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We propose a novel kind of electric field spectroscopy of ultracold, polar molecules.  

Scattering cross sections for these molecules will exhibit a quasi-regular series of 

resonance peaks as a function of applied electric field.  In this contribution, we derive a 

simple approximate formula for F(n), the electric field F at which the nth resonance 

appears. 

 

The topic of this contribution does not strictly belong at the International 

Conference on Laser Spectroscopy, I suppose, since it has nothing whatever to 

do with lasers.  However, I do intend to discuss a kind of spectroscopy that is 

peculiar to polar molecules in an ultracold environment.  It turns out that polar 

molecules at low temperatures respond really strongly to electric fields, 

particularly when the molecules collide.  So, by monitoring the scattering cross 

section as a function of electric field, you can try to read out information on the 

dimer formed by the collision partners.  In what I discuss here, I consider the 

effect of a dc field; you could think of it as a kind of “dc laser spectroscopy,” if 

you like.   

Consider a pair of molecules that approach one another in an ultracold 

environment, with essentially zero relative kinetic energy.  The actual scale of 

this energy is assumed to be something like milliKelvin, or perhaps tens of 

microKelvin; it depends on whose experiment you’re talking about [1].  

Considering that ten microKelvin corresponds to something like 200 MHz of 

energy, a cold collision event could in principle probe resonant structure 

between the colliding partners on about this scale.  This is plenty enough 

resolution to distinguish between different ro-vibrational states, for example.   

Well, there’s an obvious problem with using these collisions for 

spectroscopy.  The collision energy, within this temperature-defined width, is 

always the same, namely, zero.  This seems to imply that you could probe one 

very tiny slice of the collisional spectrum really well, but at the expense of 

everything else going on in the complex.  In conventional spectroscopy, this 

would not be a problem, since you could bring in photons of a desired energy 

and raise or lower the energy of the collision partners to any other energy level 
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you want to probe.  (In the context of cold collisions, this is in fact done 

frequently, and is known as photoassociation [2].) 

There is an alternative way to proceed, however.  Rather than driving the 

molecules to a bound state at a different energy, you could instead shift the 

energy of the bound state until it coincides with the energy of the molecules, i.e., 

zero.  This is not completely crazy, or at least it’s not without precedent.  For 

years now experimenters have been using magnetic-field Feshbach resonances in 

alkali atoms to make resonant states coincide with the threshold of the scattering 

continuum.  This has been a very fruitful tool for engineering the mean-field 

interaction energy of ultracold gases, but it is something else, too.  For a realistic 

two-body interaction potential to reproduce such a resonance at the correct field 

is quite a severe constraint on the potential [3].  The point is, field variation of 

cold collision cross sections can really be a useful probe of the interaction, i.e, a 

spectroscopic tool.  
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Figure 1. Elastic scattering of SrO molecules at a collision energy of 10-12K, as a function of electric 

field.  This scattering produces a surprisingly regular series of resonances. 

 

The effect of an electric field on polar molecules is likely to be much more 

profound, since electric forces are generically stronger than magnetic forces in 

molecules.  And sure enough: in Figure 1 I show the electric-field-dependent 

elastic scattering cross section of ultracold SrO molecules.  These molecules are 

assumed to be in their electronic (
1Σ), vibrational (v=0), and rotational (J=0) 

ground states, and to collide at an energy of 10
-12

 K.  This figure is reproduced 

from our recent study of electric field resonances [4], and the details of the 

scattering model are explained there. 

The main point of figure 1 is that the cross section is dominated by a 

strikingly regular series of resonances.  In Ref. [4] we explain that these 
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resonances originate in the purely long-range dipole-dipole interaction between 

the molecules.  Roughly, the field can change the degree of polarization of the 

molecules, hence their dipole-dipole interaction.  Ref. [4] also shows that the 

exact position and spacing of the resonances carries information about the 

“short-range” physics, where the molecules actually collide and probe their 

potential energy surface.  (Also appearing in this figure, although far less 

prominent, are various Feshbach resonances that describe excitation to higher-

lying rotational and fine-structure states.  Obviously they will also carry 

information about the interaction that excited these degrees of freedom.) 

This discussion should sound vaguely familiar.  The backbone of atomic 

spectroscopy is the Rydberg series.    Any atom with a singly-excited electron 

has a spectrum of energy levels that scales as -1/n
2
.  Well, no, of course that’s 

not true.  In fact, the spectrum of such an atom scales as -1/(n-µ)
2
, where µ is a 

quantum defect [5].  The role of the quantum defect, as all good spectroscopists 

know, is to encode the electron’s interaction with all the other electrons in the 

parent ion.  The entire series of energy levels is described by a simple formula 

that is flexible enough to apply to any atom. 

What I would like to do here is to derive an analogue of the Rydberg 

formula for an electric-field spectrum like the one in Figure 1.  In other words, I 

would like an analytic expression F(n) that gives the electric field value F at 

which the nth resonance is observed.  This will not be the world’s greatest 

derivation, but it will get the basic physical ideas right.   

Let’s first note the following.  In spectra such as that in Fig.1 that I’m 

considering, the collision energy is nearly zero, and it is the electric field that is 

being scanned.  The resonant state therefore extends to infinite intermolecular 

separation R.  In this case, the relevant interaction potential is described by the 

largest-R part of the adiabatic potential energy curve.  Well, we’ve discussed the 

form of this curve previously [6].  The lowest potential, the one that caries the 

resonances, is mostly s-wave in character (i.e., it has partial wave angular 

momentum l=0).  But the dipole-dipole interaction vanishes by symmetry for s-

waves, so the only effect of the dipolar interaction is to mix s-waves with nearby 

d-waves (l=2).  

It turns out that this means two things.  First, in zero field the effective 

interaction scales as –C6/R
6

.  Second, in nonzero field, the interaction quickly 

turns over to a –C4/R
4
 behavior, where the effective C4 coefficient is given by [6] 
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Here ∆= /2 Fµη represents the electric field F in units of the critical field 

µ2/0 ∆=F that separates the quadratic and linear Stark effect regimes; ∆ is the 

energy splitting between the given rotational level and the next higher one; and 

mr is the reduced mass of the collision partners.  Equation (1) includes only the 
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perturbation due to the l=2 partial wave, but you can easily extend it to higher 

partial waves, if you like.  Notice that the value of C4 saturates as you go to the 

high-field limit F>>F0.  Well, of course: once the molecules are polarized, the 

field can’t do much more to change the situation.  (I do not consider here fields 

large enough to distort the electronic wave functions, which would be another 

story.)   

 Since I’m talking here about field-dependent resonances, I will concentrate 

on the field-dependent 1/R
4
 part of the interaction.  At zero collision energy, the 

WKB phase for this potential is easily calculated.  To identify a bound state, you 

set this phase equal to an integral multiple of π: 
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Here I have imposed an arbitrary small-R cutoff radius, a.  And it’s a good thing, 

too, since the integral would diverge if I were to let 0→R .  But anyway, the 

potential is clearly not proportional to 1/R
4
 all the way to small R, and besides, 

whatever goes on for R<a is going to be accounted for in the quantum defect.  

 Now you could just invert (2) to find the resonant field at which the nth 

bound state appears.  As a fitting formula, this leaves something to be desired, 

however, since the result would depend explicitly on the unphysical cutoff radius 

a.  A better use of the quantization condition would be to exploit the saturation 

behavior, and to write  
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where hamn r πµ 22
/2~ =∞ is the approximate total number of bound states in 

the potential in the limit of large electric field.  In other words, when the field is 

large, ∞→η  and nn ~→ ∞ .  Having made this correction, then you could then 

invert (3) to find the set of resonant field values F(n). 

 Oh no, wait, I’m sorry, there is one more thing.  In practice, it’s more useful 

to append the quantization condition (3) to read 
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In this expression, nn ∞/0 represents the additional part of the phase shift arising 

from the short-range part of the potential.  Here is our analogue of the quantum 

defect.  Finally, when you do actually invert the expression (4) to find the 

resonant fields, you get 
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where nnn 0
~ −= ∞∞ , and F’ is expected to be on the order of F0. 

 Does this work?  Surprisingly, yes.  Look at Figure 2, where I have plotted 

the resonant fields F(n) versus n for both the SrO example in Fig.1, and for 

RbCs.  In both cases I have fit to the formula (5), and shown the results as solid 

lines.  The fit is not half bad, and clearly gets the general form of the spectrum 

correct.   
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Figure 2.Electric field values F(n) at which the nth resonance occurs, as seen in close-coupled 

calculations of SrO (squares) and RbCs (triangles) cold collisions.  Solid lines represent fits to the 

formula in Eqn. (5). 

 

 A few remarks are in order.  First, the actual value of n is pretty arbitrary, 

since I have no idea how many bound states there really are.  In fact, I have 

anchored the calculation in the final number of bound states after the field has 

saturated the interaction.  Therefore, it actually makes more sense to count the 

resonances “backwards,” from n∞ down.  (Note that n∞ need not be an integer, 

of course.)  This is actually a typical way to count the very most weakly-bound 

states of potentials [7].   

Second, the assumption that the long-range potential scales with R as 1/R
4
 is 

not true at zero field.  Thus, in order to get a suitable fit for the RbCs spectrum, I 

had to ignore the first four calculated resonances.  Third, by no means is (5) 

intended to be a rigorous result.  Rather, it is a simple and comfortable way to 



 6 

characterize the series in a simple formula. It should, for example, provide an 

estimate of how many resonances to expect for a given molecule in a given field 

range. Plus, it strongly suggests that there should exist a simple formula.  

Someday somebody should go back and find the correct formula in a more 

rigorous way. 
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