-dimensional scattering from a potential, with one 10,125 . . 3
oscillation being added each time the energy increases 6 V (cm/s)
enough to introduce a new de Broglie wavelength into the
scattering regior{28]. Here the oscillations are numerous,  FIG. 7. Total reflection probabilities for multimode beam splitter
since the guiding potential is thousands of de Broglie waveof different lengths. From top to botton=1,2,5,7,15,3Qum.
lengths long(These oscillations are of course also present irrhe cusps around 12.5 and 13 cm/s are the effects of the second
the transmission probabilities, but are too small to be seen oand third thresholds becoming energetically available. The plot rep-
the scale of the figurg. resents a 1K width Gaussian convolution.

B. General features of scattering

C. Towards adiabaticity

Probability
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generate higher modes grows as a function of atom velocity.
Countering this trend, the probability again diminishes as the
3 lengthL becomes longer.

IV. CONCLUSIONS

3 We have developed a different approach to the analysis of
noninteracting atomic beams traveling through waveguides,
8 e me—————— based on the adiabatic representation of scattering theory.
e This method, originally developed for the study of molecular
------------------------------------------ collision theory, is known to be very flexible and could be
L T T v e P applied to many other guiding geometries. We applied this
V (cm/s) approach to the study of a two-wire atomic beam splitter,
both to illustrate the method and to explore a particular guid-
FIG. 8. Total transmission to higher modes for different Iengthsing geometry. We have found that the nonadiabatic couplings
beam splitter from top to bottorb=1,2,5,7,15,3Qum. The plot  pjay a significant role. Because we have deliberately focused
represents a 3.2aK width Gaussian convolution. on a tightly confining geometry, it is likely that nonadiabaic

structure. FoiL>2 um, reflection decreases nearly linearly effects are even more significant in realistic beam splitters.
on this semilog plot, suggesting an exponential decrease dihis Will be a topic of future study. _ _
reflection probability with velocity. Reflection also decreases AlSO a topic of future study will be the analysis of time-
with increasingL, as expected for an increasingly adiabaticd®Pendent propagation of wavepackets through the potential,
beam splitter. The features noticeable around 12.5 cm/s anfi2 the Fourier analysis of the scattering wave functions.
13.5 cm/s represent cusps at the thresholds for the second
and third modes to become energetically available, smoothed
out by convolution.

Finally, in Fig. 8 we plot the total transmission to modes This work was supported by a grant from ONR-MURI.
higher than the first, for input velocities higher than the sec\We acknowledge useful discussions with Michael Bromley,
ond mode threshold. As might be expected, the probability td3rett Esry, and Alex Zozulya.

Probability
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