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Atomic and molecular samples reduced to temperatures below one
microkelvin, yet still in the gas phase, afford unprecedented energy
resolution in probing and manipulating the interactions between
their constituent particles. As a result of this resolution, atoms can
be made to scatter resonantly on demand, through the precise con-
trol of a magnetic field1. For simple atoms, such as alkalis, scattering
resonances are extremely well characterized2. However, ultracold
physics is now poised to enter a new regime, where much more com-
plex species can be cooled and studied, including magnetic lanthan-
ide atoms and even molecules. For molecules, it has been speculated3,4

that a dense set of resonances in ultracold collision cross-sections
will probably exhibit essentially random fluctuations, much as the
observed energy spectra of nuclear scattering do5. According to the
Bohigas–Giannoni–Schmit conjecture, such fluctuations would imply
chaotic dynamics of the underlying classical motion driving the
collision6–8. This would necessitate new ways of looking at the fun-
damental interactions in ultracold atomic and molecular systems, as
well as perhaps new chaos-driven states of ultracold matter. Here we
describe the experimental demonstration that random spectra are
indeed found at ultralow temperatures. In the experiment, an ultra-
cold gas of erbium atoms is shown to exhibit many Fano–Feshbach
resonances, of the order of three per gauss for bosons. Analysis of
their statistics verifies that their distribution of nearest-neighbour
spacings is what one would expect from random matrix theory9. The
density and statistics of these resonances are explained by fully
quantum mechanical scattering calculations that locate their origin
in the anisotropy of the atoms’ potential energy surface. Our results
therefore reveal chaotic behaviour in the native interaction between
ultracold atoms.

In the common perception, atoms are regarded as ‘simple’ systems
in sharp contrast to ‘complex’ molecules, whose behaviour is dictated
by many (rotational and vibrational) degrees of freedom. The recent
realization of dipolar Bose–Einstein condensates and Fermi gases of
magnetic lanthanides10–13 made a novel class of atoms available in the
ultracold regime. These exotic species, such as erbium (Er), make it pos-
sible to bridge the enormous conceptual gap between ‘simple’ atoms
and molecules, potentially providing a natural test-bed with which to
explore complex scattering dynamics in a controlled environment. The
rich scattering behaviour of lanthanides has been pointed out in pio-
neering experiments at millikelvin temperatures14,15 and theoretical work
on cold collisions of atoms with non-zero angular momenta16,17.

The wealth of intriguing properties of Er, which is the focus of this
Letter, originates in its exotic electronic configuration. Erbium is a
submerged-shell atom with electron vacancies in the inner anisotropic
4f12 shell, which lies beneath a filled 6s2 shell. As a consequence, it not
only has a large magnetic moment, of 7 Bohr magnetons (mB), but also
has large electronic orbital and total angular momentum quantum
number, of L 5 5 and J 5 6, respectively; we note that for bosonic and
fermionic isotopes the nuclear angular quantum numbers are I 5 0 and

I 5 7/2, respectively. Large values of L and J are sources of anisotropy in
the interatomic interaction. Moreover, the two-body scattering is con-
trolled by as many as 91 electronic Born–Oppenheimer (B–O) inter-
action potentials, each potential accounting for a specific orientation of
J with respect to the internuclear axis (Methods). All B–O potentials
are anisotropic and include, at large internuclear separations, a strong
dipole–dipole interaction and anisotropic van der Waals dispersion po-
tentials. This situation is in contrast to that of conventional ultracold atoms,
such as alkali-metal atoms, where the scattering is determined mainly
by the isotropic singlet and triplet B–O potentials2. Recent theoretical
work predicted the existence of anisotropy-induced Fano–Feshbach
resonances in magnetic lanthanides18. This greater complexity brings
significant new challenges in understanding and exploiting scattering
processes.

Our experimental study is based on high-resolution trap-loss spec-
troscopy of Fano–Feshbach resonances in an optically trapped ultra-
cold sample of Er atoms in the energetically lowest magnetic Zeeman
sublevel. We prepare the ultracold sample by following a similar cool-
ing and trapping approach to that described in ref. 12 for bosons and
ref. 13 for fermions (Methods Summary). After the preparation pro-
cedure, the ultracold sample typically contains about 105 atoms at a
temperature of around 400 nK. High-resolution trap-loss spectroscopy
consists of many experimental cycles. In each cycle, we ramp the mag-
netic field to a target value, B, and hold the atoms for 400 ms in the
optical dipole trap, during which time they undergo elastic and inel-
astic collisions. To probe the loss of atoms from the trap, we record the
atom number by applying standard time-of-flight absorption imaging
at zero magnetic field. In the next experimental cycle, we vary the mag-
netic field value from 0 to 70 G in steps of a few milligauss and repeat
the measurement. Figure 1 shows the respective loss spectra for 168Er
and 166Er. For both isotopes, we observe very many resonant loss fea-
tures, which we interpret as being caused by Fano–Feshbach resonances2.
We identify 190 resonances for 168Er and 189 resonances for 166Er,
meaning that we observe about 3 resonances per gauss. We performed
similar spectroscopic measurements with the fermionic isotope 167Er,
revealing a much higher density of resonances that exceeds 20 reso-
nances per gauss (Extended Data Fig. 1). The fermionic case is com-
plicated by its additional hyperfine structure and detailed studies will
be subject of future work.

The very high density of resonances in Er is without precedent in
ultracold quantum gases. For comparison, the density of resonances
observed in experiments with ultracold alkali-metal atoms or even mix-
tures is about two orders of magnitude lower than that in Er (compare
with refs 19, 20). In Er, it is unclear whether a quantitative mapping of
the observed resonances is possible at all. In principle there are at least
91 unknown parameters, corresponding to the phase shifts introduced
by the B–O potentials18. Instead, we focus our theoretical analysis on
fundamental issues, such as whether the observed density of reso-
nances can be reproduced by microscopic calculations, and whether
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our results imply the presence of highly anisotropic interactions, which
call into play resonant states of high orbital momentum. We answer
these questions in the affirmative using full coupled-channel calcula-
tions, supported by an analytical model.

We construct a first-principles coupled-channel model for Er 1 Er
scattering to calculate the spectrum of Fano–Feshbach resonances. Fol-
lowing ref. 18, our model uses the atomic basis set and Hamiltonian
(Methods) that includes the radial kinetic and rotational energy opera-
tors, the Zeeman interaction and the 91 anisotropic B–O potentials.
For small interatomic separations, R, the B–O potentials are calculated
using the ab initio relativistic, multi-reference configuration–interaction
method21. At intermediate to large values of R, the B–O potentials are
expressed as a sum of multipolar interaction terms. The van der Waals
dispersion interaction potentials (/ 1/R6) are determined from experi-
mental data on atomic transition frequencies and oscillator strengths22,23.
An important point is that the dispersion potentials have both isotropic
and anisotropic contributions. The latter comes from the non-S state
character of the Er electronic ground state. The B–O potentials thus
induce either isotropic (, and m, conserving) or anisotropic (, or m,

changing) couplings. Here, , and m, are the partial-wave quantum
number and its projection on the magnetic field quantization axis.

We perform coupled-channel calculations for bosonic 168Er, con-
sidering s-wave (, 5 0) collisions and couplings to molecular states
with even , up to Lmax 5 20. We calculate the elastic collisional rate
coefficient as a function of magnetic field to obtain the Fano–Feshbach
resonance spectrum. For Lmax 5 20, we observe a very dense resonance
spectrum with about 1.5 resonances per gauss, which qualitatively re-
produces our experimental observation (Extended Data Fig. 2). We
note that resonances belonging to incident channels with ‘w0 are
substantially narrower and do not contribute much to the density of
resonances. To get deeper insight into the role of the anisotropy of the
potentials, we calculate the mean density of resonances, �r, from our
coupled-channel calculations for different values of the maximum par-
tial wave Lmax (Fig. 2). For Lmax up to 20, we observe that �r increases

with Lmax in a quadratic manner. This dependence stands in stark
contrast to alkali-metal atoms, where high-‘ resonances tend to be
too narrow to be observed.

Because our limited computational resources do not allow us to
perform calculations for Lmax . 20, it is worth estimating the density
of resonances in a simpler way, based on the separated atom quantum
numbers3. The key ideas of our model are the following. For each chan-
nel jj1mJ,1, j2mJ,2, ,m,æ, we define the long-range potential 2C6/R6 1

B
2,(, 1 1)/2mR2 1 gmB(mJ,1 1 mJ,2)B, where C6 is the isotropic van der

Waals coefficient of the B–O potentials and B is Planck’s constant
divided by 2p. Here m is the reduced mass, g is the atomic g-factor and,
for ground-state Er, C6 5 1,723 atomic units (a.u.). Fano–Feshbach
resonances in our open channel with mJ,1 5 26 and mJ,2 5 26 are due
to couplings to the most weakly bound rovibrational level of closed
channels. For a van der Waals potential2,24 this bound state has a bind-
ing energy that must fall within the ,-dependent energy window [2D,,
0] with D, . 0. The short-range potentials are not accurately known
and, for each closed channel, there is a probability dEb/D, of finding a
bound state with a binding energy between Eb and Eb 1 dEb. From ref.
24 and numerical simulations, we find D,/EvdW < 38.7 1 25.5, 1 3.17,2,

where EvdW~B2�2mx2
vdW and xvdW~

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2mC6

�
B24

q
=2. Each closed chan-

nel contributes gmBdm/D, to the mean resonance density, where
gmBdm . 0 is the magnetic-moment difference of the closed and open
channels and dm is their difference in molecular projection quantum
numbers. Adding the contributions for the closed channels gives the
total mean resonance density. This simple counting technique, which
we here name random quantum defect theory (RQDT), yields the mean
density of resonances shown in Fig. 2. For Lmaxƒ20, the results of our
analytic RQDT agrees very well with the exact coupled-channel calcu-
lations. For larger values of Lmax, the density of resonances keeps
growing and eventually saturates to a value around r < 4 G21, which
is close to the one observed in the experiment. RQDT shows that at
least 40 partial waves need to be considered to reproduce the experi-
mental observations.
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Figure 1 | Fano–Feshbach spectrum of 168Er and 166Er from 0 to 70 G. The
trap-loss spectroscopy is performed in an optically trapped sample of Er atoms
in the energetically lowest Zeeman sublevel, mJ 5 26, at a temperature of
330 nK. The atom number is measured after a holding time of 400 ms. We

observe 190 Fano–Feshbach resonances for 168Er (a) and 189 resonances for
166Er (b). Resonance positions are extracted by fitting a Gaussian shape to
individual loss features; a full list is given in Extended Data Tables 1 and 2.
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Our microscopic models reproduce well the qualitative behaviour of
the system. However, given the complexity of the scattering, the ana-
lysis of ultracold collision data can and should no longer aim to assign
individual resonances, and the fundamental question of how to tackle
complex scattering arises. Historically, spectra of great complexity have
been understood within the framework of random matrix theory (RMT),
as originally developed by Wigner to describe heavy nuclei containing
a very large number of degrees of freedom25. This is an alternative view
of the quantum mechanics of complex systems, where individual energy
levels and resonances are not theoretically reproduced one by one, yet
their statistics can be described26. RMT characterizes spectra by fluc-
tuations of their energy levels and classifies their statistical behaviour in
terms of symmetry classes; for example, the Gaussian-orthogonal en-
semble (GOE) is appropriate in the case of a system with time-reversal
symmetry, such as neutral atoms.

Following RMT, the distribution of spacings between neighbouring
levels (or resonances) characterizes the spectral fluctuations of the
system and reflects the absence or the presence of level correlations
in terms of a dimensionless quantity, s 5 dB/�d, where dB is the space
between any two adjacent levels and �d~1=�r is the mean level spacing.
Whereas the nearest-neighbour spacing (NNS) distribution P(s) of
non-interacting levels is Poissonian, PP 5 exp(2s), strongly interact-
ing levels obey a totally different distribution, which, in the case of
GOE statistics, is known as the Wigner–Dyson (W–D) distribution, or
‘Wigner surmise’26

PWD~
p

2
s exp {

p

4
s2

� �
ð1Þ

which shows a strong level repulsion for small s: PWD(0) 5 0. The field
of application of the W–D distribution is so vast as to make it a uni-
versal feature of very complex systems, such as heavy nuclei, disordered
conductors, zeros of the Riemann function in number theory, and
even risk management models in finance5,8. Remarkably, the Bohigas–
Giannoni–Schmit conjecture further enriched the field of applications
of GOE statistics6,27, showing that it applies generally to chaotic systems,
such as Rydberg atoms in strong magnetic fields and Sinai billiards,
where only a few degrees of freedom are relevant but where motion
in these degrees of freedom occurs on a highly anisotropic potential
energy surface7. Recently, it has been speculated that even cold and
ultracold atom–molecule collisions will show essential features of GOE
statistics3,4.

Inspired by these works, we statistically analyse both the experimental
and calculated Fano–Feshbach spectrum according to RMT. To obtain
the NNS distribution of resonances, we first derive �r and the mean
spacing between resonances, �d, by constructing the ‘staircase function’7.

This step-like function counts the number of resonances below a mag-

netic field value B and is defined as N (B)~

ðB

0
dB’
X

i

d(B’{Bi),

where d is the delta function and Bi is the position of the ith resonance.
For our experimental data (Fig. 3a), the staircase function shows an
increase of the number of resonances with B, which is linear for large B
and flattens out towards lower magnetic field values (Fig. 3b). The
density of resonances is given by the derivative of the staircase function.
We evaluate �r in the region above 30 G, where the staircase function
shows a linear relationship (Methods), and we obtain �r~3:0(3) G{1

and �d~0:33(3) G. We perform a similar analysis with 166Er and find
that �r~3:3(3) G{1 and that �d~0:31(3) G (Extended Data Fig. 3). For
data from coupled-channel calculations, we find that �r~1:5 G{1 for
Lmax 5 20 (Fig. 2). Finally, we derive the NNS distribution for the experi-
mental and coupled-channel data by constructing a histogram of res-
onance spacings. We choose a number of bins of the order of

ffiffiffiffi
N
p

, with
N being the number of Fano–Feshbach resonances used for analysis28.
We then rescale the histogram in terms of s and normalize the distri-
bution to obtain P(s).

Figure 4 is the main result of our statistical analysis for 168Er. The
plot shows the NNS distribution of the experimental and coupled-
channel Fano–Feshbach resonances, together with the parameter-free
Poisson and W–D distributions (equation (1)). We see an impressive
agreement between the experimental result and the coupled-channel
calculations. Remarkably, both follow a distribution much closer to the
W–D one than to the Poissonian one. To quantify the agreement with
the GOE statistics, we evaluate the reduced x2 statistic, ~x2, between our
data and the Poisson and W–D distributions. We find that ~x2

WD~0:9
and ~x2

P~2:3 for our experimental data and that ~x2
WD~0:8 and ~x2

P~
3:0 for the data of the coupled-channel calculations. The fact that ~x2

WD
ƒ1 confirms that our data are well described by a W–D distribution.
Similar results are found for 166Er (Extended Data Fig. 4).

To investigate the spectral correlations further, we analyse our data
in terms of other statistical quantities, such as the number variance and
the two-gap distribution function29 (Methods). The number variance,
S2(DB), measures the fluctuations in the number of resonances in a
magnetic field intervalDB (ref. 7; Methods). For uncorrelated (Poisson-
distributed) levels, S2 5DB, indicating large fluctuations around a
mean value. For quantum chaotic systems, the correlations are strong
and the fluctuations are thus less spread out. In this case, S2!ln(DB).
This slower increase of the number variance is regarded as indicating
the strong ‘spectral rigidity’ of the system7. Our observations clearly
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Figure 2 | Mean resonance density for bosonic Er as a function of largest
included partial-wave Lmax. Coupled-channel calculations for Lmax up to 20
(circles) and RQDT calculation (solid line) for a magnetic field of 0 to 70 G.
For calculations, a collision energy of E 5 kB 3 (360 nK) is assumed. The
mean densities of resonances measured in the experiment are shown for 168Er
(dashed line) and for 166Er (dash–dot line) with 1s confidence bands
(shaded areas).
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Figure 3 | Loss-maxima position and staircase function for 168Er.
a, Positions of the measured loss maxima of Fig. 1 are shown as vertical lines.
b, The staircase function shows a linear dependence on the magnetic field at
large values. A linear fit to the data above 30 G is plotted in a lighter colour.
Inset, magnification of the data to emphasize the step-like nature of the
staircase function.
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deviate from the Poissonian behaviour, showing that S2 tends to the
W–D case (Fig. 4b), and confirm the presence of correlations in our
system.

Our observations reproduce the salient features predicted by GOE
statistics for chaotic systems, the level repulsion and the spectral rigid-
ity. This implies a degree of complexity in Er 1 Er cold collisions unpre-
cedented in any previous ultracold scattering system. Our results bring
the powerful analytical tools of quantum chaos to bear7. In particular,
these approaches connect the large-scale structure of the spectra to
simple features such as the shortest closed classical orbits in the poten-
tial energy surface, where these connections are made by the Gutzwiller
trace formula30. Identifying the most important closed orbits will then
shed light on the potential energy surface itself, providing a route to
describing ultracold collisions that is complementary to the elaborate
close-coupling calculations, which will be difficult to connect in detail
with the data.

Erbium systems are the first in which statistical analyses and chaotic
behaviour are important to ultracold collisions, but they will not be the
last. Specifically, much experimental effort is being exerted on produc-
ing ultracold molecular samples, which also have highly anisotropic
potential energy surfaces. Learning to understand complex spectra, by
acknowledging their essentially chaotic nature, represents a turning point
in how the field will consider ultracold collisions in future and provides
new inroads into ultracold chemistry.

METHODS SUMMARY
For bosonic sample preparation, we follow the approach of ref. 12. We obtain about
3 3 105 optically trapped atoms at a density of 3 3 1013 cm23. The trap-loss spec-
troscopy is performed in a trap with frequencies of (nx, ny, nz) 5 (65, 26, 270) Hz.

The temperature of the cloud is measured by time-of-flight imaging at 0.4 G, which
yields T168 5 326(4) nK for 168Er and T166 5 415(4) nK for 166Er. We ramp the
magnetic field to a probe value between 0 and 70 G within 10 ms, and hold the atomic
cloud in the optical dipole trap for 400 ms. We observe an increase in the temper-
ature to 560 nK at a magnetic field of about 50 G due to the ramping over many
Fano–Feshbach resonances. For fermionic sample preparation, we follow the approach
of ref. 13. We obtain about 1.2 3 105 fermionic atoms at a density of 2 3 1014 cm23

and at a temperature of 0.4TF, where TF 5 1.0(1)mK is the Fermi temperature. The
trap frequencies are (nx, ny, nz) 5 (427, 66, 457) Hz.

Online Content Any additional Methods, Extended Data display items and Source
Data are available in the online version of the paper; references unique to these
sections appear only in the online paper.
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METHODS
Experimental procedures. For bosonic sample preparation, we follow the ap-
proach of ref. 12. In brief, after the magneto-optical trap31, we load the atoms in an
optical dipole trap composed of two laser beams in the horizontal (1,064 nm, 0.4 W,
single mode) and vertical (1,064 nm, 4.0 W, broadband Yb fibre laser) directions.
In the trap, we force evaporation by ramping down the power of both trapping
laser beams within 6.2 s, in the presence of a homogeneous magnetic field of 0.4 G
to prevent spin flips to other Zeeman states. We stop evaporative cooling before the
onset of Bose–Einstein condensation. Our final trap has frequencies of (nx, ny, nz)
5 (65, 26, 270) Hz and contains about 3 3 105 atoms at a density of 3 3 1013 cm23.
The temperature of the atomic cloud is measured by time-of-flight imaging for
both isotopes at 0.4 G, which gives T168 5 326(4) nK and T166 5 415(4) nK. We
ramp the homogeneous magnetic probe field up to 70 G within 10 ms and hold the
atomic cloud in the optical dipole trap for 400 ms. The magnetic field is suddenly
(,5 ms, limited by eddy currents) switched off and the atom number and cloud
size are measured via absorption imaging after a time of flight of 15 ms. We observe
an increase in temperature to 560 nK in a magnetic field of about 50 G due to
ramping over many Fano–Feshbach resonances. For fermionic sample prepara-
tion, we follow the approach of ref. 13. We obtain about 1.2 3 105 fermionic atoms
at a density of 2 3 1014 cm23 and at a temperature of 0.4TF, where TF 5 1.0(1)mK
is the Fermi temperature. The trap frequencies are (427, 66, 457) Hz.
Magnetic field control. An analogue feedback loop stabilizes the current for the
homogeneous magnetic field coils with a relative short-term stability of better than
2 3 1024. Calibration of the magnetic field is done by driving a radio-frequency
transition between Zeeman states mJ 5 26 and mJ 5 25. Trap-loss spectroscopy
is carried out in steps of 20 mG (out of resonance) and 5 mG (on resonance). The
long-term offset stability of the magnetic field was observed during the data
recording period to be better than 4 mG within one week.
Coupled-channel calculations. We perform exact coupled-channel calculations
for Er 1 Er scattering in the basis j1mJ,1,j2mJ,2,‘m‘j i:Y‘m‘

h,wð Þ j1mJ,1j i j2mJ,2j i,
where ja~1,2 are the atomic vector angular momenta with space-fixed projections
mJ,a 5 1,2 along the magnetic field direction, and the spherical harmonics Y‘m‘

h,wð Þ
describe molecular rotation with partial-wave quantum numbers ‘ and m,. The
angles h and w orient the internuclear axis relative to the magnetic field.

For a closed-coupling calculation of the rovibrational motion and the scattering
of atoms, we need all the electronic potentials dissociating to the threshold of two
ground-state atoms. The total number of B–O potentials is determined by the vector
J~j1zj2 and its projection along the internuclear axis, V. For each value of V,
there are (2J 1 1) 2 V B–O potentials, with J 5 6 in the case of Er. This gives a total
of 91 B–O potentials for Er2, of which 49 are gerade potentials and 42 are ungerade.
For collisions of bosons in the same Zeeman state, only even states matter. These
potential surfaces have been obtained using an ab initio relativistic, multi-reference
configuration–interaction method21, and converted into a tensor operator form with
R-dependent coefficients. Examples of tensor operators are the exchange inter-
action, Vex Rð Þj1. j2 and the anisotropic quadrupole-rotation operator VQ Rð ÞY2 R̂

� �
.

j16j1½ �2 coupling the quadrupole operator, j16j1½ �2, of one atom with angular
momentum j1 to the rotation of the molecule. See ref. 18 for other operators.

Collisions of submerged 4f-shell atoms at low temperatures also depend on the
intermediate/long-range isotropic and anisotropic dispersion and magnetic dipole–
dipole and quadrupole–quadrupole interatomic interactions. The van der Waals
dispersion potentials for two ground-state atoms are obtained using the transition
frequencies and oscillator strengths22,23. The quadrupole moment of Er is calcu-
lated using an unrestricted atomic coupled-cluster method with single, double and
perturbative triple excitations32 (UCCSD(T)) and is shown to be small at Q 5

0.029 a.u.
We use a first-principle coupled-channel model to calculate anisotropy-induced

magnetic Fano–Feshbach resonance spectra of bosonic Er. The model treats the
Zeeman, magnetic dipole–dipole, and isotropic and anisotropic dispersion inter-
actions on equal footing. The Hamiltonian includes

H~{
B2

2m

d2

dR2
z

‘.‘

2mR2
zHZzV(R,t)

where vector R describes the orientation of and separation between the two atoms.
The first two terms are the radial kinetic and rotational energy operators, respect-
ively. The Zeeman interaction is HZ 5 gmB(j1z 1 j2z)B, where g is the atomic g-
factor and jiz is the z component of the angular momentum operator ji of atom
i 5 1, 2. The interaction, V(R,t), includes the B–O and magnetic dipole–dipole
interaction potentials, which are anisotropic, and t labels the electronic variables.
Finally, m is the reduced mass and V(R,t)?0 as R R ‘. Coupling between the
basis states is due to V(R,t), inducing either isotropic (, and m, conserving) or
anisotropic (, or m, changing) couplings. The Hamiltonian conserves Mtot 5 mJ,1

1 mJ,2 1 m, and is invariant under the parity operation so that only even-, or

odd-, partial waves are coupled. In the atomic basis set, the Zeeman and rotational
interactions are diagonal.
Staircase function and density of resonances. The density of resonances is
evaluated as the derivative of the staircase function. Because we observe a non-
linear behaviour of the staircase function at low magnetic field values, we perform
a more careful analysis of the data. For calculating the density of resonances we
take the slope of a linear fit to the staircase function within an interval of 10 G. This
fitting interval is then moved across the magnetic field axis, to get an averaged
value of the density of resonances at each position (Extended Data Fig. 5). The size
of the interval is chosen such that the density of resonances can be evaluated
reliably. Larger values for the size of this interval will give values for the density
of resonances that are too strongly averaged, and an underlying structure will not
be visible any more. Smaller values tend to increase the noise in the density of
resonances, owing to the step-like nature of N (B). We calculate the arithmetic
mean and standard deviation for values above 30 G and get a density of resonances
for the two isotopes of �r168~3:0(3) G{1 and �r166~3:3(3) G{1.
NNS probability distribution. Because the density of resonances is not constant
below 30 G, we restrict our analysis to resonances appearing from 30 to 70 G. We
plot a histogram of spacings between adjacent resonances given by di 5 Bi11 2 Bi.
For this an appropriate number of bins is chosen, of the order of

ffiffiffiffi
N
p

, with N being
the total number of Fano–Feshbach resonances observed up to 70 G. This ensures
a bin size at least an order of magnitude larger than the mean resolution of the trap-
loss spectroscopy scan. For every bin, a statistical counting error according to a
Poisson distribution is assigned. Next, the magnetic field is divided by the mean
spacing of resonances to get the dimensionless quantity s~B

�
�d. To calculate the

NNS probability distribution, P(s), the histogram has to be normalized such thatÐ?
0 ds P(s)~1. As shown in ref. 29, the probability distribution of uncorrelated

random numbers is simply given by the Poisson distribution PP(s) 5 exp(2s). A
theoretical spacing distribution of random matrices cannot be written in a simple
form but, according to the Wigner surmise, an excellent approximation is given
by the W–D distribution, PWD(s)~ (ps=2)exp({ps2=4). A way of discriminating
between these two distributions is to fit the ‘Brody distribution’ to the NNS
distribution9. It is an empirical function with a single fitting parameter, g, which
interpolates between PWD and PP and quantifies the tendency (and not the degree
of chaoticity) of the observed distribution to be more Poisson-like (g 5 0) or more
W–D-like (g 5 1). It is defined by

PB(s)~Asg exp({asgz1)

A~(gz1)a

a~C
gz2
gz1

� 	gz1

where C denotes the Gamma function. From a least-squares fit to the experimental
data, we obtain g168 5 0.66(10) for 168Er and g166 5 0.73(18) for 166Er, and a fit to
the coupled-channel data gives gCC 5 0.72(18).
Number variance. The number variance, S2, is a quantity that depends on long-
range correlations between resonance spacings within an intervalDB. It is defined by

S2(DB)~n2(B0,DB){n(B0,DB)
2

where n(B0,DB)~N (B0zDB){N (B0) is the number of resonances in the interval
[B0, B0 1DB] and the bar denotes the mean value over all B0. For a Poisson distri-
bution, S2 5DB. By contrast, for a spectrum according to RMT we expect that
S2 5 (2/p2)[ln(2pDB) 1 c 1 1 2p2/8] for large DB, where c 5 0.5772… is Euler’s
constant26. This behaviour reflects that there are only very small fluctuations around
an average number of resonances within a given interval of sizeDB (spectral rigidity).
Compared with the NNS distribution, the number variance is more suitable to
probing long distances in the spectrum. A clear signature of level repulsion on the
one hand and a large spectral rigidity on the other are central properties of strong
correlations between levels according to RMT29.
Two-gap distribution function. In addition to analysing the NNS distribution,
we use a second method for testing whether the observed distribution of Fano–
Feshbach resonances obeys RMT. To plot the NNS distribution, we have to make
sure that the staircase function increases linearly over large ranges. This we have
ensured in our statistical analysis by considering only data above 30 G. If the stair-
case function does not increase in a linear manner over a large region, an unfolding
procedure has to be carried out before further analysis29. Because the statistical
analysis is very sensitive to the unfolding procedure and there is no clear definition
of how it should be carried out7, the use of an unfolding procedure makes the
statistical analysis error-prone.

To circumvent this problem, an unfolding-independent method was developed
in refs 33, 34. This method consists of calculating the ratio of two consecutive gaps
between resonances. The ‘two-gap correlation function’ is defined by

RESEARCH LETTER

Macmillan Publishers Limited. All rights reserved©2014



0ƒri~
min di,di{1ð Þ
max di,di{1ð Þƒ1

with di the spacing between two neighbouring resonances. As long as the density of
resonances does not vary on the scale of the mean level spacing, an unfolding
procedure is not needed for calculating this quantity. A Poisson distribution of
resonances shows a two-gap correlation distribution following P(r) 5 2/(1 1 r)2,
with a mean value of ÆræP 5 2ln(2) 2 1 < 0.386. In contrast, the mean value of a
W–D distribution34 can be calculated to be ÆræWD < 0.53(1). By using the mean
values of both distributions, we can introduce a quantity gr, which quantifies the
proximity to either a Poisson distribution (gr 5 0) or a W–D distribution (gr 5 1):

gr~
rh i{ rh iP

rh iWD{ rh iP

For the experimental data set from 30 to 70 G, we find values of Æræ168 5 0.51(4) for
168Er and values of Æræ166 5 0.49(4) for 166Er. These results give values of g168

r ~

0:8(2) and g166
r ~0:7(2), respectively, and are in good agreement with the fitting

results of the NNS distribution using the Brody distribution. A Fano–Feshbach
resonance distribution according to RMT can thus be supported by this second
method as well.

31. Frisch, A. et al. Narrow-line magneto-optical trap for erbium. Phys. Rev. A 85,
051401 (2012).

32. Watts, J. D., Gauss, J. & Bartlett, R. J. Coupled-cluster methods with noniterative
triple excitations for restricted open-shell Hartree-Fock and other general single
determinant reference functions: energies and analytical gradients. J. Chem.
Phys. 98, 8718 (1993).

33. Oganesyan, V. & Huse, D. A. Localization of interacting fermions at high
temperature. Phys. Rev. B 75, 155111 (2007).

34. Kollath, C., Roux, G., Biroli, G.& Läuchli, A. M. Statistical properties of the spectrum
of the extended Bose-Hubbard model. J. Stat. Mech. 2010, P08011 (2010).
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Extended Data Figure 1 | Fano–Feshbach spectrum of fermionic 167Er from
0 to 4.5 G. The trap-loss spectroscopy is performed in an optically trapped
sample of fermionic Er atoms at a temperature of 0.4TF, where TF 5 1.0(1)mK is
the Fermi temperature. The atoms are spin-polarized in the lowest Zeeman

sublevel, mF 5 219/2. We keep the atomic sample at the magnetic probing field
for a holding time of 100 ms. We observe 115 resonances up to 4.5 G, which we
take to be Fano–Feshbach resonances between identical fermions. The
corresponding mean density is about 26 resonances per gauss.
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Extended Data Figure 2 | Elastic rate coefficient of mJ 5 26 168Er collisions.
The s-wave elastic rate coefficient as a function of magnetic field assuming a
collision energy of E 5 kB 3 (360 nK). Partial waves up to , 5 20 are included.

A divergence of the elastic rate coefficient, that is, the position of a
Fano–Feshbach resonance, is marked with squares.
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Extended Data Figure 3 | Statistical analysis of high-density Fano–
Feshbach resonances of isotope 166Er. a, Positions of the resonances are
marked with vertical lines. b, The staircase function shows a similar behaviour
to 168Er (Fig. 3). A linear fit to the data above 30 G is plotted in a lighter colour.

From the staircase function, we calculate a mean density of resonances of
�r~3:3(3) G{1, which corresponds to a mean distance between resonances of
�d~0:31(3) G.
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Extended Data Figure 4 | NNS distribution and number variance.
a, 168Er NNS distribution above 30 G with a bin size of 140 mG. For the error
bars we assume a Poisson counting error. The plot shows the experimental
data (circles) with the corresponding Brody distribution (solid line). The
parameter-free distributions PP (dashed line) and PWD (dash–dot line) are
shown, and ~x2

P~2:32 for the Poisson distribution and ~x2
WD~1:85 for the W–D

distribution. b, Number variance, S2, for the same experimental data (solid
line) with a 2s confidence band (shaded area). The number variance of the
experimental data shows a clear deviation from the number variance of a
Poisson distribution.
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Extended Data Figure 5 | Density of resonances as a function of the
magnetic field. The densities of resonances for 168Er (a) and 166Er (b) are given
as an averaged derivative of the staircase function (dark solid lines) using an
averaging region 10 G in size. At small magnetic field values, the density of
resonances is about 1.5 G21, and it increases with the magnetic field up to
about 30 G. For larger magnetic fields, the density is roughly constant. The
staircase function also suggests this behaviour. From the data above 30 G, we
calculate the mean value (light solid lines) and the standard deviation (light
dotted lines) of the density of resonances.
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Extended Data Table 1 | Fano–Feshbach resonances data for isotope 168Er

i B ∆ meth. i B ∆ meth. i B ∆ meth.

(G) (mG) (G) (mG) (G) (mG)

1 0.912(1) 39(2) Z 65 28.643(1) 21(3) G 129 49.735(1) 31(1) Z

2 2.167(1) 36(1) Z 66 28.737(1) 19(1) G 130 50.019(1) 15(3) G

3 2.436(3) 14(9) G 67 29.233(1) 17(1) G 131 50.113(1) 104(4) Z

4 2.476(1) 153(6) G 68 29.448(1) 32(2) Z 132 50.325(1) 18(2) G

5 2.838(9) 16(2) G 69 29.797(1) 25(2) Z 133 50.788(1) 15(2) G

6 3.778(1) 22(2) G 70 30.057(1) 26(2) G 134 51.624(1) 15(1) G

7 4.481(1) 23(2) G 71 30.541(1) 15(1) Z 135 51.651(1) 12(2) G

8 6.558(1) 29(5) G 72 31.369(1) 19(2) G 136 52.110(1) 18(1) G

9 6.594(1) 22(9) G 73 31.602(1) 18(1) G 137 52.552(2) 66(3) Z

10 6.674(5) 217(10) Z 74 31.903(1) 16(2) G 138 52.835(1) 14(1) G

11 7.048(5) 343(8) Z 75 32.243(1) 25(2) Z 139 53.082(1) 13(2) G

12 7.725(1) 15(2) G 76 32.556(1) 25(2) G 140 53.195(1) 33(5) G

13 8.549(7) 900(16) Z 77 32.753(2) 283(5) Z 141 53.245(1) 14(3) G

14 8.909(1) 18(2) G 78 33.245(1) 17(1) G 142 53.299(1) 33(4) Z

15 9.311(1) 13(2) G 79 33.703(1) 21(1) G 143 53.738(1) 31(3) G

16 9.946(1) 18(2) G 80 33.903(1) 61(2) Z 144 53.925(1) 19(1) G

17 11.004(1) 17(1) G 81 34.206(1) 13(1) G 145 54.272(2) 20(5) Z

18 11.274(1) 17(1) G 82 34.340(1) 21(1) G 146 54.404(1) 12(1) G

19 11.329(1) 11(1) G 83 34.647(1) 16(1) G 147 54.763(4) 57(4) Z

20 11.807(1) 22(1) G 84 34.939(1) 53(1) Z 148 55.035(1) 18(2) G

21 11.913(1) 18(1) G 85 35.524(1) 17(2) Z 149 55.239(1) 18(3) G

22 12.250(1) 18(1) G 86 35.713(1) 45(1) Z 150 55.692(1) 300 G

23 12.873(1) 11(1) G 87 35.836(1) 15(1) G 151 56.314(1) 109(3) Z

24 13.029(1) 15(1) G 88 36.148(1) 132(4) Z 152 56.436(1) 15(3) G

25 13.968(1) 16(1) G 89 36.399(1) 13(3) G 153 57.06(2) 3531 Z

26 14.614(1) 20(1) G 90 37.015(1) 83(1) Z 154 57.612() 89(1) Z

27 14.711(1) 14(1) G 91 37.105(1) 4(1) G 155 58.167(2) 13(2) Z

28 15.126(1) 14(1) G 92 37.137(1) 17(2) G 156 58.426(1) 14(2) G

29 15.336(1) 19(1) G 93 37.198(1) 54(2) Z 157 58.528(1) 7(1) Z

30 15.851(1) 11(1) G 94 37.856(1) 178(24) G 158 58.795(2) 27(4) Z

31 17.180(1) 23(1) G 95 37.944(1) 152(1) Z 159 59.078(1) 55(2) Z

32 17.450(1) 21(2) G 96 38.362(1) 17(2) G 160 59.609(1) 16(2) G

33 17.808(3) 207(4) Z 97 38.416(1) 18(2) G 161 59.875(3) 85(10) Z

34 18.229(1) 18(1) G 98 38.728(1) 19(2) G 162 60.585(1) 51(3) G

35 18.566(1) 19(2) G 99 38.895(1) 23(2) G 163 60.646(1) 8(2) G

36 18.948(1) 20(1) G 100 39.075(1) 16(1) G 164 61.241(1) 22(1) G

37 19.258(1) 21(2) G 101 39.458(1) 16(3) G 165 61.759(1) 13(1) G

38 19.469(1) 145(1) Z 102 39.739(8) 1722 Z 166 62.271(1) 15(1) G

39 19.66(1) 171(13) Z 103 39.919(1) 16(3) G 167 62.510(1) 52(3) Z

40 20.138(1) 16(1) G 104 40.252(6) 202(7) Z 168 63.174(1) 9(2) Z

41 20.627(1) 18(2) G 105 40.772(2) 106(4) Z 169 63.367(1) 6(2) G

42 20.884(1) 20(2) G 106 40.901(1) 17(2) G 170 63.398(1) 18(3) Z

43 20.965(1) 25(2) Z 107 42.429(1) 20(1) G 171 63.727(1) 17(3) G

44 21.588(1) 47(2) Z 108 43.019(1) 20(2) G 172 63.985(3) 348(7) Z

45 21.934(1) 43(2) Z 109 43.078(1) 13(1) G 173 64.374(4) 76(5) Z

46 22.146(1) 16(1) G 110 43.969(1) 23(1) Z 174 64.522(1) 16(1) G

47 22.34(1) 190(13) Z 111 44.404(1) 44(4) G 175 64.889(1) 17(1) G

48 22.960(1) 159(2) Z 112 44.731(1) 109(7) Z 176 64.985(1) 20(1) G

49 23.224(1) 21(1) G 113 44.823(1) 18(2) G 177 65.302(1) 37(1) Z

50 23.413(1) 21(2) G 114 45.165(1) 27(4) G 178 65.671(1) 33(3) Z

51 23.953(1) 67(3) Z 115 45.571(1) 156(8) Z 179 65.989(1) 46(2) Z

52 24.40(2) 48(15) Z 116 45.772(1) 19(3) G 180 66.401(1) 58(2) Z

53 24.549(1) 73(3) Z 117 45.851(1) 88(4) Z 181 66.475(1) 51(1) Z

54 24.649(1) 14(3) G 118 46.343(1) 89(3) Z 182 66.790(1) 118(3) Z

55 24.908(2) 100(5) Z 119 46.815(1) 20(2) G 183 67.103(1) 497 Z

56 25.117(1) 42(3) Z 120 46.900(1) 12(3) G 184 67.354(1) 18(2) G

57 25.265(1) 17(2) G 121 47.284(3) 58(10) G 185 67.767(1) 12(1) G

58 25.925(1) 26(3) G 122 47.485(7) 1193 Z 186 68.240(1) 113(3) Z

59 26.202(1) 12(1) G 123 48.035(1) 141(7) Z 187 68.810(1) 26(1) Z

60 26.534(1) 19(1) G 124 48.082(1) 7(2) G 188 68.895(1) 16(4) G

61 26.877(1) 99(4) Z 125 48.207(1) 21(2) G 189 69.046(1) 347(3) Z

62 27.098(1) 18(1) G 126 48.473(1) 98(3) Z 190 69.727(1) 19(2) G

63 27.447(1) 20(1) G 127 48.842(2) 138(5) Z

64 28.070(1) 23(1) G 128 49.251(1) 14(2) G

Fano–Feshbach resonance positions, B, and widths, D, of the loss maxima shown in Fig. 1. For convenience, the loss features are reported in ascending order and labelled with index i. The error in brackets is 1s. D is
determined either from a Gaussian fit as the half-width at 1/e2 (method G) or by measuring the zero crossing of the resonance, Bzero, being D 5 | B 2 Bzero | (method Z).
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Extended Data Table 2 | Fano–Feshbach resonances data for isotope 166Er

i B ∆ meth. i B ∆ meth. i B ∆ meth.

(G) (mG) (G) (mG) (G) (mG)

1 0.121(1) 20(2) G 64 30.703(1) 16(4) G 127 49.793(1) 15(3) G

2 0.244(1) 14(1) G 65 30.810(2) 154(4) Z 128 50.072(1) 90(4) G

3 0.366(1) 6(1) G 66 31.220(2) 95(10) G 129 50.119(1) 56(10) G

4 0.490(1) 15(6) G 67 31.683(1) 33(2) G 130 50.249(1) 24(4) G

5 3.056(2) 124(4) Z 68 32.106(1) 16(2) G 131 50.32(1) 483(30) G

6 4.012(5) 23(1) G 69 32.145(1) 13(2) G 132 51.321(1) 65(3) G

7 4.955(1) 9(2) G 70 32.656(1) 17(2) G 133 51.684(1) 48(3) Z

8 6.546(1) 38(2) Z 71 32.909(1) 14(2) G 134 52.04(1) 161(11) Z

9 6.768(1) 23(2) G 72 33.166(1) 13(2) G 135 52.395(1) 27(4) G

10 6.884(1) 26(2) G 73 34.309(1) 15(1) Z 136 52.435(1) 76(2) Z

11 8.053(1) 29(2) G 74 34.408(1) 77(4) Z 137 52.795(1) 235(15) G

12 8.553(1) 20(2) G 75 34.734(1) 19(1) G 138 53.114(2) 55(5) Z

13 9.910(1) 47(5) Z 76 34.824(1) 13(1) G 139 53.267(1) 19(1) G

14 10.228(3) 116(6) Z 77 35.345(1) 15(1) G 140 53.863(4) 88(10) G

15 11.108(1) 52(6) Z 78 35.463(1) 18(1) G 141 54.207(2) 101(5) Z

16 11.623(1) 27(1) Z 79 35.784(1) 14(1) G 142 54.488(1) 19(2) G

17 12.978(1) 14(2) G 80 36.006(1) 18(1) G 143 54.932(1) 17(1) G

18 13.278(1) 34(1) Z 81 36.876(1) 14(2) G 144 55.263(1) 17(2) G

19 13.426(2) 92(7) Z 82 37.077(1) 49(5) Z 145 55.431(1) 35(2) Z

20 13.686(1) 16(2) G 83 37.253(1) 17(2) Z 146 55.974(1) 131(13) G

21 14.177(1) 19(2) G 84 37.662(1) 45(3) Z 147 56.062(1) 144(33) G

22 14.801(1) 17(2) G 85 38.048(1) 23(1) G 148 56.456(1) 149(4) Z

23 14.835(1) 13(1) G 86 38.145(1) 190(5) Z 149 56.668(1) 121(3) Z

24 15.077(1) 18(2) G 87 38.573(1) 39(3) Z 150 56.740(3) 4(4) Z

25 15.371(1) 70(2) Z 88 38.788(1) 12(2) G 151 56.768(1) 29(3) G

26 15.726(1) 68(2) Z 89 38.888(1) 84(5) Z 152 57.556(1) 15(1) G

27 16.107(1) 19(2) G 90 39.354(1) 11(2) Z 153 57.753(1) 21(1) G

28 16.187(1) 38(2) Z 91 39.563(2) 52(2) Z 154 57.978(1) 33(2) G

29 17.053(1) 25(2) G 92 39.652(1) 110(5) Z 155 58.135(1) 19(2) G

30 17.977(1) 17(3) G 93 40.099(1) 13(1) G 156 58.239(1) 31(2) G

31 18.961(1) 20(3) G 94 40.459(1) 87(4) Z 157 58.987(1) 13(1) G

32 19.152(1) 22(1) G 95 41.649(1) 27(1) Z 158 59.179(1) 18(1) G

33 19.239() 20(1) G 96 41.756(1) 36(2) Z 159 59.718(2) 77(6) G

34 19.543(1) 21(3) Z 97 41.926(1) 17(2) G 160 59.890(1) 21(1) G

35 19.82(1) 158(12) Z 98 42.003(1) 18(3) G 161 60.111(2) 97(7) G

36 20.539(4) 417(18) G 99 42.040(1) 14(1) G 162 60.637(1) 45(2) G

37 21.047(2) 63(8) Z 100 42.229(7) 473(29) G 163 61.104(1) 24(2) G

38 21.803(1) 21(2) G 101 42.817(1) 53(4) G 164 61.522(1) 8(1) G

39 21.922(1) 22(2) G 102 42.906(1) 19 G 165 61.667(1) 33(2) Z

40 22.068(1) 50(5) Z 103 43.146(1) 14(1) G 166 61.829(1) 53(5) Z

41 22.350(1) 27(2) G 104 43.273(1) 14(1) G 167 62.348(3) 156(12) G

42 23.055(1) 17(2) G 105 43.716(1) 26(1) Z 168 62.600(2) 97(33) G

43 23.345(1) 19(2) Z 106 43.844(1) 47(1) Z 169 62.804(1) 16(2) Z

44 23.585(1) 72(3) G 107 43.922(1) 23(1) G 170 63.126(1) 16(1) G

45 23.725(1) 15(4) G 108 44.436(1) 16(1) G 171 63.500(1) 5(1) Z

46 23.898(1) 15(2) G 109 44.589(1) 19(6) G 172 63.524(1) 21(1) G

47 24.272(1) 12(1) G 110 44.737(1) 12(1) G 173 64.078(1) 18(1) G

48 24.924(1) 14(2) G 111 44.961(1) 15(1) G 174 64.535(1) 17(2) G

49 25.272(1) 19(1) G 112 45.111(1) 20(2) G 175 65.089(1) 5(2) G

50 26.036(1) 17(1) G 113 45.168(1) 40(2) Z 176 65.334(1) 16(1) G

51 26.206(1) 13(2) G 114 45.405(1) 16(1) G 177 66.287(1) 14(2) G

52 26.621(1) 10(2) G 115 45.850(1) 29(1) Z 178 66.375(1) 18(1) G

53 26.915(1) 19(1) G 116 45.989(1) 22(1) G 179 66.898(1) 12(1) G

54 27.324(1) 30(1) Z 117 46.359(2) 63(7) G 180 67.186(1) 15(1) G

55 27.681(1) 23(1) G 118 46.664(4) 311(5) Z 181 67.333(1) 20(2) Z

56 28.488(1) 31(1) Z 119 46.803(1) 10(4) G 182 67.519(2) 72(6) G

57 28.726(1) 25(1) Z 120 47.282(1) 16(2) G 183 67.776(1) 6(3) Z

58 29.024(1) 14(1) G 121 47.478(8) 366(36) G 184 68.243(1) 38(4) G

59 29.357(1) 25(1) Z 122 47.851(1) 27 G 185 68.426(1) 17(1) G

60 29.515(1) 16(1) G 123 47.962(6) 238(23) G 186 68.642(1) 13(1) G

61 30.023(1) 44(2) Z 124 48.873(1) 17(1) G 187 68.875(1) 16(1) G

62 30.319(1) 21(2) G 125 49.384(1) 90(3) Z 188 69.200(1) 35(2) G

63 30.508(1) 31(1) Z 126 49.676(2) 105(4) Z 189 69.728(2) 97(5) G

Fano–Feshbach resonance positions, B, and widths, D, of the loss maxima shown in Fig. 1. For convenience, the loss features are reported in ascending order and labelled with index i. The error in brackets is 1s. D is
determined either from a Gaussian fit as the half-width at 1/e2 (method G) or by measuring the zero crossing of the resonance, Bzero, being D 5 | B 2 Bzero | (method Z).
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